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Goal: comparative analysis of spec and comp systems

• We look for standard reference descriptions for the 
principal current models of computation and of high-
level system design, which

– faithfully capture each system’s fundamental 
characteristic intuitions 

• about the objects of computation and the nature of a 
basic computation step

– are uniform enough to allow explicit comparisons of
established system modeling methods

• to contribute to rationalize the scientific evaluation of 
different system specification approaches, clarifying their 
advantages and disadvantages
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Current Models of Computation to be Compared
• UML Diagrams for System Dynamics
• Classical Models of Computation

– Automata: Moore-Mealy, Stream-Processing FSM, Co-Design FSM, 
Timed FSM, PushDown, Turing, Scott, Eilenberg, Minsky, Wegner

– Substitution systems: Thue, Markov, Post, Conway
– Structured programming

• Programming constructs: seq, while, case, alternate, par
• Gödel-Herbrand computable fcts (Böhm-Jacopini)

– Tree computations: backtracking in logic & functional programming, 
context free grammars, attribute grammars, tree adjoining grammars

• Specification and Computation Models for System Design
– Executable high-level design languages: UNITY, COLD
– State-based specification languages

• distributed: Petri Nets 
• sequential: SCR (Parnas Tables), Z/B, VDM 

– Virtual Machines: Active Db, Data Flow (Neural) Machines, JVM
– Stateless modeling systems

• Logic based  (axiomatic), denotational (functional pgg paradigm), algebraic 
(process algebras, CSP, LOTOS, etc.)
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Thesis: ASMs a universal class of algorithms

• The ASM thesis in its original form reads:
– Every computational device can be simulated by an 

appropriate dynamic structure – of appropriately the same 
size – in real time (Y. Gurevich, Notices American Mathematical 
Society 85T-68-203, 1985).

• For the synchronous parallel case of this thesis Blass 
and Gurevich (ToCL 2002) discovered a small number of 
postulates from which every synchronous parallel 
computational device can be proved to be simulatable
in lock-step by an ASM.

• So why do we not compare different systems via the 
ASMs as given by that proof, machines which “can
simulate” the given systems “step-by-step”?
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“Abstract” nature of ASMs derived from postulates

• Postulating (by an existential statement) e.g. that
– states are appropriate equivalence classes of structures of a 

fixed signature (in the sense of logic)
– evolution happens as iteration of single “steps”
– the single-step exploration space is bounded (i.e. that there 

is a uniform bound on memory locations basic computation 
steps depend upon, up to isomorphism)

does not by itself provide, for a given computation or 
specification model, a standard reference description
of its characteristic
– states
– objects entering a basic computation step
– next-step function

• No proof is known to include distributed systems 
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A price for “proving” computational universality 

• If one looks for explicitly stated assumptions, to prove by a 
mathematical argument the step-for-step-universality of ASMs
for every theoretically possible system, the focus in stating the 
postulates unavoidably is on generality and uniformity, to 
capture the huge variety of data structures and of ways of 
using them in a basic computation step.

• As side effect of the generality of the postulates, the 
application of the general proof scheme to established models 
of computation 
– may yield ASMs which are more involved than necessary
– may blur distinctions which pragmatically differentiate concrete systems

• The construction by Blass and Gurevich in op.cit., “transforming” any
imaginable synchronous parallel computational system into an ASM
simulating the system step-by-step, depends on the way the abstract 
postulates capture the amount of computation (by every single agent) and 
of the communication (between the synchronized agents) which are
allowed in a synchronous parallel computation step. 
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The epistemological character of the ASM thesis

• The epistemologically relevant unfolding of the concrete 
objects and steps for any theoretically conceivable 
computational system, by deriving (“decoding”) them from the 
general concepts appearing in the postulates for a proof of the 
thesis, yields some en/decoding overhead one can avoid by 
concentrating on - the great variety of - relevant (established 
or desirable) concrete classes of systems. 

