Double Linked Lists :Desired Operations

* Define an ASM which offers the following operations,

predicates and functions on double linked lists, whose elements
have values in a given set VALUE:

— CreateList (VALUE) : create a new double linked list with elements
taking values in Value

— Insert (L, Val, Elem) : insert after Elem in L a new element with Val
— AccessByValue (L, Val) : return the first element in L with Val
— empty (L), length (L), occurs (L, Elem), position (L, Elem)

— Cat (L1,L2) : concatenate two given lists in the given order

A Problem Solution

» E. Borger, R. Stark: Abstract State Machines.
A Method for High-Level System Design and
Analysis Springer-Verlag 2003, see
http://www.di.unipi.it/AsmBook

— See exercise in Chapter 2

Double Linked Lists :Desired Properties

» Prove that the Linked List ASM has the following

properties:
— If the next-link of a list element Elem points to Elem’, then
the previous-link of Elem’ points to Elem.

— The set ELEM (L) of elements occurring in a list is the set of
all E which can be reached, starting from the list head, by
applying next-links until the list tail is encountered.

— A newly created linked list is empty and its length is O.

— For non empty L and arbitrary elements E the following
holds:

Double Linked Lists . Signature

LINKED-LIST (VALUE) : dynamic set, with fcts “pointing” to
structures of the following form (often VALUE suppressed) :

— dynamic set ELEM (L) of “objects” currly listed in L

— distinguished elems Head (L), Tail (L) & ELEM (L)

— previous (L), next (L): ELEM (L) - ELEM (L) dyn link fcts
— cont (L) : ELEM (L) — VALUE yields curr value of list elems
initialize(L) for L € LINKED-LIST (as usual, L is suppressed) as empty
linked list with values in VALUE, defined as follows:

— ELEM :={Head, Tail} next (Head) := Tail
— previous (Head) := next (Tail) := null (ELEM) Head/Tail start/end the list
— cont (Head) := cont (Tail) := null (VALUE) Head/Tail have no content

Head NULL null null NULL




Double Linked Lists :Definition of Operations (1) Double Linked Lists . Operations & Derived Fcts (2)

- CreatelList (VALUE) = Delete (L, e) = a»
let L = new (LINKED-LIST ( VALUE )) in initialize (L)
« Append (L, Val) =

let e = new (ELEM (L)) in @ 1
Link previous (Tail) & e
Link e &Tail
cont (e) := Val

Link previous (e) & next (e) l

length (L) =1 m ( next ™1 (Head) = Tail ) well defined by initialization
occurs (L, e) = 0i<length (L) : next! (Head) =e (e OELEM(L))
position (L, Elem) = Itm ( next ™ (Head) = Elem ) if occurs (L, Elem)
AccessBylndex (L, i) = next i (Head) if i < length (L)
AccessByValue (L, Val) = next ™ (Head) fst occ of Val
where m= min {i | cont (next ! (Head)) = Val } is defined

 Insert (L, Val, Elem) = let e = new (ELEM (L)) in
cont (e) := Val
Link Elem & e with Link a&b = next (a) :=b
Link e & next (Elem) previous (b) := a

Double Linked Lists : Definition of Operations (3) Double Linked Lists : Definition of Operations (4)
Update (L, Elem, Val) = If occurs (L, Elem) Split (L, e, L4, L,) = let e, = new-tail, e, = new-head
then cont (Elem) := Val Head (L,) := Head (L) where e’ = new-tail/head =
else error msg “Elem does not occur in L* Tail (|_1) = e cont (€’) := null (VALUE)
Cat (L, L,) =letL = new (LINKED-LIST) in Link (L)) e & e, next/previous (€') := null (ELEM)
;'e_??L()L) :;Hf(id)(h) forall EDELEM (L) if position (L, E) < position (L, €)
ai := Tail (L, :
Link (L) previous (L,) ( Tail (L,)) & next (L,) ( Head (L,) ) : iz s (L (B & mett () (2 )
forall 6IELEM (L) - {previous (L,) ( Tail (L,)),Tail (L,) } Head (L) := &,
Link (L) e & next (L,) (e) Link (L) e, & next (L) (e)
forall eDELEM (L,) - { Head (L,) ,Tail (L,) } Tail (L,) := Tail (L)
Link (L) e & next (L,) (e) forall EDELEM (L) if position (L, e) < position (L, E)

then Link (L,) E & next (L) (E)
= e




Double Linked Lists :Proving the Properties (1)

If the next-link of a list element Elem points to Elem’,

then the previous-link of Elem’ points to Elem.

— Initially true by defn of initialize (L), preserved by
each opn due to the defn of Link (L) and the fact
that next/previous are modified only using this
macro.

L is empty iff

the next-link of its head points to its tail.
A newly created linked list is empty and

its length is O.
After applying Append (L, Val), the list is not empty
By Append/Delete the list length in/de-creases

by 1.

Double Linked Lists .Proving the Properties (2)

« For L#[ ]: Append (Delete (L,E),E) = Delete
(Append (L,E),E)

—Follow from the defn of initialize (L), length
(L), Append, Delete & the fact that
Append/Insert yield a non null cont.

« The set ELEM (L) of elements occurring in a
list is the set of all E which can be reached,
starting from the list head, by applying next-
links until the list tail is encountered.

—Follows from the defn of ELEM(L).




