
Computation and Specification Models
A Comparative Study

Egon Börger

Dipartimento di Informatica, Universita di Pisa
http://www.di.unipi.it/~boerger

© Egon Börger: Modelling Computation Models by ASMs

E. Börger, R. Stärk

Abstract State Machines

A Method for High-Level System Design and Analysis

Springer-Verlag 2003

For update info see AsmBook web page:

http://www.di.unipi.it/AsmBook

For details see Chapter 7.1 (Integrating Computation
and Specification Models) of:

© Egon Börger: Modelling Computation Models by ASMs

Goal: comparative analysis of spec and comp systems

• We look for standard reference descriptions for the
principal current models of computation and of high-
level system design, which

– faithfully capture each system’s fundamental
characteristic intuitions

• about the objects of computation and the nature of a
basic computation step

– are uniform enough to allow explicit comparisons of
established system modeling methods

• to contribute to rationalize the scientific evaluation of
different system specification approaches, clarifying their
advantages and disadvantages

© Egon Börger: Modelling Computation Models by ASMs

Current Models of Computation to be Compared
• UML Diagrams for System Dynamics
• Classical Models of Computation

– Automata: Moore-Mealy, Stream-Processing FSM, Co-Design FSM,
Timed FSM, PushDown, Turing, Scott, Eilenberg, Minsky, Wegner

– Substitution systems: Thue, Markov, Post, Conway
– Structured programming

• Programming constructs: seq, while, case, alternate, par
• Gödel-Herbrand computable fcts (Böhm-Jacopini)

– Tree computations: backtracking in logic & functional programming,
context free grammars, attribute grammars, tree adjoining grammars

• Specification and Computation Models for System Design
– Executable high-level design languages: UNITY, COLD
– State-based specification languages

• distributed: Petri Nets
• sequential: SCR (Parnas Tables), Z/B, VDM

– Virtual Machines: Active Db, Data Flow (Neural) Machines, JVM
– Stateless modeling systems

• Logic based (axiomatic), denotational (functional pgg paradigm), algebraic
(process algebras, CSP, LOTOS, etc.)

© Egon Börger: Modelling Computation Models by ASMs

Thesis: ASMs a universal class of algorithms

• The ASM thesis in its original form reads:
– Every computational device can be simulated by an

appropriate dynamic structure – of appropriately the same
size – in real time (Y. Gurevich, Notices American Mathematical
Society 85T-68-203, 1985).

• For the synchronous parallel case of this thesis Blass
and Gurevich (ToCL 2002) discovered a small number of
postulates from which every synchronous parallel
computational device can be proved to be simulatable
in lock-step by an ASM.

• So why do we not compare different systems via the
ASMs as given by that proof, machines which “can
simulate” the given systems “step-by-step”?

© Egon Börger: Modelling Computation Models by ASMs

“Abstract” nature of ASMs derived from postulates

• Postulating (by an existential statement) e.g. that
– states are appropriate equivalence classes of structures of a

fixed signature (in the sense of logic)
– evolution happens as iteration of single “steps”
– the single-step exploration space is bounded (i.e. that there

is a uniform bound on memory locations basic computation
steps depend upon, up to isomorphism)

does not by itself provide, for a given computation or
specification model, a standard reference description
of its characteristic
– states
– objects entering a basic computation step
– next-step function

• No proof is known to include distributed systems

© Egon Börger: Modelling Computation Models by ASMs

A price for “proving” computational universality

• If one looks for explicitly stated assumptions, to prove by a
mathematical argument the step-for-step-universality of ASMs
for every theoretically possible system, the focus in stating the
postulates unavoidably is on generality and uniformity, to
capture the huge variety of data structures and of ways of
using them in a basic computation step.

• As side effect of the generality of the postulates, the
application of the general proof scheme to established models
of computation
– may yield ASMs which are more involved than necessary
– may blur distinctions which pragmatically differentiate concrete systems

• The construction by Blass and Gurevich in op.cit., “transforming” any
imaginable synchronous parallel computational system into an ASM
simulating the system step-by-step, depends on the way the abstract
postulates capture the amount of computation (by every single agent) and
of the communication (between the synchronized agents) which are
allowed in a synchronous parallel computation step.

© Egon Börger: Modelling Computation Models by ASMs

The epistemological character of the ASM thesis

• The epistemologically relevant unfolding of the concrete
objects and steps for any theoretically conceivable
computational system, by deriving (“decoding”) them from the
general concepts appearing in the postulates for a proof of the
thesis, yields some en/decoding overhead one can avoid by
concentrating on - the great variety of - relevant (established
or desirable) concrete classes of systems.

• Focus on modeling significant classes of systems allows us to
follow a pragmatically important principle the ASM design and
analysis approach emphasizes, namely to model concrete
systems “closely and faithfully”, “at their level of abstraction”,

• laying down the essential computational ingredients completely and
expressing them directly,

without using any encoding which is foreign to the device
under study.

© Egon Börger: Modelling Computation Models by ASMs

Goal of naturally modeling systems of specification & computation

• We look for “natural” ASM descriptions of the principal current
models of computation and of high-level system design,
including asynchronous distributed systems, which
– directly reflect the basic intuitions and concepts of every

framework
• By gently capturing the basic data structures & single computation

steps which characterize each significant system, we provide a
strong argument for the ASM thesis which

– avoids a sophisticated existence proof for the ASM models from abstract
postulates

– avoids decoding of concrete concepts from abstract postulates
– avoids a sophisticated correctness proof for the ASM models

– are formulated in a way which is “uniform” enough to allow
explicit comparisons bw the classical system models

• By providing a mathematical basis for technical comparison we
– contribute to rationalize the scientific evaluation of different system

specification approaches, clarifying their advantages and disadvantages
– offer a powerful yet simple framework for teaching computation theory

© Egon Börger: Modelling Computation Models by ASMs

Classes of ASMs Reflecting UML Notations

• UML offers an ensemble of notations with loose
semantics

• “Behavioral” diagrams for describing system dynamics
can be equipped with a rigorous semantics by defining
them as special ASMs, e.g.
– Activity diagrams (see Cavarra/Börger/Riccobene LNCS 1816)

– State diagrams (see Cavarra/Börger/Riccobene LNCS 1912)

– Use case, sequence, collaboration diagrams

• “Structural” diagrams for describing system statics can
be used for specifying static parts of ASMs, e.g.
– Class and object diagrams (organized in packages)
– Implementation (component and deployment) diagrams

For the modeling purpose here, we generalize FSMs to

ASMs tailored to UML diagram visualizable machines

© Egon Börger: Modelling Computation Models by ASMs

UML Action Nodes: diagram notations for action flow

rulei j
UML notation

Meaning: if control = i then rule
control := j

ruleFlowchart
notation

FSM notation rulei j

Interpreting “action” as application of an ASM rule

Idea: in a given situation, perform an action and proceed

© Egon Börger: Modelling Computation Models by ASMs

UML Branching Nodes: diagram notations for control flow

i

cond1 j1

jncondn

… meaning

if control = i then
if cond1 then control := j1

….