• Focus on modeling significant classes of systems allows us to
follow a pragmatically important principle the ASM design and 
analysis approach emphasizes, namely to model concrete
systems “closely and faithfully”, “at their level of abstraction”,

• laying down the essential computational ingredients completely and
expressing them directly, 

without using any encoding which is foreign to the device 
under study.
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Goal of naturally modeling systems of specification & computation

• We look for “natural” ASM descriptions of the principal current 
models of computation and of high-level system design, 
including asynchronous distributed systems, which
– directly reflect the basic intuitions and concepts of every 

framework
• By gently capturing the basic data structures & single computation

steps which characterize each significant system, we provide a 
strong argument for the ASM thesis which

– avoids a sophisticated existence proof for the ASM models from abstract 
postulates

– avoids decoding of concrete concepts from abstract postulates
– avoids a sophisticated correctness proof for the ASM models

– are formulated in a way which is “uniform” enough to allow 
explicit comparisons bw the classical system models

• By providing a mathematical basis for technical comparison we 
– contribute to rationalize the scientific evaluation of different system

specification approaches, clarifying their advantages and disadvantages
– offer a powerful yet simple framework for teaching computation theory
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Classes of ASMs Reflecting UML Notations

• UML offers an ensemble of notations with loose 
semantics

• “Behavioral” diagrams for describing system dynamics
can be equipped with a rigorous semantics by defining 
them as special ASMs, e.g.
– Activity diagrams (see Cavarra/Börger/Riccobene LNCS 1816)

– State diagrams (see Cavarra/Börger/Riccobene LNCS 1912)

– Use case, sequence, collaboration diagrams

• “Structural” diagrams for describing system statics can
be used for specifying static parts of ASMs, e.g.
– Class and object diagrams (organized in packages)
– Implementation (component and deployment) diagrams

For the modeling purpose here, we generalize FSMs to

ASMs tailored to UML diagram visualizable machines
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UML Action Nodes: diagram notations for action flow 

rulei j
UML notation

Meaning:    if control = i   then rule
control := j

ruleFlowchart
notation

FSM notation rulei j

Interpreting “action” as application of an ASM rule

Idea: in a given situation, perform an action and proceed
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UML Branching Nodes: diagram notations for control flow

i

cond1 j1

jncondn

… meaning

if control = i  then
if cond1 then control := j1

….

if condn then control := jn

Special notation for n=1: Cond
i j

Cond

Yes

N
o

Special notations for n=2:
Cond

Rule-yes Rule- no
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Control State ASMs: combining action/branching nodes

FSM notations rulei
cond

i j
cond

rule

j

Flowchart notation rule
cond

if control = i  and cond then rule 
control := j

Control State ASM (Abstract FSM): all rules have this form

NB. Evaluation of Cond and firing rule “controlled” as ONE  ASM STEP

cond often inscribed into a rhomb cond rule
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UML Activity Diagrams with Concurrent Nodes

• Concurrent nodes of UML, in the synchronous
understanding, are a special case of action nodes where

rule = rule1

…
rulen (all rules fire simultaneously)

• Concurrent nodes of UML, in the asynchronous
understanding, are calls of asynchronous multi-agent ASMs
– work with a priori unrelated clocks, but 
– are (expected to be) synchronized after each of them has 

returned a result (similar to the par construct of Occam)

UML Activity Diagram graph connecting action & branching nodes

Def. Synchronous UML Activity Diagram: synchronous concurrent nodes
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Synchronous UML activity diagrams have a 
normal form of multi-agent control state ASMs

Therefore every synchronous UML activity diagram can be viewed as a
synchronous multi-agent ASM whose agents are control state ASMs

with rules representing alternating branching and action nodes

Each synchronous  UML activity diagram is built up from 
control state ASM rules 

i.e. alternating branching and action nodes of the following form 
for each of the synchronized agents (where n=1 is allowed):

cond1

condn

…

action1

actionn
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Classical Models of Computation
• Automata

