Churchsche These

Die Klasse der effektiv berechenbaren Funktionen ist genau die Klasse der μ -rekursiven Funktionen. Jede Formalisierung von berechenbaren Funktionen liefert die gleiche Klasse.

Wir werden einige dieser Formalisierungen kurz vorstellen.

6.79 Definition Register-Maschinen (goto-Programme über N) **Goto-Programme** über der Variablenmenge $V = \{V_0, \ldots, V_n\}$ sind markierte Befehlsfolgen der Form

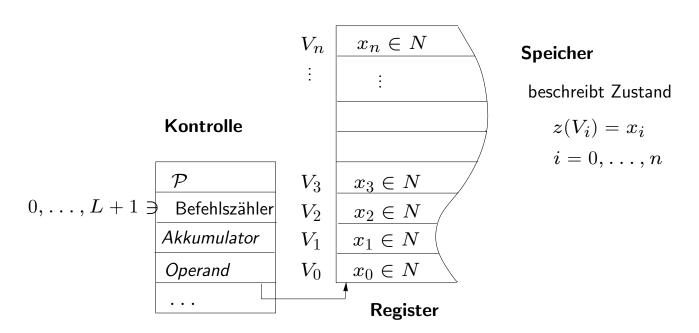
$$\mathcal{P} :: 0 : B_0$$
 $1 : B_1$
 \vdots
 $L : B_L$

Mit **Befehlen** $B_i, i \in \{0, \ldots, L\}$ einer der Formen

$$\bullet V_i := s(V_i) \bullet V_i := p(V_i) \bullet \underline{\mathsf{if}} \ V_i = 0 \ \underline{\mathsf{then}} \ \mathsf{goto} \ l_1 \ \underline{\mathsf{else}} \ \mathsf{goto} \ l_2$$
 mit $V_i \in V, l_1, l_2 \in \{0, \dots, L+1\}$ (Marken).

Die intendierte Semantik von s, p ist die Nachfolger- bzw. die Vorgängerfunktion auf \mathbb{N} .

Register-Maschinen Semantik



Registermaschine **Erweiterung**: *RAM*

Interpretersemantik:

Interpretersemantik:
$$I_{\mathcal{P}}(l,z):\{0,\ldots,L+1\} imes\mathcal{Z} o\{0,\ldots,L+1\} imes\mathcal{Z}$$

Startzustand: (0, z), Eingaben $z(V_i) = x_i \in \mathbb{N}$

$$\begin{cases} (l+1,z(V_i/z(V_i)+1)) & l:V_i:=s(V_i)\in\mathcal{P}\\ (l+1,z(V_i/z(V_i)-1)) & l:V_i:=p(V_i)\in\mathcal{P}\\ (l_1,z) & l:\underline{\mathbf{if}}\ V_i=0\ \underline{\mathbf{then}}\ \mathbf{goto}\ l_1\ \underline{\mathbf{else}}\ \mathbf{goto}\ l_2\in\mathcal{P}\\ & \wedge z(V_i)=0\\ (l_2,z) & l:\underline{\mathbf{if}}\ V_i=0\ \underline{\mathbf{then}}\ \mathbf{goto}\ l_1\ \underline{\mathbf{else}}\ \mathbf{goto}\ l_2\in\mathcal{P}\\ & \wedge z(V_i)\neq 0\\ (l,z) & l=L+1\ \mathrm{oder}\ l\ \mathrm{kein}\ \mathrm{Label}\ \mathrm{in}\ \mathcal{P}\ (\mathbf{Stopp}) \end{cases}$$

Register-Maschinen berechenbare Funktionen

Programm ${\mathcal P}$ stoppt aus Startzustand $z \ {
m gdw}$ keine Befehlsausführung mehr möglich.

Ein- Ausgabevereinbarungen für die Berechnung von Funktionen $f: \mathbb{N}^l \to \mathbb{N}: \mathcal{P}$ berechnet f gdw

- i) Die Rechnung stoppt aus Anfangszustand $z(V_i) = x_i$, i = 1, ..., l, $z(V_i) = 0$ sonst $gdw(x_1, ..., x_l) \in dom(f)$.
- ii) Gilt $(x_1, \ldots, x_l) \in dom(f)$, $y = f(x_1, \ldots, x_l)$, so stoppt $\mathcal P$ in einem Zustand z' mit $z'(V_0) = y$. Also gilt:

$$\exists t \in \mathbb{N} : I_{\mathcal{P}}^t(0, z) = (L + 1, z')$$

6.80 Beispiel Einfache RM bzw. goto-Programme

Sei S festes Register mit Inhalt 0, d. h. $z(V_s)=0$

a) Register "leeren"

$$V \Leftarrow 0 :: 0 : V := p(V)$$

 $1 : \mathbf{if} \ V = 0 \ \mathbf{then} \ \mathbf{goto} \ 2 \ \mathbf{else} \ \mathbf{goto} \ 0$

b) $Z \Leftarrow Z+1$, $Z \Leftarrow Z-1$ sind leicht anzugeben.