if condn then control := jn

Special notation for n=1: Cond
i j

Cond

Yes

N
o

Special notations for n=2:
Cond

Rule-yes Rule- no

© Egon Börger: Modelling Computation Models by ASMs

Control State ASMs: combining action/branching nodes

FSM notations rulei
cond

i j
cond

rule

j

Flowchart notation rule
cond

if control = i and cond then rule
control := j

Control State ASM (Abstract FSM): all rules have this form

NB. Evaluation of Cond and firing rule “controlled” as ONE ASM STEP

cond often inscribed into a rhomb cond rule

© Egon Börger: Modelling Computation Models by ASMs

UML Activity Diagrams with Concurrent Nodes

• Concurrent nodes of UML, in the synchronous
understanding, are a special case of action nodes where

rule = rule1

…
rulen (all rules fire simultaneously)

• Concurrent nodes of UML, in the asynchronous
understanding, are calls of asynchronous multi-agent ASMs
– work with a priori unrelated clocks, but
– are (expected to be) synchronized after each of them has

returned a result (similar to the par construct of Occam)

UML Activity Diagram graph connecting action & branching nodes

Def. Synchronous UML Activity Diagram: synchronous concurrent nodes

© Egon Börger: Modelling Computation Models by ASMs

Synchronous UML activity diagrams have a
normal form of multi-agent control state ASMs

Therefore every synchronous UML activity diagram can be viewed as a
synchronous multi-agent ASM whose agents are control state ASMs

with rules representing alternating branching and action nodes

Each synchronous UML activity diagram is built up from
control state ASM rules

i.e. alternating branching and action nodes of the following form
for each of the synchronized agents (where n=1 is allowed):

cond1

condn

…

action1

actionn

© Egon Börger: Modelling Computation Models by ASMs

Classical Models of Computation
• Automata

– Moore-Mealy, Stream-Processing FSM, Co-Design FSM, Timed FSM
– PushDown
– Turing, Scott, Eilenberg, Minsky, Wegner

• Substitution systems
– Thue, Markov, Post, Conway

• Structured programming
• Programming constructs (seq, while, case, alternate, par)
• Gödel-Herbrand computable functions (Böhm-Jacopini)

• Tree computations
– backtracking in logic & functional programming
– context free grammars
– attribute grammars
– tree adjoining grammars

© Egon Börger: Modelling Computation Models by ASMs

Mealy/Moore automata as control state ASMs

controla bin_put out_put

Program of rules of the form in = a out := b

Moore automata: without output

control := Nxtctl(control, in)
out := Nxtout(control, in)

Writing programs in standard tabular form (i,a,j,b) yields a
guard-free FSM rule scheme updating control, out:

NB. Since “in” is a monitored fct, it is not updated in the rule scheme

1-way or 2-way is a question of Moves of input head
replacing in by in(head) and adding head := head + Move(control, in(head))

© Egon Börger: Modelling Computation Models by ASMs

Specializing Mealy to Stream Processing Ctl State ASMs (Janneck 2000)

Computing Stream Functions SmàSn (data set S = A* or S=AN)
yielding an output stream out resulting from consumption of the input stream in

Prefix: Ctl ×× SmàPowerSet(Sm
fin) yielding sets of finite prefixes

Transition: Ctl x (Sm
fin)àPowerSet(Ctl ×× Sn

fin) yielding finite output

non-deterministically in each step these automata :
- read (consume) at every input port a prefix of the input stream in

- produce at each output port a part of the output stream out (concatenation)
- proceed to the next control state

choose pref ∈∈ Prefix (control, in)
choose (c,o) ∈∈ Transition (control, pref)

in:= in−pref
out := out.o
control := c

rules of
form

© Egon Börger: Modelling Computation Models by ASMs

Co-design FSMs = distributed Mealy-ASMs Sangiovanni-Vincentelli

Mealy-ASM: rules of form in = a rule

Often with global agent scheduler
and/or with timing conditions

for agents performing durative instead of atomic actions

i.e. Mealy FSM update “out:=b” replaced by “rule”
needed for arbitrary combinational (external & instantaneous) fcts

Nondeterministic versions are of form
choose R ∈∈ Rule

R
where Rule is the set of rules to be chosen from

© Egon Börger: Modelling Computation Models by ASMs

Timed Automata (Alur & Dill) as ctl state ASMs
• letter input enriched by real-valued occurrence time
• transitions enriched by clocks (recording time-∆∆ wrt

previous input)
• fire under clock constraints
• update clocks (reset or adding time-∆∆ of input)

where time∆∆ = occurrenceTime (in) −− occurrenceTime (previousIn)

Rules
of form

in = a &
constr (time∆∆)

forall c ∈∈reset c:=0
forall c ∉∉reset c:=c + time∆∆

NB. Typically the constraints are about input to occur within (<,≤≤) or after (>, ≥≥) a
given (constant) time interval, leaving some freedom for timing runs – i.e.
choosing sequences of occurrenceTime (in) to satisfy the constraints.

© Egon Börger: Modelling Computation Models by ASMs

Push Down Automata as control state ASMs

Reading from input and/or stack and writing on
stack

bistack inputa

control

i.e. rules of form (states may be no-input-/no-stack-reading) :

[in = a] &
[top(stack) = b]

stack :=

push(w, [pop](stack))

control := Nxtctl(control, in, top(stack))
stack:=Pop&Push(stack,Write(control, in, top(stack)))

© Egon Börger: Modelling Computation Models by ASMs

Turing automata as Control State ASMs

Turing machines combine in_put and out_put into one memory:

Cond
(mem(env(pos))

update mem(env(pos))
update pos

Program of rules of the form

tape(head) = a tape(head) := b
[head := head ± 1]

instantiated for Turing’s original machines to

control := Nxtctl(control, tape(head))
tape(head) := Write(control, tape(head))

head := head + Move(control, tape(head))

© Egon Börger: Modelling Computation Models by ASMs

Variants of TMs instantiating mem,env,pos

memory = k tapes pos : Z or pos: Zk (k-head TM)

memory = tape tape(head) = a
tape(head) := b

[head := head ± 1]

memory = n-dim pattern env(pos) ⊆⊆fin Zn including pos

memory = Nn/(A*)n (registers) pos = 1,…,n “softwired in instrs”

reg(i) := reg(i) +/- 1

reg(i) = 0
yes

no

Minsky 1961,
Sheperdson&
Sturgis 1963

© Egon Börger: Modelling Computation Models by ASMs

Eilenberg’s X-Machines as control state ASMs

Eilenberg’s X-machines (1974) add to Mealy machines
global memory with global memory update functions
• depending on input and control state, they modify memory and control state

and provide output

• global memory yields frame problem
• global mem functions f make appropriate local updating

of data structures difficult

Similarly for Stream X-Machines (Holcombe J.SE 1998)

Rules of form in = a out := b
mem:=f(mem)

control := Nxtctl(control, in)
mem:=Opern(control, in)(mem)

out := Nxtout(control, in)