– Moore-Mealy, Stream-Processing FSM, Co-Design FSM, Timed FSM
– PushDown
– Turing, Scott, Eilenberg, Minsky, Wegner

• Substitution systems 
– Thue, Markov, Post, Conway

• Structured programming
• Programming constructs (seq, while, case, alternate, par) 
• Gödel-Herbrand computable functions (Böhm-Jacopini)

• Tree computations 
– backtracking in logic & functional programming
– context free grammars
– attribute grammars
– tree adjoining grammars
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Mealy/Moore automata as control state ASMs

controla bin_put out_put

Program of rules of the form in = a out := b

Moore automata: without output

control := Nxtctl(control, in)
out := Nxtout(control, in)

Writing programs in standard tabular form (i,a,j,b) yields a
guard-free FSM rule scheme updating control, out:

NB. Since “in” is a monitored fct, it is not updated in the rule scheme

1-way or 2-way is a question of Moves of input head 
replacing in by in(head) and adding          head := head + Move(control, in(head))
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Specializing Mealy to Stream Processing Ctl State ASMs (Janneck 2000)

Computing Stream Functions SmàSn (data set S = A* or S=AN)
yielding an output stream out resulting from  consumption of the input stream in

Prefix: Ctl ×× SmàPowerSet( Sm
fin) yielding sets of finite prefixes

Transition: Ctl x  (Sm
fin )àPowerSet(Ctl ×× Sn

fin) yielding finite output

non-deterministically in each step these automata : 
- read (consume) at every input port a prefix of the input stream in

- produce at each output port a part of the output stream out (concatenation)
- proceed to the next control state

choose pref ∈∈ Prefix (control, in)
choose (c,o) ∈∈ Transition (control, pref)

in:= in−pref
out := out.o
control := c

rules of 
form
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Co-design FSMs = distributed Mealy-ASMs Sangiovanni-Vincentelli

Mealy-ASM: rules of form in = a rule

Often with global agent scheduler 
and/or with timing conditions 

for agents performing durative instead of atomic actions

i.e. Mealy FSM update “out:=b” replaced by “rule”
needed for arbitrary combinational (external & instantaneous) fcts

Nondeterministic versions are of form
choose R ∈∈ Rule

R
where Rule is the set of rules to be chosen from 
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Timed Automata (Alur & Dill) as ctl state ASMs
• letter input enriched by real-valued occurrence time
• transitions enriched by clocks (recording time-∆∆ wrt

previous input) 
• fire under clock constraints
• update clocks (reset or adding time-∆∆ of input)

where time∆∆ = occurrenceTime (in) −− occurrenceTime (previousIn)

Rules
of form

in = a &
constr (time∆∆)

forall c ∈∈reset     c:=0
forall c ∉∉reset     c:=c + time∆∆

NB. Typically the constraints are about input to occur within (<,≤≤) or after (>, ≥≥ ) a 
given (constant) time interval, leaving some freedom for timing runs – i.e.
choosing sequences of occurrenceTime (in) to satisfy the constraints.
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Push Down Automata as control state ASMs

Reading from input  and/or stack and writing on 
stack

bistack inputa

control

i.e. rules of form (states may be no-input-/no-stack-reading) :

[in = a]    &
[top(stack) = b]

stack := 

push(w, [ pop ](stack))

control := Nxtctl(control, in, top(stack))
stack:=Pop&Push(stack,Write(control, in, top(stack)))
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Turing automata as Control State ASMs

Turing machines combine in_put and out_put into one memory: 