Einfache RM bzw. goto-Programme

c) "Inhalt umspeichern"

$$Z \Leftarrow Y :: 0 : Z \Leftarrow 0$$

copy Y nach Z 1: if Y = 0 then goto 5 else goto 2

Hilfsregister U 2:Y:=p(Y)

initialisiert mit 0

3: U := s(U)

unbedingter Sprung: $4 : if V_s = 0$ then goto 1 else goto 1

goto 1 (Abkürzung)

5: if U = 0 then goto 10 else goto 6

6: U := p(U)

7: Z := s(Z)

8: Y := s(Y)

9 : **goto** 5

6.81 Lemma

- Jede μ -rekursive Funktion ist goto-berechenbar.
- Jede goto-berechenbare Funktion ist μ -rekursiv.

Beweisidee:

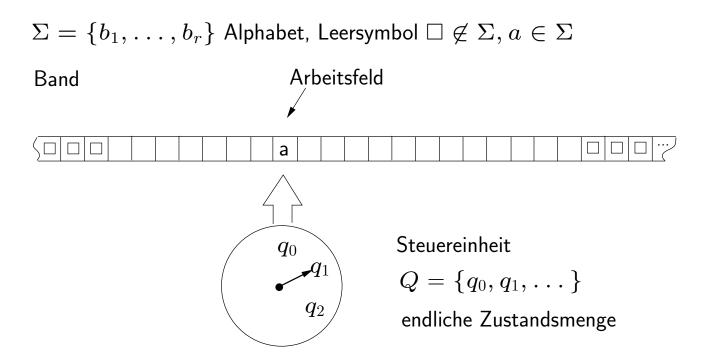
• Zeige die Grundfunktionen sind goto-berechenbar.

$$f = go(h_1, ..., h_m), \quad f = R(g, h), \quad f = \mu.g$$

Lassen sich durch Goto-Programme berechnen, falls g, h_1, \ldots, h_m, h goto-berechenbar.

ullet Zeige die Funktion $I_{\mathcal{P}}$ lässt sich durch eine primitiv rekursive Funktion simulieren. Dann Iteration und Minimierung.

Turingmaschinen (nach A. Turing)



Zu jedem Zeitpunkt sind nur endlich viele Felder nicht mit □ belegt. Es gibt somit stets zusammenhängenden Block endlicher Länge, der das A-Feld enthält und außerhalb davon nur Leerzeichen vorkommen.

Erlaubte Operationen:

In Abhängigkeit vom Zustand und Inhalt des A-Felds schreibe Zeichen ins A-Feld, bewege Lese-Schreibkopf um ein Feld nach links (L), rechts (R) oder bleibe darauf (S), ändere Zustand.

Beschreibung durch "Übergangsfunktion"

 $\delta:Q\times\Gamma\to Q\times\Gamma\times\{L,R,S\}$, wobei Q endliche Zustandsmenge und Γ Bandalphabet sind.

Turingmaschinen (Forts.)

6.82 Definition

Eine Turingmaschine T ist ein 6 -Tupel $T=(Q,\Sigma,\Gamma,\delta,q_0,F)$ mit folgenden Bestandteilen:

- *Q* ist endliche **Zustandsmenge**.
- Σ Eingabealphabet mit $\square \not\in \Sigma$. Eingabezeichen.
- Γ Bandalphabet mit $\Sigma \subseteq \Gamma$ und $\square \in \Gamma$. Bandzeichen.
- q_0 ist der **Startzustand**.
- $F \subseteq Q$ Menge der **Endzustände**.
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$ (oft als total verlangt) genügt $dom(\delta) = (Q \backslash F) \times \Gamma$. Übergangsfunktion. Wird oft als Tafel oder Tabelle angegeben.

Ein **Bandzustand** von T ist ein Tripel (q,x,β) mit $q\in Q$ (aktueller Zustand), $x\in \mathbb{Z}$ (aktuelle Kopfposition), $\beta:\mathbb{Z}\to \Gamma$ totale Funktion (aktueller Bandinhalt) mit $\beta(y)=\square$ für alle bis auf endlich viele $y\in \mathbb{Z}$.

Turingmaschinen (Forts.)

T überführt den Bandzustand (q, x, β) in den Bandzustand (q', x', β') (Folgezustand), falls

•
$$\delta(q, \beta(x)) = (q', \beta'(x), M)$$

$$\bullet \ \beta'(y) = \beta(y) \text{ für alle } y \neq x$$

Folgezustand

$$\bullet \ x' = \begin{cases} x - 1 & \text{falls } M = L \\ x + 1 & \text{falls } M = R \\ x & \text{falls } M = S \end{cases}$$

Eine **Rechnung** von T ist eine endliche Folge von Bandzuständen (z_0, \ldots, z_n) , so dass T für alle $0 \le i < n$ den Zustand z_i in z_{i+1} überführt.

Eine Rechnung heißt haltend, falls $z_n=(q,x,\beta) \land q \in F$.

6.83 Beispiel

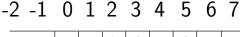
$$\Sigma = \{1, 2\}, \Gamma = \Sigma \cup \{\Box\}, Q = \{q_0, q_1, q_2\}, F = \{q_2\}$$

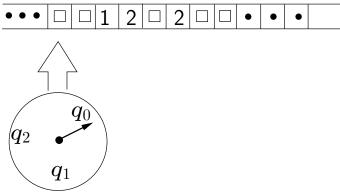
Andere Beschreibungen von δ möglich: z.B.