© Egon Börger: Modelling Computation Models by ASMs

Scott Machines (J.CSS 1967) as control state ASMs

Instrs trigger actions or test Predicates on abstract
store

• global store yields frame problem
• global store functions/predicates make appropriate

test/updating of data structures difficult

P(store)

Yes

No

store:=a(store)
i.e. each rule has one

of the two forms

control := IF(Test(control), control, store)
store:=Action(control)(store)

© Egon Börger: Modelling Computation Models by ASMs

Extending TM to Wegner’s Interacting Turing Machines

control := Nxtctl(control, tape(head), input)
tape(head) := Write(control, tape(head), input)

head := head + Move(control, tape(head), input)
output (control, tape(head), input)

New: at each step TM may - receive input from environment
- yield output to environment

Single versus Multiple Stream Interacting TMs (SIM/MIM)
is only a question of instantiating input to (inp1,…,inpn)

Considering the output as written on the in-out tape means defining the output action by :

output:= input*out(control, tape(head), input)
Viewing input as a combination of preceding inputs/outputs and the new user input :

input = combine (output, user_ input)

© Egon Börger: Modelling Computation Models by ASMs

Local Substitution: Thue , Post, Markov systems

Deterministic Thue system: ReplacePair is ordered
selectrule(ReplacePair, mem) takes first pair with premise, say v, in mem
selectsub (mem, v) takes the leftmost occurrence of subword v in mem

Markov

Post normal selectsub (mem) takes an initial subword of mem
updating mem deletes initial subword v and copies w at end

mem: A*, ReplacePair ⊆⊆ A* ×× A*
choose (v,w), choose interval of mem where v occurs, to

replace that occurrence of v by w

Thue

mem in
env(pos)

matches v

update mem in
env(pos) by w

let (v,w) = selectrule(ReplacePair)
let pos = (p,q) = selectsub(mem)

Exls: regular grammars, context free grammars, context sensitive grammars,…

© Egon Börger: Modelling Computation Models by ASMs

Simultaneous substitution: E.g. Conway’s game of life

forall c in Cell

suspend(c) ≡≡ alive(c) := false
resume(c) ≡≡ alive(c) := true

aliveNeighb(c) = 3

resume(c)

aliveNeighb(c) < 2
or aliveNeighb(c) > 3

suspend(c)

YesYes

Pattern: Fire simultaneously in “neighbouring places” a rule
If Cond(Neighb(p)) then SubstitutionRule(p)

© Egon Börger: Modelling Computation Models by ASMs

Control State ASMs for standard sequencing constructs
(white box view)

SEQ rule1
… rulen

WHILE Cond
Yes

No

rule

Cond1

Yes

No

CASE

…

rule1

rulenCondn

No

Yes

© Egon Börger: Modelling Computation Models by ASMs

Control State ASMs for standard iteration constructs
(white box view)

Alternate(R,S) a = 0

No

R

a:= flip(a)

Yes

S

Cycle-thru-
(R0,…,Rn) Ra a:= a+1 (mod n+1)

A special case
of

© Egon Börger: Modelling Computation Models by ASMs

Networks of Mealy ASMs (seq & par composition)

i.e. adding to M rules: if out = j then in :=i
hiding the two input/output channels by this internal connection

deleting i/j from input/output lines (white box view)

Mi j
feedback
operator

M Nj i

+ parallel composition M
N

For normal forms based upon 2 automata
K, E see D. Rödding LNCS 185 (1983)

© Egon Börger: Modelling Computation Models by ASMs

Böhm-Jacopini-ASMs defined recursively
• from sequential ASMs using seq and iterate
• the only static functions: the initial functions

– projection, const, + 1, = 0

• only one monitored function per machine, 0-ary, say
in for inputting the sequence of args, which does not
change its value during a computation

• only one output fct per machine, say out : N
• no shared functions

Structured Programming: Computing Recursive Functions

Black Box View of seq, iterate encapsulating finitely many steps
into one atomic action (“accumulated set of updates”) as defined in

“Composition and Submachine Concepts for Sequential ASMs”

Börger/Schmid CSL’2000, LNCS 1862

© Egon Börger: Modelling Computation Models by ASMs

Every partial recursive function can be
computed by a Böhm- Jacopini- ASM.

• Proof by induction on partial recursive functions.
• Each initial function f is computed by the following

machine F
– consisting of only one function update, reflecting the

(operational?!) “application” of the defining equation of f to
determine the value of f for the given arguments

F ≡≡ out F : = f (in F)

Structured Programming Theorem Comm. ACM 1966

© Egon Börger: Modelling Computation Models by ASMs

• Let f (x) = g (h1(x) , . . . , hm(x))
• Let g, h1 , . . . , hm be computed by G , H1 , . . . , Hm

• Then f is computed by

F ≡≡ {H1 (inF) , . . . , Hm (inF)}
seq outF : = G (out H1, . . . , out Hm)

• using {…} for par (simultaneous execution)
– reflecting independence of g-arguments from their evaluation order

• macros for connecting H to input in and output out
• reflect sequential order for reading arguments and providing values

– H (in) ≡≡ inH : = in seq H first, arguments are given as input

– out : = H (in) ≡≡ at the end, values are given as result

inH : = in seq H seq out : = out H

Computing Simultaneous Substitution

© Egon Börger: Modelling Computation Models by ASMs

Let f (x,0) = g (x) , f (x,y+1) = h (x,y,f(x,y))
Let g, h be computed by G , H
Then f is computed by

F ≡≡ let (x , y) = inF in
{ival : = G (x) , rec : = 0 }
seq (while (rec < y)

{ ival : = H(x, rec, ival), rec : = rec + 1})
seq outF : = ival

Computing Primitive Recursion

© Egon Börger: Modelling Computation Models by ASMs

• Let f (x) = µy (g (x ,y) = 0)
• Let g be computed by G
• Then f is computed by

F ≡ {G (inF ,0) , rec : = 0 }
seq (while (outG ≠ 0)

{G (inF , rec + 1) , rec : = rec + 1 })
seq outF : = rec

NB. The preceding ASMs unfold the underlying mechanism for the evaluation of
terms, which is partly sequential, partly parallel, hardwired in our brains &
taken for granted in the functional interpretation of the defining Gödel-
Herbrand equations

Computing µ-Operator

© Egon Börger: Modelling Computation Models by ASMs

Backtracking Machine (for Tree Computations)

• If mode = ramify then
Let k = |alternatives (Params)|
Let o1 ,..., ok =new (NODE)

candidates (currnode) := { o1 ,..., ok }
forall 1 ≤ i ≤ k do

parent (oi) := currnode
env (oi) := i-th (alternatives (Params))

mode := select

• If mode = select then

If candidates (currnode) = ∅
then backtrack
else try-next-candidate

mode := execute

curr
node

o1 ok

candidates

parent

curr
node

o1 ok

© Egon Börger: Modelling Computation Models by ASMs

Backtracking Machine

• backtrack ≡≡ if parent (currnode) = root
then mode := Stop
else currnode := parent (currnode)

• try-next-candidate ≡≡ depth-first tree traversal
currnode:= next (candidates(currnode))
delete next (candidates(currnode)) from candidates (currnode)

• The fctn next is a choice fct, possibly dynamic, which
determines the order for trying out the alternatives.

