Illustrating Stepwise Refinement Shortest Path ASMs

Egon Börger

Dipartimento di Informatica, Universita di Pisa http://www.di.unipi.it/~boerger

Shortest Path ASMs: Illustrating Stepwise Refinement

- Computing Graph Reachability Sets: M_{0}
- Wave Propagation of Frontier: M_{1}
- Neighborhoodwise Frontier Propagation : M_{2}
- Edgewise Frontier Extension per Neighborhood: M_{3}
- Queue and Stack Implementation of Frontier and Neighborhoods: M_{4}
- Introducing abstract weights for measuring paths and computing shortest paths: M_{5} (Moore's algorithm)
- Instantiating data structures for measures and weights

For details see Chapter 3.2 (Incremental Design by Refinements) of:
E. Börger, R. Stärk

Abstract State Machines
A Method for High-Level System Design and Analysis

Springer-Verlag 2003
For update info see AsmBook web page:
http://www.di.unipi.it/AsmBook

Computing Graph Reachability Set

- The problem:
- given a directed graph (NODE, E, source) (here mostly assumed to be finite) with a distinguished source node
- label every node which is reachable from source via E
- arrange the labeling so that it terminates for finite graphs
- Solution idea:
- starting at source, move along edges to neighbor nodes and label every reached node as visited
- proceed stepwise, pushing in each step the "frontier" of the lastly reached nodes one edge further, without revisiting nodes which have already been labeled as visited

Computing Reachability Set: Machine M_{0}

Initially only source is labeled as visited (V(source)=1)

Wave Propagation Rule:

for all $(\mathbf{u}, \mathrm{v}) \in \mathrm{E}$ s.t. \mathbf{u} is labeled as visited $\& \mathrm{v}$ is not labeled as visited label v as visited

Correctness Lemma:

 Each node which is reachable from source is exactly once labeled as visitedTermination Lemma:
For finite graphs,
the machine terminates
The meaning of termination:
there is no more edge $(u, v) \in E$ whose tail u
is labeled as visited but whose head v is not

M_{1}-run computing the reachability set

Frontier propagation: moving frontier simultaneously for each node in frontier to all its neighbors (restricted to those which have not yet been labeled as visited)

visited

$n_{1, k}$
neighb(u)

In t steps all nodes reachable by a path of length at most t are labeled as visited

Proof. Existence claim : induction on the length of paths from source Uniqueness property follows from the rule guard enforcing that only nodes not yet labeled as visited are considered for being labeled as visited

Proof. By each rule application, the set of nodes which are not labeled as visited decreases.

Canonically relating M_{1} - and M_{2} - runs (for finite fan-out)

- Each run of M_{1} can be simulated by a "breadth-first" run of M_{2} producing the same labelings of nodes as visited, where each step of M_{1} applied to frontier $\left(M_{1}\right)$ in state S is simulated by selecting successively all the elements of frontier $\left(M_{1}\right)$ in state S.

Refinement: Edgewise frontier extension per neighborhood

- Refine M_{2}-rule "shift frontier to neighb(u)" to a submachine shift-frontier-to-neighb which selects one by one every node v of neighb(u) to edgewise "shift frontier to v " (using another scheduling fct select)
shift-frontier-
initialize neighb by n
label to-neighb (n))
- NB. With an appropriate mechanism for the initialization of submachines upon calling, executing M_{2}-rule "shift frontier to neighb(u)" can be replaced by a call to shift-frontier-toneighb(u).

Refinement of frontier to (fair) queue and of neighb to stack

frontier as queue: select $=$ first (at left end) delete $\ldots \equiv$ frontier := rest(frontier) insert = append (at right end) NB. No node occurs more than once in frontier

$$
\begin{aligned}
& \text { neighborhood as stack select = top delete = pop } \\
& \text { for the initialization, neighb }(\mathrm{u}) \text { is assumed to be given as stack for every } u
\end{aligned}
$$

- Exercise. Prove that M_{4} preserves correctness and termination of M_{3}
- Exercise. Write and test an efficient $\mathrm{C}++$ program for machine M_{4}.

Computing the weight of paths from source to determine "shortest" paths to reachable nodes

- Measuring paths by accumulated weight of edges
- ($\mathrm{M},<$) well-founded partial order of path measures with
- smallest element 0 and largest element ∞
- greatest lower bound glb(m,m') for every $m, m^{\prime} \in M$
- edge weight: $\mathrm{E} \rightarrow$ WEIGHT
$-+: \mathrm{M} \times$ WEIGHT $\rightarrow \mathrm{M}$ "adding edge weight to path measure"
- monotonicity: $\mathrm{m}<\mathrm{m}^{\prime}$ implies $\mathrm{m}+\mathrm{w}<\mathrm{m}+\mathrm{w}$
- distributivity wrt glb: $\mathrm{glb}\left(\mathrm{m}, \mathrm{m}^{\prime}\right)+\mathrm{w}=\mathrm{glb}\left(\mathrm{m}+\mathrm{w}, \mathrm{m}^{\prime}+\mathrm{w}\right)$
- path weight:PATH \rightarrow M defined inductively by
- weight $(\varepsilon)=0$
- weight(pe)= weight(p)+weight(e)

Refining M_{4} to compute up-bd \geq min-weight: same machine refining "frontier shift" to "lowering up-bd"

- Initially: frontier = \{source\} ctl-state = scan
- up-bd $(u)=\infty$ for all u except up-bd(source) $=0$