Fünftupel $\{q \ b \ q' \ b' \ M : q \in Q, b \in \Gamma\}$

Beispiele von Turingmaschinen

Beispiel Rechnung:





Anfangszustand
$$z_0=(q_0,0,\beta)$$
 wobei $\beta(2)=1$
$$\beta(3)=2$$

$$\beta(5)=2$$
 sonst \square

$$z_1 = (q_0, 1, \beta)$$
 $z_2 = (q_0, 2, \beta)$ $z_3 = (q_1, 3, \beta_1)$ mit $\beta_1(3) = 2 = \beta_3(5)$ sonst \square $z_4 = (q_1, 4, \beta_2)$ mit $\beta_3(5) = 0$ sonst \square $z_5 = (q_2, 4, \beta_2)$ $\ni q_2$ haltend oder "Haltezustand" $z_6 = (q_2, 4, \beta_2)$ "Endzustand"

Wirkung: TM sucht rechts vom A-Feld $w \in \Sigma^*$ als Block und löscht es. Bleibt auf Leerzeichen hinter w stehen, falls $w \in \Sigma^+$ existiert. Stoppt nicht, falls auf AFeld und rechts davon lauter \square -Zeichen sind.

Turing-berechenbare Funktionen

Unäre Codierung von Zahlen $n \to \underbrace{||| \dots |}_n$

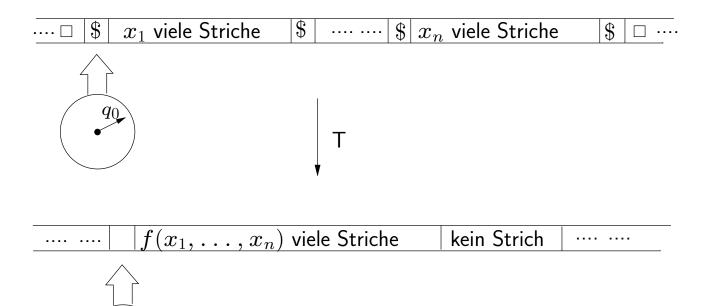
6.84 Definition

Eine Funktion $f:\mathbb{N}^n\to\mathbb{N}$ heißt **Turing-berechenbar**, falls es eine TM T mit Eingabealphabet $\{|,\$\}$ gibt, so dass der Bandzustand $(q_0,0,\beta)$ mit

- $\beta(i) = \square$ für i < 0 und $i > x_1 + x_2 + \cdots + x_n + n$
- $\beta(0) = \beta(x_1 + 1) = \beta(x_1 + x_2 + 2) = \cdots = \beta(x_1 + \cdots + x_n + n) = \$$
- $\beta(i) = |$ für alle anderen i

genau dann zu einer haltenden Rechnung ergänzt werden kann, wenn $f(x_1,\ldots,x_n)\downarrow$ und, ist in diesem Fall (q,i,β') der Zustand, in dem die Rechnung hält, dann ist die Anzahl der Striche |, die in $\beta'(i+1),\beta'(i+2),\ldots$ unmittelbar aufeinanderfolgen, gleich $f(x_1,\ldots,x_n)$.

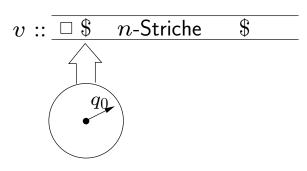
Turing-berechenbare Funktionen (Forts.)

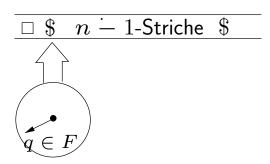


Beispiele

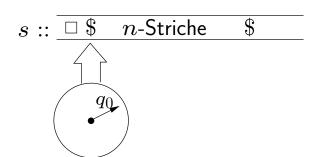
6.85 Beispiel

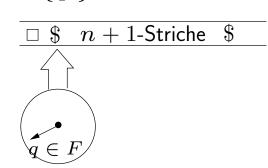
1. Vorgänger und Nachfolger: v(x) = n - 1, s(n) = n + 1





$$\delta(q_0,\$) = (q_1,\square,R) \quad \Sigma = \{|,\$\}$$
 $\delta(q_1,|) = (q_3,\$,S) \quad \Gamma = \{|,\$,\square\}$
 $\delta(q_1,\$) = (q_2,\$,L) \quad Q = \{q_0,q_1,q_2,q_3\}$
 $\delta(q_2,\square) = (q_3,\$,S) \quad F = \{q_3\}$





$$\delta(q_0,\$) = (q_0,|,L) \qquad \Sigma = \{|,\$\}
\delta(q_0,\square) = (q_1,\$,S) \qquad \Gamma = \{|,\$,\square\}
 Q = \{q_0,q_1\}
F = \{q_1\}$$

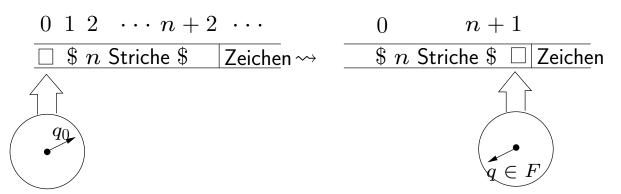
Beispiele (2)

2. Suche rechts vom A-Feld erstes Vorkommen von \$, bleibe dort stehen.

$$\delta(q_0, b) = (q_1, b, R) \quad b \in \Gamma$$
 $\delta(q_1, b) = (q_1, b, R) \quad b \in \Gamma \setminus \$$
 $\delta(q_1, \$) = (q_2, \$, S)$