• The fct alternatives, possibly dynamic and coming with
parameters, determines the solution space.

• The execution machine may update mode again to ramify (in
case of successful exec) or to select (for failed exec)

© Egon Börger: Modelling Computation Models by ASMs

Backtracking Machine: logic progg instantiation

• Prolog Börger/Rosenzweig Science of Computer Programming 24 (1995)

– alternatives = procdef (act,pgm), yielding a
sequence of clauses in pgm, to be tried out in this
order to execute the current statement (“goal”) act

• procdef (act,constr,pgm) in CLAM with constraints for
indexing mechanism Börger/Salamone OUP 1995

– next = first-of-sequence (depth-first left-to-right tree
traversal)

– execute mode resolves act against the head of the
next candidate, if possible, replacing act by that
clauses’ body & proceeding in mode ramify,
otherwise it deletes that candidate & switches to
mode select

© Egon Börger: Modelling Computation Models by ASMs

Backtracking Machine: functioal progg instantiation

• Babel Börger et al. IFIP 13 World Computer Congress 1994, Vol.I

– alternatives = fundef (currexp,pgm), yielding the
list of defining rules provided in pgm for the outer
fct of currexp

– next = first-of-sequence
– execute applies the defining rules in the given

order to reduce currexp to normal form (using
narrowing, a combination of unification and
reduction)

© Egon Börger: Modelling Computation Models by ASMs

Backtracking Machine: context free grammar instantiation
• Generating leftmost derivations of cf grammars G

– alternatives = (currnode,G), yields sequence of symbols
Y1...Yk of the conclusion of a G-rule with premisse X
labeling currnode. Includes a choice bw different rules X→w

– env yields the label of a node: variable X or terminal letter a
– next = first-of-sequence (depth-first left-to-right tree traversal)
– execute mode

• for nodes labeled by a variable triggers tree expansion
• for terminal nodes extracts the yield, concatenating terminal word to

output, continues derivation at parent node in mode select

Initially NODE = {root}
root=currnode

env(root)=G-axiom
mode=ramify

alternatives can be a
dynamic fct (possibly

monitored by the user) or
static (with first argument

in VAR)

If mode = execute then
If env (currnode)∈VAR

then mode:=ramify
else output:=output * env(currnode)

currnode:= parent(currnode)
mode := select

© Egon Börger: Modelling Computation Models by ASMs

Backtracking Machine: instantiation for attribute grammars
• Synthesis of node attribute from children’s attributes via

backtrack ≡≡ if parent (currnode) = root then mode := Stop

else currnode := parent (currnode)
X.a := f(Y1.a1, ..., Yk.ak)

• where X = env(parent(currnode)), Yi =env(oi) for children nodes

• Inheriting attribute from parent and siblings
– included in update of env (e.g. upon node creation)

generalized to update also node attributes

• Attribute conditions for grammar rules
– included in execute-rules as additional guard to yielding

output

If mode = execute then ...
else If Cond(currnode.a, parent(currnode).b, siblings(currnode).c)

then output:=output * env(currnode)
currnode:= parent(currnode) , mode := select

Johnson/
Moss

Linguistics
&Philosophy
17 (1994)
537-560

© Egon Börger: Modelling Computation Models by ASMs

X

m
k-thChild

X

p
j-thChild

X

Tree Adjoining Grammars

Generalizing Parikh’s analysis of context free languages by
pumping of cf trees from basis trees (with terminal yield) and

recursion trees (with terminal yield except for the root variable)

If n=k-thChild(m) &
symb(n)=symb(root(T))

& T ∈∈ RecTree &
foot(T) = j-thChild(p)

Then

Let T’=new copy(T) in
k-thChild(m):=root(T’)

j-thChild(p’):=n

m
k-thChild

X

p
j-thChild

X

© Egon Börger: Modelling Computation Models by ASMs

Specification & Computation Models
for System Design

• Executable high-level design languages
– UNITY
– COLD

• State-based specification languages
– distributed: Petri Nets
– sequential: SCR (Parnas Tables), Z/B, VDM

• Virtual Machines
– Dijkstra’s Abstract Machine Concept
– Active Db
– Data Flow (Neural) Machines

• Stateless Modeling Systems
– Process Algebras (CSP, LOTOS, etc.)
– Logic Based Systems (denotational, algebraic, axiomatic)

© Egon Börger: Modelling Computation Models by ASMs

UNITY vs ASMs: similarities

• Formal, design oriented, state based,
high-level description of systems

• Absence of control flow
• Computations as sequences of state

transitions
• Parallelism of simultaneous multiple

conditional assignments
• Sharing of “data” via their names

“Parallel Program Design. A Foundation”
by K. Mani Chandy and Jayadev Misra, Addison Wesley, 1988

Unity slides courtesy of Simone Semprini © Egon Börger: Modelling Computation Models by ASMs

UNITY vs ASMs : differences

• Time: global synchronous UNITY system time,
one clock to schedule the statements of every
program in the system; in distributed ASMs each
agent can have its own clock, for every
sequential ASM all rules are executed
simultaneously

• Interleaving and Fairness Condition on Runs
• Specialized Refinement/Composition concept
• UNITY is linked to a particular proof system

geared to extract proofs from pgm text
• UNITY has no Function Classification
• non-determinism restricted to choosing rules

Unity slides courtesy of Simone Semprini

© Egon Börger: Modelling Computation Models by ASMs

UNITY statements as ASMs rules

forall i in [0,…,N]
A[i]:=B[i]

<|| i : 0≤i<N :
A[i]:=B[i]>

Quantified assignment

if y<0 then x:=-1
elseif y=0 then x:=0
elseif y>0 then x:=1

x:=-1 if y<0
0 if y=0
1 if y>0

Conditional assignment

x,y,z:=0,1,2x,y,z:=0,1,2

Multiple assignment

ASMsUNITY

Unity slides courtesy of Simone Semprini © Egon Börger: Modelling Computation Models by ASMs

UNITY_ASM

UNITY_ASM ua
RULES
r1=…
…
rn=…
ua.rules={r1,…,rn}

BODY
choose r ∈ ua.rules
r

endchoose

ASM name, a string

ASM rule declarations

Rule universe

Scheduling at the
rule level

Execution of the
scheduled rule

Unity slides courtesy of Simone Semprini

© Egon Börger: Modelling Computation Models by ASMs

UNITY_SYSTEM_ASM

UNITY_SYSTEM_ASM usa
COMPONENTS
UNITY_ASM ua1

…
UNITY_ASM uan

components={ua1,…,uan}
BODY
choose c ∈ components
c

endchoose

ASM name, a string

UNITY_ASM
declarations

Component universe

Scheduling at the
components level

Execution of the BODY of
the scheduled component

Unity slides courtesy of Simone Semprini © Egon Börger: Modelling Computation Models by ASMs