Cond
(mem(env(pos))

update mem(env(pos))
update pos

Program of rules of the form

tape(head) = a tape(head) :=  b
[head := head ± 1]

instantiated for Turing’s original machines to

control := Nxtctl(control, tape(head)) 
tape(head) := Write(control, tape(head)) 

head := head + Move(control, tape(head)) 
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Variants of TMs instantiating mem,env,pos

memory = k tapes pos : Z or pos: Zk (k-head TM)

memory = tape tape(head) = a
tape(head) :=  b

[head := head ± 1]

memory = n-dim pattern env(pos) ⊆⊆fin Zn including pos

memory = Nn/(A*)n (registers) pos = 1,…,n “softwired in instrs”

reg(i) := reg(i) +/- 1

reg(i) = 0
yes

no

Minsky 1961,
Sheperdson&
Sturgis 1963 
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Eilenberg’s X-Machines as control state ASMs

Eilenberg’s X-machines (1974) add to Mealy machines 
global memory with global memory update functions
• depending on input and control state, they modify memory and control state 

and provide output

• global memory yields frame problem
• global mem functions f make appropriate local updating

of data structures difficult

Similarly for Stream X-Machines (Holcombe J.SE 1998)

Rules of form in = a out := b
mem:=f(mem)

control := Nxtctl(control, in)
mem:=Opern(control, in)(mem)

out := Nxtout(control, in)
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Scott Machines (J.CSS 1967) as control state ASMs

Instrs trigger actions or test Predicates on abstract 
store

• global store yields frame problem
• global store functions/predicates make appropriate 

test/updating of data structures difficult

P(store)

Yes

No

store:=a(store)
i.e. each rule has  one 

of the two forms

control := IF(Test(control), control, store)
store:=Action(control)(store)
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Extending TM to Wegner’s Interacting Turing Machines

control := Nxtctl(control, tape(head), input)
tape(head) := Write(control, tape(head), input)

head := head + Move(control, tape(head), input)
output (control, tape(head), input)

New: at each step TM may - receive input from environment
- yield output to environment

Single versus Multiple  Stream Interacting TMs (SIM/MIM)
is only a question of instantiating input to (inp1,…,inpn)

Considering the output as written on the in-out tape means defining the output action by :

output:= input*out(control, tape(head), input)
Viewing input  as a combination of preceding inputs/outputs and the new user input :

input = combine (output, user_ input)
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Local Substitution: Thue , Post, Markov systems

Deterministic Thue system: ReplacePair is ordered 
selectrule(ReplacePair, mem) takes first pair with premise, say v, in mem
selectsub (mem, v) takes the leftmost occurrence of subword v in mem

Markov

Post normal selectsub (mem) takes an initial subword of mem
updating mem deletes initial subword v and copies w at end

mem: A*, ReplacePair ⊆⊆ A* ×× A*
choose (v,w), choose interval of mem where v occurs, to 

replace that occurrence of v by w

Thue

mem in
env(pos)

matches v 

update mem in
env(pos) by w

let  (v,w) = selectrule(ReplacePair)
let pos = (p,q) = selectsub(mem)

Exls:   regular grammars, context free grammars, context sensitive grammars,…
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Simultaneous substitution: E.g. Conway’s game of life

forall c in Cell

suspend(c) ≡≡ alive(c) := false 
resume(c) ≡≡ alive(c) := true

aliveNeighb(c) = 3

resume(c)

aliveNeighb(c) < 2
or aliveNeighb(c) > 3

suspend(c)

YesYes

Pattern: Fire simultaneously in “neighbouring places” a rule
If Cond(Neighb(p)) then SubstitutionRule(p)
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Control State ASMs for standard sequencing constructs
(white box view)

SEQ rule1
… rulen

WHILE Cond
Yes

No

rule

Cond1

Yes

No

CASE

…

rule1

rulenCondn

No

Yes
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Control State ASMs for standard iteration constructs
(white box view)

Alternate(R,S) a = 0

No

R

a:= flip(a)

Yes

S

Cycle-thru-
(R0,…,Rn) Ra a:= a+1 (mod n+1)