SL\$. Analog SR\$

3. Verschiebe Block n-Striche um ein Feld nach links



Beispiele (2) (Forts.)

$$\Sigma = \{|,\$\}$$
 $q_0 \ b \ R \ q_1$ $b \in \Gamma$ $\Gamma = \Sigma \cup \{\Box\}$ $q_1 \ b \ B \ R \ q_2$ $Q = \{q_0, \dots, q_5\}$ $q_2 \ | \ L \ q_3$ $q_3 \ b \ R \ q_1$ $q_4 \ b \ R \ q_5$ $q_5 \ b \ B \ q_5$

VL. Analog VR (verschiebe nach rechts).

$$\delta(q_2,\$) = (q_4,\square,L)$$
 q_3 merkt sich $|$ q_4 merkt sich $\$$

Strategie:

$$q_0 \longrightarrow 0$$
 $q_1 \longleftarrow q_1 \longrightarrow q_2$
 $q_4 \longleftarrow q_1 \longrightarrow q_1$

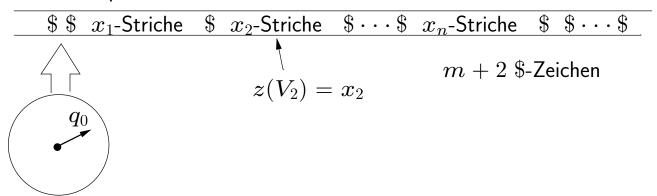
Simulation von RM-Programme durch TM

6.86 Lemma

- Jede RM (goto)-berechenbare Funktion lässt sich durch eine TM berechnen. Also ist jede μ -rekursiv Funktion TM-berechenbar.
- ullet Jede Turing-berechenbare Funktion ist μ -rekursiv.

Beweisidee:

Simuliere Berechnung des goto-Programms über V_0,\ldots,V_m , $f:\mathbb{N}\to\mathbb{N}$. Speichere Zustand $z:V\to\mathbb{N}$ als



Ein-Befehl wird durch mehrere TM-Schritte simuliert.

Die Zustände entsprechen Marken im Goto-Programm.

$$V_i := s(V_i)$$

- ullet Verschiebe die Blöcke vor V_i jeweils um ein Feld nach links wie oben.
- ullet Wende s TM an.
- SL\$ *i*-mal.

Simulation von TM durch μ rekursive Funktionen

Simulation der Überführungsfunktion einer Turing-Maschine durch eine primitiv-rekursive Funktion $i_T: \mathbb{N} \to \mathbb{N}$, die auf geeignet codierten Bandzuständen arbeitet (q, x, β) .

Dann wie üblich.

Wir haben somit weitere Charakterisierungen der μ -rekursiven Funktionen, die die Churchsche These untermauern.

Man kann für $\mathcal{P}(\mathbb{N})$ (primitiv-rekursiven Funktionen) ebenfalls eine Charakterisierung mit Hilfe einfacher Programmiersprachen finden.

z. B. For-Programme über $\mathbb N$

Anweisungsfolgen:

Anweisung: Zuweisung, Test oder For-Schleife der Form:

for
$$I=0$$
 to J do α end;

 $I,J\in V$ α For-Programm über V, das keine Zuweisung der Form I:=t oder J:=t mit Term t enthält (Schleife wird genau z(J) mal ausgeführt, dabei wird stets α ausgeführt und I um 1 erhöht).

6.6 Berechenbarkeit auf Zeichenreihen Wortfunktionen

Wortfunktionen: $f:(\Sigma^*)^n \to \Sigma^*$

Wortrelationen $R \subseteq (\Sigma^*)^n$ Sprachen $R \subseteq \Sigma^*$

Bisher: Funktionen, Relationen auf \mathbb{N} : μ -rekursive Funktionen.

Turing-Maschinen und While-Programme sind für beliebige Alphabete bzw. beliebige Strukturen definiert.

Verallgemeinerung der Ergebnisse der Rekursionstheorie, insbesondere über Entscheidbarkeit und Nichtentscheidbarkeit auf Wortfunktionen und Relationen.

1. Möglichkeit: Codierung von Σ^* in \mathbb{N} . Einfache effektive Codierungen: z. B. Folgencodierungsfunktion oder Interpretation als Zahl (binäre-, dezimale-Darstellung).

$$f: \Sigma^* \longrightarrow \Sigma^*$$

$$\kappa \qquad \qquad \kappa^{-1} \qquad \qquad \bar{f}(n) = \kappa^{-1}(f(\kappa(n)))$$

$$\bar{f}: \mathbb{N} \longrightarrow \mathbb{N}$$

Berechenbarkeit auf Zeichenreihen (2)

Definition $f \in \mathcal{R}_p(\Sigma)$ gdw $\bar{f} \in \mathcal{R}_p(\mathbb{N})$.

Zeige: Unabhängig von der gewählten effektiven Codierung.

2. Möglichkeit: $\Sigma = \{a_1, \ldots, a_n\} \ (n \geq 1)$

While-Programme:

Betrachte die Algebra

 $String = (\Sigma^*, \varepsilon, succ_{a_1}, \dots, succ_{a_n}, pred)$ mit

- $succ_a(u) = au \quad (a \in \Sigma)$
- pred(au) = u $pred(\varepsilon) = \varepsilon$

Ordnungen auf Σ^* : \leq_{llex} Länge-Lexikographisch,

d. h.
$$u \leq_{llex} v \ \mathrm{gdw} \ |u| < |v| \ \mathrm{oder}$$

$$|u| = |v| \wedge u \leq_{lex} v$$

Wobei \leq_{lex} lex. Ordnung, die von lin. Ordnung auf Σ induziert wird (z. B. $a_1 < a_2 < a_3 \cdots < a_n$).