COLD vs ASMs : similarities

• Common OO Lg for Design combining abstract data types
(VDM,Z) with states for system descriptions ranging from high-
level to implementation (“wide-spectrum”)

• Kernel language
– with user- and application-oriented extensions

• States as structures
• Computations as sequences of state transitions
• Parallelism of simultaneous multiple conditional

assignments
• Basic constructs

– skip, choose (for rules and variable assignments), let

“Formal Specification and Design”
by L.M.G. Feijs and H.B.M. Jonkers, Cambridge Univ. Press 1992

© Egon Börger: Modelling Computation Models by ASMs

COLD vs ASMs : differences

• Purely sequential :
– State transitions viewed as sequential execution of procedure calls,

built from stms viewed as expressions with side effect

• No Function Classification, no explicit “forall” construct
• Object Oriented Programming Language constructs:

– a class (with a set of states, one initial state, and a set of transition
relations) corresponds to an ASM, but

– different states of a same class may have different signature

• Sequencing and iteration constructs (black box view)
• COLD linked to a dynamic logic proof system supporting ADT

– geared to provide proofs for algebraic specifications of states and their
dynamics (a la Z, VDM)

• separate guard stm for Blocking Evaluation of Guards
– (i.e. identity state transition only if the guard is true)

© Egon Börger: Modelling Computation Models by ASMs

COLD statements as ASMs rules

choose n∈N, p1...pn ∈ P
p1 seq...seq pn

USE P END
(arbitrary sequence of
procedure invocations)

Non-deterministic sequential procedure invocation

choose n∈N, x1...xn ∈ V
choose v1...vn ∈ Value

forall 1≤i≤n xi:=vi

MOD V END
(arbitrary modification of some
variables)

Multiple non-deterministic assignment

ASMCOLD

© Egon Börger: Modelling Computation Models by ASMs

Specification & Computation Models
for System Design

• Executable high-level design languages
– UNITY
– COLD

• State-based specification languages
– distributed: Petri Nets
– sequential: SCR (Parnas Tables), Z/B, VDM

• Virtual Machines
– Dijkstra’s Abstract Machine Concept
– Active Db
– Data Flow (Neural) Machines

• Stateless Modeling Systems
– Process Algebras (CSP, LOTOS, etc.)
– Logic Based Systems (denotational, algebraic, axiomatic)

© Egon Börger: Modelling Computation Models by ASMs

Modeling Petri Nets as asynchronous multi-agent ASMs

General view of Petri nets as distributed transition
systems transforming objects under given conditions

– Classical instance (Petri):
• objects are marks on places

– places, denoted by circles, are passive net components to store
objects (“locations”)

• transitions modify objects by adding and deleting marks on places
– transitions are active net components, denoted by boxes (“rules”)

– Modern instances (predicate/transition nets):
• places are locations for objects belonging to abstract data types,

i.e. variables taking values of given type (marking = variable
interpretation)

• transitions update vars and extend domains under conds
• conditions are arbitrary first-order formulae

© Egon Börger: Modelling Computation Models by ASMs

Modeling Petri Nets as asynchronous multi-agent ASMs

The numerous extensions of classical Petri nets all are forms
of the following class of asynchronous multi-agent ASMs:

– State
• P set of “ places ” (“passive” net components)
• A set of “agents” (which execute transitions)
• F class of “value assigning” (state changing) fcts

– Rules (one agent for each “transition”) of the following form, where
pre/post-places are sequences/sets of places, participating in the “information
flow relation” (local state change):

If cond(pre-places)
then updates(post-places)

where updates(post-places)
(“active net components”) are sets of f(p) := t
Includes view of states as logical predicates, associated

to places & transformed by actions
© Egon Börger: Modelling Computation Models by ASMs

Avoiding Frame Problem in Petri Nets

The ASM-like view of “states as logical
predicates”, associated to places and
transformed by actions, helps to avoid a form of
frame problem traditional Petri nets come with:

– namely when in a transition some “marks” are
deleted from pre-places to be put back again
by the transition

x

yx

© Egon Börger: Modelling Computation Models by ASMs

Comparing ASMs and Parnas Tables (SCR)
Common Goals

• provide documentation for
understanding by humans

• use functions & variables,
functions are monitored or
controlled

• standard mathematical
language

• functions dynamic via time

• structure of buildings blocks
and decomposition traces

• … through ground models and
hierarchy of refinements

• … functions of arbitrary arity,
arbitrarily complex locs, also
static, derived, shared fcts

• … and algorithmic (executable)
process notation

• … and possibly distributed
coming with different times

• …common programming
structures

Börger Dagstuhl Seminar
Report 149 (1996) © Egon Börger: Modelling Computation Models by ASMs

Comparing ASMs and Parnas Tables (SCR)
Differences

• Parnas tables come with
– frame problem (declarative x/x’-notation yields NC/No Change clauses)

– difficult semantics (see Parnas-Madey in SCP 25,1995)

• complex classification of tables

• no semantical foundation for use of auxiliary functions

– restriction to sequential systems of finitely many state
variables (functions of time, either monitored or controlled)

– special matrix notation (2-dimensional layout of CASE OF)

– hard to extend to cope with practical needs like relations (in
particular non-determinism), composition, sequencing, stepwise
refinement, typing (see SCR paper in NASA LFM’2000)

• Parnas tables are special forms of ASMs

© Egon Börger: Modelling Computation Models by ASMs

Normal Parnas Tables
Assign value ti,j to f(x,y) under i-th row & j-th column condition

t1,1 … t1,n

tm,1 … tm,n

r1...
ri
...
rm

ti,j

N(f) c1 … cj … cn ASM notation
forall i≤≤n, j≤≤m
if ri and cj
then f(x,y) := ti,j

Functional notation f(x,y) := case exp of

ri & cj: ti,j
© Egon Börger: Modelling Computation Models by ASMs

Inverted Parnas Tables

If ri(x,y) then
If c i,j(x,y) then f(x,y) := t j

Assign a value tj to f(x,y) under a leading/side condition

I(f) t1 … tj … tn

r1...
ri
...
rm

c1,1 … c1,n

cm,1 … cm,n

ci,j

© Egon Börger: Modelling Computation Models by ASMs

Parnas Decision Tables

ASM notation : forall j ≤≤ n if for all i ≤≤m ri,j(si)
then trigger t j

Trigger column action tj under column condition

s1

...

sm

r1,1 … r1,j ... r1,n

D(f) t1 … tj … tn

rm,1 … rm,j ... rm,n

.

.

.

.

.

.

.

.

.

How to distinguish with table notation if instead of
forall j ≤≤ n one means for one j ≤≤ n ?