A special case 
of
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Networks of Mealy ASMs (seq & par composition)

i.e. adding to M rules: if out = j then in :=i
hiding the two input/output channels by this internal connection

deleting  i/j from input/output lines (white box view)

Mi j
feedback
operator

M Nj   i

+ parallel composition   M
N

For normal forms based upon 2 automata 
K, E see D. Rödding LNCS 185 (1983)
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Böhm-Jacopini-ASMs defined recursively
• from sequential ASMs using seq and iterate
• the only static functions: the initial functions

– projection, const, + 1, = 0

• only one monitored function per machine, 0-ary, say 
in for inputting the sequence of args, which does not 
change its value during a computation

• only one output fct per machine, say out : N
• no shared functions

Structured Programming: Computing Recursive Functions

Black Box View of seq, iterate encapsulating finitely many steps 
into one atomic action (“accumulated set of updates”) as defined in 

“Composition and Submachine Concepts for Sequential ASMs”

Börger/Schmid CSL’2000, LNCS 1862
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Every partial recursive function can be
computed by a Böhm- Jacopini- ASM.

• Proof by induction on partial recursive functions.
• Each initial function f is computed by the following 

machine F
– consisting of only one function update, reflecting the 

(operational?!) “application” of the defining equation of f  to 
determine the value of f for the given arguments 

F ≡≡ out F : = f ( in F )

Structured Programming Theorem Comm. ACM 1966
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• Let f ( x )  = g (h1( x ) , . . . , hm( x ) )
• Let g, h1 , . . . , hm be computed by G , H1 , . . . , Hm

• Then f is computed by 

F ≡≡ {H1 ( inF ) , . . . , Hm ( inF )}
seq outF : = G ( out H1, . . . , out Hm)

• using {…} for par (simultaneous execution)
– reflecting independence of g-arguments from their evaluation order 

• macros for connecting H to input in and output out
• reflect sequential order for reading arguments and providing values

– H ( in ) ≡≡ inH : = in seq H first, arguments are given as input

– out : = H ( in ) ≡≡ at the end, values are given as result

inH : = in seq H seq out : = out H

Computing Simultaneous Substitution

© Egon Börger: Modelling Computation Models by ASMs

Let f (x,0)  = g (x) , f (x,y+1)  = h (x,y,f(x,y))
Let g, h be computed by G , H
Then f is computed by

F ≡≡ let ( x , y ) =  inF in
{ival : = G (x) , rec : = 0 } 
seq (while (rec < y)

{ ival : = H(x, rec, ival), rec : = rec + 1})
seq outF : = ival

Computing Primitive Recursion
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• Let f ( x )  = µy (g (x ,y ) = 0)
• Let g be computed by G
• Then f is computed by

F ≡ {G ( inF ,0) , rec : = 0 } 
seq (while (outG ≠ 0)

{G ( inF , rec + 1 ) , rec : = rec + 1 })
seq outF : = rec

NB. The preceding ASMs unfold the underlying mechanism for the evaluation of 
terms, which is partly sequential, partly parallel, hardwired in our brains & 
taken for granted in the functional interpretation of the defining Gödel-
Herbrand equations

Computing µ-Operator



© Egon Börger: Modelling Computation Models by ASMs

Backtracking Machine (for Tree Computations)

• If mode = ramify then
Let k = |alternatives (Params)|
Let o1 ,..., ok =new (NODE)

candidates (currnode) := { o1 ,..., ok }
forall 1 ≤ i ≤ k  do

parent (oi) := currnode
env (oi) := i-th (alternatives (Params))

mode := select

• If mode = select then

If candidates (currnode) = ∅
then backtrack
else try-next-candidate

mode := execute

curr
node

o1 ok

candidates

parent

curr
node

o1 ok
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Backtracking Machine

• backtrack ≡≡ if parent (currnode) = root 
then mode := Stop
else currnode := parent (currnode)

• try-next-candidate ≡≡ depth-first tree traversal
currnode:= next (candidates(currnode))
delete next (candidates(currnode)) from candidates (currnode)

• The fctn next is a choice fct, possibly dynamic, which 
determines the order for trying out the alternatives.