Beachte: $|\cdot|: \Sigma^* \to \Sigma^* \quad |u| = a_1^{|u|}$ und $\chi_{\leq llex}$ sind while-berechenbar.

3. Möglichkeit: μ -rekursive Funktionen über Σ^* : $a \in \Sigma$

- $f_{NULL}^{(n)}(\vec{w}) = \varepsilon$, $f_{SUCC_a}^{(n)}(\vec{w}) = aw_1 \ (\vec{w} = (w_1, \dots, w_n))$
- $f_{PROJ(i)}^n$ wie bisher.

Berechenbarkeit auf Zeichenreihen (3)

Komposition: $f \circ (g_1, \ldots, g_n)$ wie bisher.

Primitive Rekursion: $f = R_{\Sigma}(g, h_1, \dots, h_n)$, falls

- $f(\vec{u}, \varepsilon) = g(\vec{u}, \varepsilon)$
- $f(\vec{u}, a_i v) = h_i(\vec{u}, f(\vec{u}, v), v)$

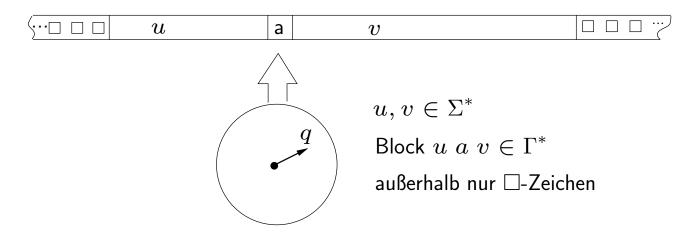
Minimierung: $f(\vec{u}) = \mu_{llex}v \cdot g(\vec{u},v) = \varepsilon$ $f(\vec{u}) = w \ llex$ -minimal mit $g(\vec{u},w) = \varepsilon$, sofern ein solches existiert.

- 4. Möglichkeit: RM (Goto-Programme): $z(V_i) \in \Sigma^*$ Befehle:
- ullet X:=s(a,X) Wirkung wie $succ_a$ in Σ^*
- X := p(X) Wirkung wie pred in Σ^*
- if $X = \varepsilon$ then goto l_1 else goto l_2
- Test (Anfangsbuchstabe ist $a \in \Sigma$): if AB(X) = a then goto l_1 else goto l_2

Berechenbarkeit auf Zeichenreihen (4)

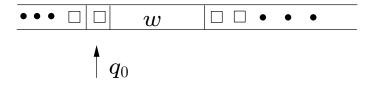
5. Möglichkeit: Turing-Maschinen:

$$T = (Q, \Sigma, \Gamma \supseteq \Sigma \cup \{\square\}, \delta, q_0, F \subseteq \Gamma)$$



Zwei Konfigurationen heißen **äquivalent**, falls sie sich nur durch Blöcke von □-Zeichen davor und danach unterscheiden.

Anfangskonfigurationen: $q_0 \square w \qquad w \in \Sigma^*$



Berechenbarkeit auf Zeichenreihen (5)

Folgekonfigurationen

k' ist Folgekonfiguration von $k: k \vdash_T k'$, falls gilt

k	$\delta(q,a)$	k'	
u q a v	(q', a', S)	$u \; q' \; a' \; v$	
$u \ q \ a \ v$	(q',a',R)	$u\ q'\ a'\ v$	$v \in \Gamma^+$
$u \ q \ a$	(q',a',R)	$u \ q' \ a' \ \square$	
$u\ b\ q\ a\ v$	(q',a',L)	$u \ q' \ b \ a' \ v$	$b \in \Gamma$
q a v	(q',a',L)	$q' \mathrel{\square} a' \ v$	

Eine **Rechnung** einer TM T ist Folge von Konfigurationen (k_0, \ldots, k_n) mit $k_i \vdash_T k_{i+1}$. Sie ist haltend, falls k_n eine End-

konfiguration ist, d. h. $k_n=u\ q\ v$ mit $q\in F$. Schreibe $k_0\vdash_T k_n$ Eine **Berechnung** einer TM T ist eine Rechnung wobei k_0 eine Anfangskonfiguration $(k_0=q_0\ \square\ w)w\in \Sigma^*$ ist.

TM-berechenbare Funktionen: $f:(\Sigma^*)^n\to \Sigma^*$ ist TM-berechenbar, falls es eine TM T gibt die f berechnet, d. h.

- a) T stoppt für Anfangskonfiguration $k_0=q_0\,\square\,x_1\,\square\,x_2\,\square\cdots\square\,x_n\,\square\,$ $\mathrm{gdw}\;(x_1,\ldots,x_n)\in dom(f)$
- b) Gilt $(x_1, \ldots, x_n) \in dom(f)$ und $y = f(x_1, \ldots, x_n)$, so hat T beim Stopp die Konfiguration $\Box^i q \Box x_1 \Box \cdots \Box x_n \Box y \Box^j$, für geeignete $i, j \in \mathbb{N}$.