© Egon Börger: Modelling Computation Models by ASMs

Comparing ASM and Z/B
• Z specs difficult to make executable Anthony Hall in ZUM'97,LNCS 1212

• B machines/refinements (B-Book 1996) are based upon
– pocket calculator model (one operation/event “per time unit”)

– finite sets/functions and states of finitely many variables

• B has axiomatic foundation by wp theory, using syntactic global
concept of substitution (used to define local assignment x := t & parallel
composition), interpreted by set-theoretic models

• B fixed link between design & proofs (relating syntactical pgm
constructs & proof rules) restricting design space (e.g. including M allowed to
call only one operation of included M’)

• B tailored for termination proofs, using restricted refinement
notions, of single operations/events (with “unchanged” properties)

• B geared to obtain executable programs from logical descrps

• B has industrial tool kits (B toolkit, Atelier B), ASM has public domain
tools Workbench, ASMGofer, XASM and the MSR tool AsmL

© Egon Börger: Modelling Computation Models by ASMs

Comparing the Computation Model of B Machines & ASMs

• “Pocket calculator model”
set of operations (which are callable by the user) or of events
(which may happen)
– one at a time (“no simultaneity bw the exec of two events”)
– hiding the machine state (giving the user “the ability to

activate the operations” - to “modify the state within the limits
of the invariant” - “not to access its state directly”, pg.230)

Structured ASMs provide atomic (zero-time) synchronous
parallel execution of entire (sub)machines whose computations,
analysed in isolation, may have duration & may access the
needed state portion (interface). Turbo ASMs combine atomic
black box & durative white box view Börger/Schmid (LNCS 1862)

• B has to define a “multiple generalized substitution” to define
the parallel composition of two machines, which is a basic
concept in ASMs.

© Egon Börger: Modelling Computation Models by ASMs

Comparing the Refinement Notions for B Machines & ASMs

• B-refinement only of single operations with unchanged
signature, tailored to provide “unchanged” properties

• ASMs provide refinement notions which allow change of
signature (data refinement) & of operation sequences

with equivalence ≡ definable to relate the locations of interest in
states of interest, which result from comp segments of interest.
Properties can be “preserved” modulo the ref/abs relations

State
τ1 …τm State’

ref absabs ref

RefState RefState’
σ1 …σn

≡

© Egon Börger: Modelling Computation Models by ASMs

Comparing Links bw Design and Proofs in B Machines & ASMs

• B links design & proofs by relating syntactical
program constructs & proof principles, at the price of
restricting the design space
– Exl. Let M include M’. Then “at most one operation of the

included machine can be called from within an operation
of the including machine. Otherwise we could break the
invariant of the included machine.” (B-Book pg.317))

– Exl. Let M’ have the following operations, satisfying the invariant v ≤ w :

• increment ≡≡ If v < w then v := v+1

• decrement ≡≡ If v < w then w := w-1

– Let M include M’ and contain the following operation:
• If v<w then increment

decrement

– Then the invariant v ≤≤ w is broken by M for w = v+1.
• ”…formal reasoning involving events…It would be quite complicated to

envisage that two (or more) events could happen simultaneously”
(Abrial/Mussat 1996) © Egon Börger: Modelling Computation Models by ASMs

Comparing ASM and VDM

• VDM restricted to sequential runs
• Abstraction level of VDM fixed

– for sets by VDM-SL types
• to be built from basic types by constructors

– for functions by explicit and implicit definitions
– for operations by procedures (with side effects)

– for states by records of read/write variables

• Biased to functional modeling
• VDM-SL has ISO standard & tool support developed by IFAD

(Reference: J. Fitzgerald, P. Gorm Larsen: Modelling Systems, Cambridge UP
1998)

© Egon Börger: Modelling Computation Models by ASMs

Specification & Computation Models
for System Design

• Executable high-level design languages
– UNITY
– COLD

• State-based specification languages
– distributed: Petri Nets
– sequential: SCR (Parnas Tables), Z/B, VDM

• Virtual Machines
– Dijkstra’s Abstract Machine Concept
– Active Db
– Data Flow (Neural) Machines
– JVM (platform independent machine for programming lg interpretation)

• Stateless Modeling Systems
– Process Algebras (CSP, LOTOS, etc.)
– Logic Based Systems (denotational, algebraic, axiomatic)

© Egon Börger: Modelling Computation Models by ASMs

Dijkstra’s Concept of Abstract Machines
• In 1968, when formulating the T.H.E. operating system,

Dijkstra coined the term Abstract Machines with abstract
instructions providing local modifications

• The notion of Abstract Machines was preceded and followed
by a large number of concrete definitions of such machines
– Dahl’s Simula67 classes, Landin’s SECD, Warren’s WAM, Java VM
– IBM’s Virtual Machine concept for high-level OS view, hierarchical

systems, layered architectures, data spaces
– VDM, B machines, etc.

• The definition of ASMs conceptually clarifies the underlying
general meaning of “abstract instruction” for such machines

• see sect. 3.1 in E. Börger: High Level System Design and Analysis using
Abstract State Machines. Springer LNCS 1641 (1999) 1-43

• All those abstract or virtual machines can be naturally defined
as particular ASMs (see some example below)

© Egon Börger: Modelling Computation Models by ASMs

Active Database Machines
• Rules of form

If event & condition Then action
• event : the trigger which may result in firing the rule
• condition : the relevant part of “state” (context) in which an

event occurs, must be additionally satisfied for rule execution
• action : the task to be carried out by the database rule

• Different active databases result from varying
– the underlying notion of state, as constituted by syntax and

semantics of events, conditions and actions, and of their
relation to the underlying database states

– the scheduling of the evaluation of condition and action
components relative to the occurrence of events (coupling
modes, priority declarations, etc.)

– the rule ordering (if any), etc. © Egon Börger: Modelling Computation Models by ASMs

Data Flow Machines: Neural Nets

• A Neural Net is usually seen as a black-box yielding output
to the env, as result of an internal computation which is
triggered by an input taken from the env. The internal
computation consists of a finite sequence of atomic actions
performed by the basic computing elements (nodes of a
directed data-flow graph)
– In forward propagation mode, the network input is transmitted by the

input units to the internal units which propagate their results through
the graph until the output units are reached

newInputToBeConsum
ed := false

copyNetInput (input)
schedUnits :=

nextExecUnits
(∅, inputType(input))

input
newInputToBe

Consumed
activate

Neural Kernel
compute

more units
to be

computed

NK step

NO

YES

clearState

Börger/Sona JUCS 2001

variety of
schedulersschedUnits:= nextExecUnits(schedUnits,inputType)

forall u ∈ schedUnits

computeUnit(u)

© Egon Börger: Modelling Computation Models by ASMs

Data Flow Unit Computation in Neural Nets

computeUnit (u) ≡ if inputType = forward then
let result = forwardValue(u) in

propagateForward (u, result)
updateLocalStateForward(u, result)

if inputType = backward then
let result = backwardValue(u) in

propagateBackward(u, result)
updateLocalStateBackward(u, result)

propagateForward (u, dataToPropagate) ≡
forall d ∈ dest (u)

inForward int (d, u) := intValueForw (d, u, dataToPropagate)
if u ∈ outputUnits then

output (u) := extValueForw (u, dataToPropagate)

propagateBackward (u, dataToPropagate) ≡
forall s ∈ source (u)

inBackward int (s, u) := intValueBack (s, u, dataToPropagate)
if u ∈ inputUnits then

outputBack(u) := extValueBack (u, dataToPropagate)
© Egon Börger: Modelling Computation Models by ASMs