Computing minimal weight of paths

- min-weight: NODE \rightarrow M defined by
- min-weight(u) = glb\{weight(p)|p is a path from source to u\}
- NB. The function is well-defined since by the wellfoundedness of <, countable sets of measures (which may occur due to paths with cycles) have a glb
- Successive approximation of min-weight from above for nodes reachable from source by a function
up-bd: NODE \rightarrow M
- initially up-bd(u) $=\infty$ for all u except up-bd(source) $=0$
- for every v reachable by an edge e from u s.t. up-bd(v) can be decreased via up-bd(u)+weight(e),
lower up-bd(v) to glb\{up-bd(v), up-bd(u)+weight(e)\}
- NB. If not up-bd(v) \leq up-bd(u)+weight(e), then
glb\{up-bd(v), up-bd(u)+weight(e) $<$ up-bd(v)

Refining termination and completeness proofs for M_{5}

- Moore's algorithm M_{5} terminates (for finite graphs)
- each scan step diminishes the size of frontier
- each label step shrinks neighb; each head node v upon entering frontier gets up-bd(v) updated to a smaller value. Since < is well-founded, this can happen only finitely often.

- Theorem. When Moore's algorithm M_{5} terminates, min-weight(u)= up-bd(u) for every u.
- Proof. min-weight(u) sup-bd(u) (lemma 1). Since up-bd(u) is a lower bound for weight(p) for every path p from source to u (lemma 2) and since min-weight by definition is the glb of such path weights, also \geq holds.
- Lemma 1. At each step t and for each v : min-weight(v) sup-bd(v) .
- Lemma 2. When M_{5} terminates, up-bd(v) \leq weight(p) for every path p from source to v.

Proof for lower bound up-bd(v) of weight of paths to v

- Lemma 2. When M_{5} terminates, up-bd(v) \leq weight(p) for every path p from source to v.
- Proof 2. Ind(path length). For t=0 the claim holds by definition.
- Let $p .(u, v)$ be a path of length $t+1$.
- up-bd(v) \leq up-bd(u) + weight(u,v)
- by termination of M_{5} (otherwise lower up-bd(v) via u could fire)
- up-bd $(\mathrm{u}) \leq$ weight (p) (ind.hyp.), thus by monotonicity of + up-bd(u) +weight(u,v) \leq weight(p) +weight(u,v)

$$
={ }_{\text {def weight }} \text { weight }(\mathrm{p} .(\mathrm{u}, \mathrm{v}))
$$

Proof for the approximation of min-weight by up-bd

- Lemma 1. At each step t, for each v: min-weight(v) \leq up-bd(v) t.
- Proof 1 . Ind (t). For $t=0$ the claim holds by definition.
- At t+1 (only) rule "lower up-bd(v) via u" sets up-bd(v) $)_{t+1}$, namely to $\operatorname{glb}\left\{u p-b d(v)_{t}, u p-b d(u)_{t}+w e i g h t(u, v)\right\}$. Remains to show
- min-weight(v) $\leq u p-b d(v)_{t}$ (which is true by ind.hyp. for v)
- min-weight(v) $\leq u p-b d(u)_{t}+$ weight(u,v)
- The latter relation follows from
$\left(^{*}\right)$ min-weight(v) \leq min-weight(u) + weight(u, v)
by min-weight(u) \leq up-bd(u) $)_{t}$ (ind.hyp.) via monotonicity of +
- $\operatorname{ad}\left(^{*}\right): \operatorname{glb}(\{w e i g h t(p) \mid p$ path from source to $v\}) \leq$ $\mathrm{glb}(\{$ weight $(p .(u, v)) \mid p$ path from source to $u\})=$ def weight glb(\{weight(p)+weight(u, v v $\mid p$ path from source to $u\})={ }_{\text {glb distrib }}$ glb(\{weight(p) | p path from source to u\}) +weight(u,v)
$=$ min-weight min-weight(u) +weight(u,v)
lower up-bd(v) via u \equiv if not up-bd(v) \leq up-bd(u)+weight($u, v)$ then up-bd(v):= glb\{up-bd(v), up-bd(u)+weight(u,v)\}
if $v \notin$ frontier then insert v into frontier
Instantiating data structures for weight and measure
- $(\mathrm{M},<)=($ Nat $\cup\{\infty\},<)$ well-founded order of shortest path measures with
- smallest element 0 and largest element ∞
- greatest lower bound glb(m,m') $=\min \left(m, m^{\prime}\right)$
- WEIGHT = (Nat, +) with $n+\infty=\infty$
- monotonicity: $\mathrm{m}<\mathrm{m}^{\prime}$ implies $\mathrm{m}+\mathrm{w}<\mathrm{m}$ '+w
- glb distributive wrt + : glb $\left(m+w, m^{\prime}+w\right)=$ glb $\left(m, m^{\prime}\right)+w$
- For an instantiation to the constrained shortest path problem see K. Stroetmann's paper in JUCS 1997.
- For Dijkstra's refinement M_{5} see Ch.3.2.1 of the AsmBook

References

- E. F. Moore: The Shortest Path Through a Maze.
- Proc. International Symposium on the Theory of Switching, Part II, Vol. 30 of "The Annals of the Computation Laboratory of Harvard University", Cambridge, MA, 1959, Harvard University Press.
- K. Stroetmann: The Constrained Shortest Path Problem: A Case Study in Using ASMs - In: J. of Universal Computer Science 3 (4), 1997.
- E. Börger, R. Stärk: Abstract State Machines. A Method for High-Level System Design and Analysis Springer-Verlag 2003, see Chapter 3.2.1 http://www.di.unipi.it/AsmBook