Berechenbarkeit auf Zeichenreihen (6)

6.87 Satz

 $f:(\Sigma^*)^n \to \Sigma^*$, dann sind äquivalent

- $f \in \mathcal{R}_p(\Sigma)$, d. h. f ist μ -rekursiv.
- ullet ist while-programmierbar über String.
- *f* ist RM-(goto)-berechenbar.
- f ist TM-berechenbar.

Existenz universeller Funktionen, universeller Programme und universeller Maschinen wie bisher.

- Relationen: Entscheidbarkeit, rek-Aufzählbarkeit $R \subseteq (\Sigma^*)^n$
- R entscheidbar $\operatorname{gdw} \chi_R \in \mathcal{R}_p(\Sigma), \chi_R(\vec{w}) = \begin{cases} \varepsilon & w \not\in R \\ a_1 & w \in R \end{cases}$
- R rekursiv-aufzählbar $\operatorname{gdw} R = \operatorname{dom}(f)$, $f \in \mathcal{R}_p(\Sigma)$.
- \bullet Halteproblem: $K_0=\{(T,w)\mid T$ mit Anfangskonfiguration $q_0 \;\square\; w$ hält, d. h. Berechnung mit Endkonfiguration}

Ist nicht entscheidbar.

Bisherige Ergebnisse lassen sich übertragen.

Insbesondere: Reduzierbarkeit \leq_m .

Turing-Maschinen als Akzeptoren von Sprachen und als entscheidende Automaten

6.88 Definition Akzeptierende und erkennende TM

Sei
$$T=(Q,\Sigma,\Gamma\supseteq\Sigma\cup\{\Box\},\delta,q_0,F)$$

- ullet T akzeptiert die Sprache $L\subseteq \Sigma^*$ gdw für
 - $w\in \Sigma^*: q_0 \square w \vdash_T u \ q \ v \ \text{mit} \ q\in F \ \text{gdw} \ w\in L$, d. h. es gibt haltende Berechnung aus $q_0 \square w \ \text{gdw} \ w\in L$, L=L(T).
- T entscheidet die Sprache $L\subseteq \Sigma^*$ gdw für jede Eingabe $w\in \Sigma^*$ hält T: $q_0 \square w \overset{*}{\vdash}_T u \ q \ v$ mit $q\in F$ und $w\in L$, so $q=q_y \qquad w\not\in L$, so $q=q_n$ wobei $q_y,q_n\in F$ spezielle "Ja"-, "Nein"- Zustände sind.

6.89 Lemma

- $L \subseteq \Sigma^*$ ist entscheidbar gdw es gibt eine TM T, die L entscheidet.
- $L\subseteq \Sigma^*$ ist rekursiv aufzählbar gdw es gibt eine TM T, die L akzeptiert, d. h. L=L(T).

Beachte: Andere Konventionen sind möglich. Andere TM: Mehrband TM, δ unvollständig, Band einseitig unendlich, mehrspurig, nicht deterministisch.

Beispiele

Turing-Programme

• Turing Befehl hat die Form

$$\begin{array}{ll} B \equiv Op & Op \in \Gamma \stackrel{.}{\cup} \{R,L,\mathsf{stopp}\} \\ B \equiv q & q \in Q \text{ unbedingter Sprung} \\ B \equiv a,q & a \in \Gamma, q \in Q \text{ bedingter Sprung nach } q, \\ & \mathsf{falls} \ a \text{ in A-Feld} \end{array}$$

• Turing Programm ist endliche Folge markierter Befehle

$$Q=\{q_0,q_1,\ldots,q_n\},\,q_i
eq q_j ext{ für } i
eq j$$
 TP:: $q_0:B_0$ B_i Turing-Befehl $q_1:B_1$ \vdots $q_n:B_n$

ullet Semantik eines T-Programms durch Angabe der TM

$$T = (Q', \Sigma, \Gamma, \delta, q_0, F), a \in \Gamma, Q' = Q \cup \{q_{n+1}\}$$

$$\delta(q_i, a) = (q_{i+1}, a', S) \quad B_i \equiv a' \in \Gamma$$

$$= (q_{i+1}, a, M) \quad B_i \equiv M \in \{L, R\}$$

$$= (q_{i+1}, a, S) \quad B_i \equiv a', q \quad a \neq a'$$

$$= (q, a, S) \quad B_i \equiv a, q$$

$$= (q_{n+1}, a, S) \quad B_i \equiv \text{stopp oder } i = n+1$$

$$F = \{q_{n+1}\}$$

ullet Eigenschaft:Jede TM kann durch ein äquivalentes T-Programm beschrieben werden.

Beispiele

Suche Links von AF das erste Vorkommen von \square ... Rechts ...

 $SL \ \square : \quad L \qquad \qquad SR \ \square : \quad R \qquad \qquad \square, Fin \qquad \qquad \square, Fin \qquad \qquad SR \ \square$

Fin: Stopp Fin: Stopp

TM, die die Menge der Palindrome über $\{a,b\}^*$ entscheidet

 $L = \{w \in \{a, b\}^* : w = w^{mi}\}$

 q_0 : R q_b : \square

 $\Box:q_y$ SR \Box

 $a:q_a$

 $b:q_b$ $\square:q_y$

b:q

 $a:q_n$

 q_a : \square q: \square

 $SR \square$ $SL \square$

 $\square:q_y$

a:q

 $b:q_n$

Diese Turing Programm hält für jede Eingabe $w \in \Sigma^*$ und entscheidet die Menge der Palindrome.