Specification & Computation Models
for System Design

• Executable high-level design languages
– UNITY
– COLD

• State-based specification languages
– distributed: Petri Nets
– sequential: SCR (Parnas Tables), Z/B, VDM

• Virtual Machines
– Dijkstra’s Abstract Machine Concept
– Active Db
– Data Flow (Neural) Machines

• Stateless Modeling Systems
– Functional programming paradigm
– Process Algebras (CSP, LOTOS, etc.)
– Logic Based Systems (denotational, algebraic, axiomatic)

© Egon Börger: Modelling Computation Models by ASMs

ASM Model for Functional Programming Features

Theoretical basis: value returning Turbo ASMs
containing possibly seq,iterate

• Let R(x)=body be a rule definition, actual params a
[[R(a)]]A = [[body(a/x)]]A Börger/Schmid 2000

• [[l ←R]]A = [[body(l/result)]]A

• Let y1=R1 (a1), …, yn=Rn (an) in S defined as
Let l1,…,ln = new(LOC) in

forall 1 ≤ i ≤ n do li ← Ri (ai) seq
let y1=l1,…,yn=ln in S

Definition allows to use arbitrary functional equations x=R(a)
for value returning subcomputations of R, for parameter a, as standard
refinement of an ASM

© Egon Börger: Modelling Computation Models by ASMs

Example: Turbo ASM Model for Quicksort

Quicksort(L) =

If |L| ≤ 1 then result:=L else
Let

x=Quicksort (tail(L) < head(L))
y= Quicksort(tail(L) ≥head(L))

in
result := concatenate(x,head(L),y)

© Egon Börger: Modelling Computation Models by ASMs

Example: Turbo ASM Model for Mergesort

Mergesort(L) =
If |L| ≤ 1 then result:=L else

Let x=Mergesort (LeftHalf(L))
y= Mergesort (RightHalf(L))

in result := Merge(x,y)
Merge(L,L') =
If L=[] or L'=[] then result:= (the unique l s.t. (l∈ {L,L'} and l ≠ []))

elseif head(L) ≤ head(L') then
let x=Merge(tail(L),L') in result:= concatenate(head(L),x)

elseif head(L') ≤ head(L) then
let x= Merge(L,tail(L')) in result := concatenate(head(L'),x)

© Egon Börger: Modelling Computation Models by ASMs

Modeling Process Algebras by ASMs

• Each CSP is a particular multi-agent ASM with
– agents reacting to events
– communication
– non-deterministic choice

• The Occam and Transputer realization of CSP
have been modeled by particular ASMs:
– Succinct ASM model for the realization of CSP by OCCAM

Börger/Durdanovic/Rosenzweig PROCOMET’94

– The ASM model for OCCAM has been refined to a proven to be correct
ASM model for the compilation of Occam programs to TRANSPUTER
code Börger/Durdanovic Computer J.1996

• A general model for process-algebraic concepts within
the ASM framework has been given in terms of
Abstract State Processes (ASPs) Bolognesi/Börger 2002

© Egon Börger: Modelling Computation Models by ASMs

UML Activity Diagram for semantics of Occam Börger/Cavarra/Riccobene LNCS 1816

By ASM model for act dgms only the atomic actions need to be instantiated

writerAvailable(c) ≡ ∃writer∈Agent ∃n ∈Node:
active(writer) = in(n) & action(n) = d!t
& eval(d,e(writer)) = eval(c,e(self))

readerAvailable(c) ≡ ∃reader∈Agent ∃n ∈Node:
active(reader) = in(n) & action(n) = c?v

& eval(d,e(self)) = eval(c,e(reader))

b: c?v ≡
eval(b,e(self)) &

writerAvailable(c)

c?v ≡ e(self) := e(self)[v/ eval(term(writer_c),e(writer_c))] d!t ≡ skip

assign(v,t) ≡
e:= e[v/ eval(t,e]

pass e ≡ e(self)
:= e(parent(self))

collect e ≡
e(self):= ∪i<k e(ai)

© Egon Börger: Modelling Computation Models by ASMs

ASMs & Logic Based Specification Systems
Every modeling language affects the form of the models (design

space), their comprehension, the means for their analysis
ASMs separate design from analysis (Maths: defining ≠ proving)
to avoid premature design decisions (“specify for change”, keep design structure open)

ASMs separate validation from verification
• no a priori commitment neither to proof rules nor to specific proof rules

distinguishing different levels of rigor for system justification
• a posteriori compatibility with any (formal or computerized) proof system

– PVS verification of ASM based correctness proof (pipelining of DLX ,
Verifix compiler project)

– KIV verification of ASM based correctness proof (compiling PROLOG
programs to WAM code, Java programs in Java Reference Manual, etc.)

– Model checking of safety and liveness properties for ASM models
(Production Cell, Flash protocol, etc.)

• declarative features can be built into ASMs as assumptions (on state,
environment, store, applicability of rules).

© Egon Börger: Modelling Computation Models by ASMs

Axiomatic/Denotational Specification Methods

• Denotational: program denotation defined by
systems of equations (usually inductively, using fixed-
point operators)

• Scott-Strachey, VDM (D. Bjoerner, C. Jones), Monadic Semantics (E.
Moggi), Predicate Transformers (E. Dijkstra) & multiple variants (see Action
Semantics book and survey by P. Mosses in PSI’01)

• Axiomatic: algebraic (Hoare), dynamic logic (Harel),
temporal logic TLA (Lamport), etc.

• Ax/Den approaches mainly tailored for semantics of
programming languages, not a general system
development method (See survey by P. Mosses Proc. PSI’01)

– states are specialized, namely based upon abstract syntax
trees with still to be executed pgm, already computed
intermediate values, env, store,… (transition“labels”)

© Egon Börger: Modelling Computation Models by ASMs

Logical Character of Axiomatic/Denotational Spec Methods

Ax/Den approaches follow the pattern of logic: specs
typically expressed by systems of axioms and
inference rules

– spec perceived as a logical expression or
equation

– implementation understood as implication
– composition defined as conjunction

• Problems:
– frame problem via declarative nature of

axiomatization
– difficult to control order of rule applications

• e.g. non-determinism hidden in rule application by user

© Egon Börger: Modelling Computation Models by ASMs

SOS Specification Methods

• Structural Operational Semantics (Plotkin 1981)
– tailored for semantics of programming languages (See survey

by P. Mosses Proc. CSL’99)

– transitions specified structurally, with implicit control, by
axioms and inference rules (typically of Horn clause like
equational, rewriting, tile logic) reflecting the steps of
compound phrases in terms of steps of its component
phrases

