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Double Linked Lists : Desired Operations

• Define an ASM which offers the following operations, 
predicates and functions on double linked lists, whose elements 
have values in a given set  VALUE: 
– CreateList (VALUE) : create a new double linked list with elements 

taking values in Value

– Append (L, Val) : append at the end a new element with given value

– Insert (L, Val, Elem) : insert after Elem in L a new element with Val

– Delete (L, Elem)  : delete Elem from L 

– AccessByValue (L, Val) : return the first element in L with Val

– AccessByIndex (L, i) : return the i-th element in L 

– empty (L), length (L), occurs (L, Elem), position (L, Elem)
– Update (L, Elem, Val) : update the the value of Elem in L to Val

– Cat (L1,L2) : concatenate two given lists in the given order

– Split (L, Elem, L1, L2) : split L into L1, containing L up to including 
Elem, and L2 containing the rest list of L
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Double Linked Lists : Desired Properties 

• Prove that the Linked List ASM has the following 
properties:
– If the next-link of a list element Elem points to Elem’, then 

the previous-link of Elem’ points to Elem.
– L is empty iff the next-link of its head points to its tail.
– The set ELEM (L) of elements occurring in a list is the set of 

all E which can be reached, starting from the list head, by 
applying next-links until the list tail is encountered.

– After applying Append (L, Val), the list is not empty.
– A newly created linked list is empty and its length is 0.
– By Append/Delete  the list length in/de-creases by 1.
– For non empty L and arbitrary elements E the following 

holds:
Append (Delete (L,E),E) = Delete (Append (L,E),E)
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A Problem Solution

• E. Börger, R. Stärk: Abstract State Machines.
A Method for High-Level System Design and 
Analysis Springer-Verlag 2003, see
http://www.di.unipi.it/AsmBook
– See exercise in Chapter 2
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Double Linked Lists : Signature

• LINKED-LIST (VALUE) : dynamic set, with fcts “pointing” to
structures of the following form (often VALUE suppressed) :

– dynamic set ELEM (L) of “objects” currly listed in L 
– distinguished elems Head (L), Tail (L) ∈∈ ELEM (L)
– previous (L), next (L): ELEM (L) → ELEM (L)   dyn link fcts 
– cont (L) : ELEM (L) → VALUE  yields curr value of list elems

• initialize(L) for L ∈∈ LINKED-LIST (as usual, L is suppressed) as empty 
linked list with values in VALUE, defined as follows:

– ELEM := { Head, Tail } next (Head) := Tail previous (Tail) := Head
– previous (Head) := next (Tail) := null (ELEM) Head/Tail start/end the list
– cont (Head) := cont (Tail) := null (VALUE) Head/Tail have no content

NULL null NULLnullHead Tail

contprevious next
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Double Linked Lists : Definition of Operations (1)

• CreateList (VALUE) ≡
let L = new (LINKED-LIST ( VALUE )) in   initialize (L)

Val

Elem

• Append (L, Val) ≡

let e = new (ELEM (L)) in
Link previous (Tail) & e
Link e &Tail
cont (e) := Val

with Link a&b ≡ next (a) := b
previous (b) := a

• Insert (L, Val, Elem) ≡ let e = new (ELEM (L)) in

cont (e) := Val
Link Elem & e
Link e & next (Elem)
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Double Linked Lists : Operations & Derived Fcts (2)

Delete (L, e) ≡

v’

v Val

e

v v’

Link previous (e) & next (e)

length (L) ≡ ι m ( next m+1 (Head) = Tail ) well defined by initialization

occurs (L, e) ≡ ∃ i ≤ length (L) : next i (Head) = e (e ∈ELEM(L)))

position (L, Elem) ≡ ιm ( next m (Head) = Elem ) if occurs (L, Elem) 

AccessByIndex (L, i) ≡ next i (Head)              if i ≤ length (L)

AccessByValue (L, Val) ≡ next m (Head) fst occ of Val

where m= min { i | cont (next i (Head)) = Val } is defined
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Double Linked Lists : Definition of Operations (3)

Update (L, Elem, Val) ≡ If occurs (L, Elem) 

then cont (Elem) := Val
else  error msg “Elem does not occur in L“

Cat (L1, L2) ≡ let L = new (LINKED-LIST) in
Head (L) := Head (L1)
Tail (L) := Tail (L2)
Link (L) previous (L1) ( Tail (L1)) & next (L2) ( Head (L2) )
forall e∈ELEM (L) - {previous (L1) ( Tail (L1)),Tail (L1) } 

Link (L)  e & next (L1) ( e )
forall e∈ELEM (L2) - { Head (L2) ,Tail (L2) } 

Link (L)  e & next (L2) ( e )

. . . last1 Tail1 - - -fst2Head2

. . . last1

- - -fst2
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Double Linked Lists : Definition of Operations (4)

Split (L, e, L1, L2) ≡ let e1 = new-tail, e2 = new-head in
Head (L1) := Head (L)
Tail (L1) := e1

Link (L1)  e & e1

forall E∈ELEM (L)   if position (L, E) < position (L, e) 
then Link (L1)  E & next (L) ( E )

Head (L2) := e2

Link (L2) e2 & next (L) (e)
Tail (L2) := Tail (L)
forall E∈ELEM (L)   if  position (L, e) < position (L, E)

then Link (L2)  E & next (L) ( E )

where e’ = new-tail/head ≡
cont (e’) := null (VALUE)

next/previous (e’) := null (ELEM)

. . . e - - -
. . . e Tail (L1)

- - -Head (L2)



© Egon Börger: Linked List 9

Double Linked Lists : Proving the Properties (1)

• If the next-link of a list element Elem points to Elem’,
then the previous-link of Elem’ points to Elem.
– Initially true by defn of initialize (L), preserved by 

each opn due to the defn of Link (L) and the fact 
that next/previous are modified only using this 
macro.

• L is empty iff 
the next-link of its head points to its tail.

• A newly created linked list is empty and 
its length is 0.

• After applying Append (L, Val), the list is not empty.
• By Append/Delete  the list length in/de-creases

by 1.
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Double Linked Lists : Proving the Properties (2)

• For L≠[ ]: Append (Delete (L,E),E) = Delete 
(Append (L,E),E)
– Follow from the defn of initialize (L), length 

(L), Append, Delete & the fact that 
Append/Insert yield a non null cont.

• The set ELEM (L) of elements occurring in a 
list is the set of all E which can be reached, 
starting from the list head, by applying next-
links until the list tail is encountered.
– Follows from the defn of ELEM(L).