• The fct alternatives, possibly dynamic and coming with 
parameters, determines the solution space.

• The execution machine may update mode again to ramify (in 
case of successful exec) or to select (for failed exec)
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Backtracking Machine: logic progg instantiation

• Prolog Börger/Rosenzweig Science of Computer Programming 24 (1995)

– alternatives = procdef (act,pgm), yielding a 
sequence of clauses in pgm, to be tried out in this 
order to execute the current statement (“goal”) act

• procdef (act,constr,pgm) in CLAM with constraints for 
indexing mechanism Börger/Salamone OUP 1995

– next = first-of-sequence (depth-first left-to-right tree 
traversal)

– execute mode resolves act against the head of the 
next candidate, if possible, replacing act by that 
clauses’ body & proceeding in mode ramify, 
otherwise it deletes that candidate & switches to 
mode select
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Backtracking Machine: functioal progg instantiation

• Babel Börger et al. IFIP 13 World Computer Congress 1994, Vol.I

– alternatives = fundef (currexp,pgm), yielding the 
list of defining rules provided in pgm for the outer 
fct of currexp

– next = first-of-sequence
– execute applies the defining rules in the given 

order to reduce currexp to normal form (using 
narrowing, a combination of unification and 
reduction)
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Backtracking Machine: context free grammar instantiation
• Generating leftmost derivations of cf grammars G

– alternatives = (currnode,G), yields sequence of symbols 
Y1...Yk of the  conclusion of a G-rule with premisse X 
labeling currnode. Includes a choice bw different rules X→w

– env yields the label of a node: variable X or terminal letter a
– next = first-of-sequence (depth-first left-to-right tree traversal)
– execute mode

• for nodes labeled by a variable triggers tree expansion
• for terminal nodes extracts the yield, concatenating terminal word to 

output, continues derivation at parent node in mode select

Initially NODE = {root} 
root=currnode

env(root)=G-axiom
mode=ramify

alternatives can be a
dynamic fct (possibly 

monitored by the user) or 
static (with first argument 

in VAR)

If mode = execute then
If env (currnode)∈VAR

then mode:=ramify
else output:=output * env(currnode) 

currnode:= parent(currnode)
mode := select
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Backtracking Machine: instantiation  for attribute grammars
• Synthesis of node attribute from children’s attributes via

backtrack ≡≡ if parent (currnode) = root  then mode := Stop

else currnode := parent (currnode)
X.a := f(Y1.a1, ..., Yk.ak)

• where X = env(parent(currnode)), Yi =env(oi ) for children nodes

• Inheriting attribute from parent and siblings
– included in update of env (e.g. upon node creation) 

generalized to update also node attributes 

• Attribute conditions for grammar rules
– included in execute-rules as additional guard to yielding 

output

If mode = execute then ...
else If Cond(currnode.a, parent(currnode).b, siblings(currnode).c)

then output:=output * env(currnode) 
currnode:= parent(currnode) , mode := select

Johnson/
Moss

Linguistics
&Philosophy
17 (1994) 
537-560
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X

m
k-thChild

X

p
j-thChild

X

Tree Adjoining Grammars

Generalizing Parikh’s analysis of context free languages by 
pumping of cf trees from basis trees (with terminal yield) and 

recursion trees (with terminal yield except for the root variable)

If n=k-thChild(m) &
symb(n)=symb(root(T))

& T ∈∈ RecTree &
foot(T) = j-thChild(p)

Then

Let T’=new copy(T) in
k-thChild(m):=root(T’)

j-thChild(p’):=n

m
k-thChild

X

p
j-thChild

X
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Specification & Computation Models 
for System Design