Simulation von TM-Berechnungen durch Wortersetzungssystemen (Σ,Π)

 Π ist Menge von Produktionen l:=r, mit $l\in\Delta^+$, $r\in\Delta^*$ Kalkül:

Sei

$$\frac{u\ l\ v}{u\ r\ v}\ \text{ für }\ l::=r\in\Pi\text{, }u,v\in\Delta^*.$$

$$T = (Q, \Sigma, \Gamma, \delta, q_0, F) \text{ und } \Delta = Q \dot{\cup} \Gamma \dot{\cup} \{\#\}$$

Produktionen Π_T :

Für jedes $\delta(q, a) = (q', a', S) : q a := q' a' \in \Pi_T$.

Für jedes $\delta(q, a) = (q', a', R)$ und $b \in \Gamma$:

$$q \ a \ b ::= a' \ q' \ b \in \Pi_T$$

$$q\ a\ \# ::= a'\ q'\ \square\ \# \in \Pi_T$$

Für jedes $\delta(q,a)=(q',a',L)$ und $b\in\Gamma$

$$b \ q \ a ::= q' \ b \ a' \in \Pi_T$$

$$\#q \ a ::= \#q' \square \ a' \in \Pi_T$$

Offenbar gilt:

$$gdw #u q v# \vdash_{\Pi_T}^1 # u' q' v' #,$$

d. h. Rechnungen der TM T können in Π_T simuliert werden.

$$\#q_0 \square w \# \underset{\Pi_T}{\vdash} \# u \ q \ v \# \quad \mathrm{gdw} \quad q_0 \square w \overset{*}{\vdash} u \ q \ v$$
 für $w \in \Sigma^*$, $u, v \in \Gamma^*$, $q \in Q$.

Das Ableitbarkeitsproblem

6.90 Definition Sei (Σ, Π) ein Wortersetzungssystem.

Das **Ableitbarkeitsproblem** $Abl\subset \Sigma^*\times \Sigma^*$ für (Σ,Π) ist gegeben durch

$$Abl \ x \ y$$
 gdw $x \vdash_{\Pi} y$

(für $x,y\in \Sigma^*$) d.h. "y lässt sich aus x mit Hilfe der Produktionen aus Π ableiten".

6.91 Satz Unentscheidbarkeit des Ableitbarkeitsproblems

Das Ableitbarkeitsproblem für beliebige Wortersetzungssysteme ist nicht entscheidbar.

Beweis:

Reduziere das Halteproblem für TM auf das Ableitbarkeitsproblem. Die Konstruktion TM $T \to \text{simulierendes}$ Wortersetzungssystem Π_T ist effektiv. Für $q \in F$ füge noch die Produktionen

$$a \ q ::= q, \ q \ a ::= q$$
, für $a \in \Delta \backslash \{\#\}$ und $\# \ q \ \# ::= q$ hinzu.

Dann gilt: T hält mit Eingabe w

$$\begin{array}{l} \operatorname{gdw} \; \exists u,v \in \Gamma^*, q \in F \; \operatorname{mit} \; q_0 \; \square \; w \; \overset{\hat{}}{\vdash} \; u \; q \; v \\ \\ \operatorname{gdw} \; \exists u,v \in \Gamma^*, q \in F \; \operatorname{mit} \; \# \; q_0 \; \square \; w \; \# \; \overset{\hat{}}{\vdash} \; \# \; u \; q \; v \; \# \\ \\ \operatorname{gdw} \; \exists q \in F \; \operatorname{mit} \; \# \; q_0 \; \square \; w \; \# \; \overset{\hat{}}{\vdash} \; q. \end{array}$$

Also ist das Halteproblem auf das Ableitbarkeitsproblem reduzierbar. Speziellere Ergebnisse (z.B. spezielles Wort ableitbar) sind möglich.

Das Postsche Korrespondenzproblem (PCP)

6.92 Definition

Das Postsche Korrespondenzproblem (**PCP**) besteht aus allen Listen von Wortpaaren

$$\mathcal{L} = (x_1 \sim y_1, \dots, x_k \sim y_k) \qquad k \geq 1$$

mit nichtleeren Wörtern $x_i,y_i\in\Sigma^*(1\leq i\leq k)$ zu denen es eine Indexfolge $i_1,\ldots,i_n\in\{1,\ldots,k\}$ mit $n\geq 1$ gibt, so dass

$$(*) x_{i_1} \cdots x_{i_n} = y_{i_1} \dots y_{i_n} \text{gilt.}$$

Schreibe: $PCP(\mathcal{L})$. Die Folge (i_1, \ldots, i_n) ist Lösung, falls (*) gilt.

Einschränkungen: z. B. $i_1 = 1$ spezielle PCP (**SPCP**).

Beachte Parameter: $\Sigma, k, x_i, y_i \in \Sigma^+, 1 \leq i \leq k$

Lösung: Liste natürlicher Zahlen aus $\{1,\ldots,k\}$.

Beachte: Zu gegebener Liste i_1, \ldots, i_n ist es einfach zu überprüfen, ob sie eine Lösung ist.

Beispiel

6.93 Beispiel $\Sigma = \{0, 1\}$

• $\mathcal{L}_1 = (0 \sim 0 \ 0 \ 0, \ 0 \ 1 \ 0 \ 0 \sim 0 \ 1, \ 0 \ 0 \ 1 \sim 1)$ k = 3 Lösungen können nur mit $i_1 = 1$ oder $i_1 = 2$ beginnen.