• “frame rules” expressing that component rules (‘small-
step’) propagate to enclosing structures (‘one-hole term
contexts’, generalized in tile logic to multiple hole
contexts)

• Natural Semantics (G. Kahn): inference rules a la Gentzen’s
sequents calculi for Natural Deduction, involving only
initial/final (no intermediate) states (“big-step”)

– Exl: Big-Step Def of Standard ML semantics (Milner et al 1997)

© Egon Börger: Modelling Computation Models by ASMs

Variants of SOS Specification Methods

– Reduction Semantics: standard term rewriting
• difficult to control order of traditional reduction steps

– e.g. by leftmost outermost reduction sequences or by restricting
reduction steps to occur with predefined evaluation contexts (Felleisen)

– Rewriting Logic (Meseguer TCS’92): conditional concurrent
rewrite rules modulo an equivalence relation over terms

– Modular SOS (Mosses Proc. MFCS’99) with independent
transition rules for each language construct

• relevant state info incorporated into labels α of transition rules → α
(‘semantic entities’ treated as ‘components of labels’, formally as
arrows of a category where the labels of adjacent steps are
composable)

• implementation in Maude (executable Rewriting Logic), translating
label formulae to equations about the corresponding state, for
prototyping AN descriptions of programming languages

© Egon Börger: Modelling Computation Models by ASMs

Relating Mosses’ Action Notation and ASMs

• AN tailored to support development of
programming langs (not a general purpose sw/hw
system design framework, no ground model or
refinement notion)
– enriching denotational with practically useful operational

features
• overcoming pragmatically dissatisfactory aspects of purely

denotational approach by directly reflecting (primitive and composed)
actions corresponding to programming concepts (semantic mapping
of AST to predefined actions)

– making a compromise between competing language
development requirements, corresponding to views of
designer, implementer, programmer

• AN aims at generation of tool env from lang spec
– semantics directed generation of interpreters, compilers,…

• Technical comparison: ASM-based Montages spec of AN
semantics & implementation of AN in XASM by Anlauff et al ‘01

© Egon Börger: Modelling Computation Models by ASMs

Relating Mosses’ Action Notation and ASMs

• Actions categorize general ASM function updates and
declarations by a classification on the basis of
– different computational aspects

• control (seq, par, non-determinism) (“basic facet”)

• data storage
– transient between actions (“functional facet”)
– stable in cells (“imperative facet”)

• communication describing interactions between distributed agents
(“communicative facet”)

• scope information (“declarative facet”)

– types of effect propagation of actions
• transient (intermediate results), stable (cell data for values of vars),

permanent (communication data), scoped (binding tokens to data)

– types of action performance
• Execution may complete, escape, fail, diverge

• These features are not directly available (though definable) in ASMs
(see Börger/Schmid 2000, Anlauff et al 2001)

© Egon Börger: Modelling Computation Models by ASMs

Exercise
Describe Schönhage’s Storage Modification Machines
(SIAM J. Computing 9, 1980) as ASMs using only 0-ary

or unary dynamic functions, no static or shared
function and only input as monitored function. An SMM
has as memory a dynamic graph whose nodes n are named
(not necessarily uniquely) by sequences of labels for edges,
forming a path from a distinguished center node to n. Besides
usual instructions for control (Goto s, If input = i goto si (for
i=0,1), If n=n’ Then s Else s’ conditioned by an equality test for
node names) and instructions to write output symbols on an
output tape, there are two characteristic instructions to create
new nodes and to redirect edges between nodes: new (n,e)
redirects edge e from (the node named by) n to a new node
which is linked (by an edge) to the same nodes n is linked to,
set e to n’ redirects e to n’.

Every ASM restricted in this way is lock-step equivalent to an SMM (see the
article by S. Dexter, P. Doyle, Y. Gurevich in JUCS 3 (4) 1997).

© Egon Börger: Modelling Computation Models by ASMs

References

• M. Anlauff, S. Chakraborty, P.W. Kutter, A.
Pierantonio, L. Thiele: Generating an action notation
environment from Montages descriptions. Int J. STTT
(2001) 3:431-455

• E. Börger: High Level System Design and Analysis
using Abstract State Machines. Springer LNCS 1641 (1999) 1-
43

• E. Börger: Abstract State Machines: A Unifying View
of Models of Computation and of System Design
Frameworks Annals of Pure and Applied Logic (2003)

• E.Börger, F.J.Lopez-Fraguas, M.Rodrigues-Artalejo: A
Model for Mathematical Analysis of Functional
Programs and their Implementations B.Pehrson and I.Simon
(Eds.): IFIP 13 World Computer Congress 1994, Vol.I:
Technology/Foundations, 410-415

© Egon Börger: Modelling Computation Models by ASMs

References

• E.Börger and D. Rosenzweig: Mathematical Definition
of Full Prolog Science of Computer Programming 24 (1995)
249-286

• E.Börger and R.F.Salamone: CLAM Specification for
Provably Correct Compilation of CLP (R) Programs
E.Börger (Ed.) Specification and Validation Methods. Oxford
University Press, 1995, 97-130 E. Börger, J. Schmid:
Composition and Submachine Concepts for
Sequential ASMs. Springer LNCS 1862 (2000) 41-60

• E. Börger, R. Stärk: Abstract State Machines. A
Method for High-Level System Design and Analysis
Springer-Verlag 2003, see http://www.di.unipi.it/AsmBook

• L.M.G. Feijs, H.B.M. Jonkers : Formal Specification
and Design Cambridge University Press 1992

© Egon Börger: Modelling Computation Models by ASMs

References

• J. Fitzgerald, P. G. Larsen: Modelling Systems
Cambridge University Press, 1998

• H.-J. Genrich and K. Lautenbach: System Modeling
with High-Level Petri Nets. TCS 13 (1981)

• K. Jensen: Coloured Petri Nets Springer-Verlag 1992

• K. Jensen and G. Rozenberg: High-Level Petri Nets.
Theory and Applications. Springer-Verlag 1991

• D. Johnson and L. Moss : Grammar Formalisms
Viewed als Evolving Algebras. Linguistics and Philosophy 17
(1994) 537-560

• K. Mani Chandy, Jayadev Misra: Parallel Program
Design. A Foundation. Addison Wesley 1988

© Egon Börger: Modelling Computation Models by ASMs

References

• J. Meseguer: Conditional rewriting logic as a unified
model of concurrency. TCS 96 (1) 73-155, 1992

• P. D. Mosses : Action Semantics Cambridge University
Press 1992

• P. D. Mosses : Logical Specification of Operational
Semantics.
– BRICS Report Series RS-99-55 (ISSN 0909-0878), Dec’99

and CSL’99 (Springer LNCS 1683), pages 32-49

• P. D. Mosses : The Varieties of Programming
Language Semantics And Their Uses. Proc. PSI’01

• W. Reisig: Elements of Distributed Algorithms Springer
1998

• D.Rödding: Modular Decomposition of Automata
(Survey). M. Karpinski (Ed): Foundations of Computation
Theory. LNCS 158, 1983, 394-412