1. Lösung: $i_1 = 1$, $i_2 = 3 : \underline{0} \ \underline{0} \ \underline{0} \ \underline{1} = \underline{0} \ \underline{0} \ \underline{0}$

2. Lösung: $i_1 = 2$, $i_2 = 1$, $i_3 = 1$, $i_4 = 3$.

 $x_2x_1x_1x_3 \qquad \qquad 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ y_2y_1y_1y_3 \qquad \qquad 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1$

d. h. $PCP(\mathcal{L}_1)$, $SPCP(\mathcal{L}_1)$

• $\mathcal{L}_2 = (\underline{1} \sim \underline{1} \ 1 \ 1, \underline{1} \ 0 \ 1 \ 1 \ 1 \sim \underline{1} \ 0, \ 1 \ 0 \sim 0)$ k = 3 Lösung: 2, 1, 1, 3 (muss mit 1 oder 2 beginnen).

d. h. $PCP(\mathcal{L}_2)$, $\neg SPCP(\mathcal{L}_2)$

• $\mathcal{L}_3 = (\underline{0} \ \underline{1} \sim \underline{0} \ \underline{1} \ 0, 1 \ \underline{0} \ \underline{0} \sim \underline{0} \ \underline{0}, 0 \ 1 \ 0 \sim 1 \ 0 \ 0)$

Behauptung: \neg PCP(\mathcal{L}_3):: Lösung muss mit 1 beginnen und mit 2 enden. $t \in \{1, 2, 3\}^+$ t = 1t'2.

Keine Fortsetzung $\cdots \underline{1\ 0\ 0}$ möglich, da kein y mit 1 endet $\cdots \underline{0\ 0}$

Beispiel (Forts.)

• $\mathcal{L}_4 = (0\ 0\ 1 \sim 0, 0\ 1 \sim 0\ 1\ 1, 0\ 1 \sim 1\ 0\ 1, 1\ 0 \sim 0\ 0\ 1)$ Es gilt $\mathsf{PCP}(\mathcal{L}_4)$ aber $\neg\ \mathsf{SPCP}(\mathcal{L}_4)$.

Lösung etwas länger: mit 2 beginnen, mit 3 enden, 1 muss verwendet werden.

 $0\ 1\ 1\ 0\ 0\ 1\ 0\ 1\ 1\ 0$

keine Forts.

 $\underline{0\ 1\ 1}\ \underline{0\ 0\ 1}\ 0\ 1\ 1\ 0\ 1\ 1\ 0\ 0\ 1$

 $\underline{0\ 1}\ \underline{1\ 0}\ \underline{0\ 1}\ 1\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ 0 \cdots$

 $\underline{0\ 1\ 1}\ \underline{0\ 0\ 1}\ \underline{1\ 0\ 1}\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 1$

Unentscheidbarkeit von PCP

6.94 Satz Das PCP ist unentscheidbar.

Beweisidee: Reduziere Ableitbarkeitsproblem für WES auf PCP.

- Sei $\gamma=(\Sigma,\Pi)$ ein Wortersetzungssystem ohne ε -Regeln. $Abl_{\gamma}(u,v) \ \mathrm{gdw} \ u \ {\buildrel \vdash}\ v$
- Konstruktion: Aus $\gamma, u, v \rightsquigarrow \mathcal{L}_{u,v}$ mit $u \vdash_{\Pi} v \text{ gdw PCP}(\mathcal{L}_{u,v})$. Sei $\gamma = (\Sigma, \Pi)$, $\Pi = \{u_i ::= v_i \mid i = 1, \dots, n\}$, $\Sigma = \{a_1, \dots, a_r\}$. $\hat{\Sigma} = \{\hat{a}_1, \dots, \hat{a}_r\}$ Kopie von Σ und $\Gamma = \Gamma \dot{\cup} \hat{\Sigma} \dot{\cup} \{+, \hat{+}, [,]\}$.
- $u, v \in \Sigma^*$. Definiere $\mathcal{L}_{u,v}$ über Γ durch

Behauptung: $PCP(\mathcal{L}_{u,v}) \text{ gdw } u \vdash_{\Pi} v$ (o.b.d.A. $u \neq v$).

"
$$\Leftarrow$$
" $u \vdash_\Pi v$ etwa $u = w_0 \vdash_\Pi^{(1)} w_1 \vdash_\Pi^{(1)} \cdots \vdash_\Pi^{(1)} w_k = v \quad k > 0$

Es gibt $t_j \in J^*$, $j = 1, \ldots, k$ mit

j-gerade
$$X(t_j) = [w_0 + \hat{w}_1 + \hat{w}_2 + \dots + \hat{w}_{j-1} + \hat{w}_j]$$

 $Y(t_j) = [w_0 + \hat{w}_1 + \hat{w}_2 + \dots + \hat{w}_{j-1}]$

$$\begin{array}{ll} \textit{j-ungerade} & X(t_j) = [w_0 + \hat{w}_1 \hat{+} w_2 + \cdots \hat{+} w_{j-1} + \hat{w}_j \\ & Y(t_j) = [w_0 + \hat{w}_1 \hat{+} w_2 + \cdots \hat{+} w_{j-1} \\ \end{array}$$