• Executable high-level design languages
– UNITY
– COLD

• State-based specification languages
– distributed: Petri Nets 
– sequential: SCR (Parnas Tables), Z/B, VDM 

• Virtual Machines
– Dijkstra’s Abstract Machine Concept
– Active Db
– Data Flow (Neural) Machines

• Stateless Modeling Systems
– Process Algebras (CSP, LOTOS, etc.)
– Logic Based Systems (denotational, algebraic, axiomatic)
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UNITY vs ASMs: similarities

• Formal, design oriented, state based, 
high-level description of systems

• Absence of control flow
• Computations as sequences of state 

transitions
• Parallelism of simultaneous multiple 

conditional assignments 
• Sharing of “data” via their names

“Parallel Program Design. A Foundation”
by K. Mani Chandy and Jayadev Misra, Addison Wesley, 1988

Unity slides courtesy of Simone Semprini © Egon Börger: Modelling Computation Models by ASMs

UNITY vs ASMs : differences

• Time: global synchronous UNITY system time, 
one clock to schedule the statements of every
program in the system; in distributed ASMs each 
agent can have its own clock, for every 
sequential ASM all rules are executed 
simultaneously

• Interleaving and Fairness Condition on Runs
• Specialized Refinement/Composition concept
• UNITY is linked to a particular proof system 

geared to extract proofs from pgm text
• UNITY has no Function Classification
• non-determinism restricted to choosing rules

Unity slides courtesy of Simone Semprini
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UNITY statements as ASMs rules

forall i in [0,…,N]
A[i]:=B[i]

<|| i : 0≤i<N : 
A[i]:=B[i]>

Quantified assignment

if y<0 then x:=-1
elseif y=0 then x:=0
elseif y>0 then x:=1

x:=-1 if y<0
0 if y=0
1 if y>0

Conditional assignment

x,y,z:=0,1,2x,y,z:=0,1,2

Multiple assignment

ASMsUNITY

Unity slides courtesy of Simone Semprini © Egon Börger: Modelling Computation Models by ASMs

UNITY_ASM

UNITY_ASM ua
RULES
r1=…
…
rn=…
ua.rules={r1,…,rn}

BODY
choose r ∈ ua.rules
r

endchoose

ASM name, a string

ASM rule declarations

Rule universe

Scheduling at the 
rule level

Execution of the 
scheduled rule

Unity slides courtesy of Simone Semprini
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UNITY_SYSTEM_ASM

UNITY_SYSTEM_ASM usa
COMPONENTS
UNITY_ASM ua1

…
UNITY_ASM uan

components={ua1,…,uan}
BODY
choose c ∈ components
c

endchoose

ASM name, a string

UNITY_ASM
declarations

Component universe

Scheduling at the 
components level

Execution of the BODY of 
the scheduled component

Unity slides courtesy of Simone Semprini © Egon Börger: Modelling Computation Models by ASMs

COLD vs ASMs : similarities

• Common OO Lg for Design combining abstract data types 
(VDM,Z) with states for system descriptions ranging from high-
level to implementation (“wide-spectrum”)

• Kernel language 
– with user- and application-oriented extensions

• States as structures 
• Computations as sequences of state transitions
• Parallelism of simultaneous multiple conditional 

assignments
• Basic constructs 

– skip, choose (for rules and variable assignments), let

“Formal Specification and Design”
by L.M.G. Feijs and H.B.M. Jonkers, Cambridge Univ. Press 1992

© Egon Börger: Modelling Computation Models by ASMs

COLD vs ASMs : differences

• Purely sequential :
– State transitions viewed as sequential execution of procedure calls,

built from stms viewed as expressions with side effect

• No Function Classification, no explicit “forall” construct
• Object Oriented Programming Language constructs:

– a class (with a set of states, one initial state, and a set of transition
relations) corresponds to an ASM, but 

– different states of a same class may have different signature

• Sequencing and iteration constructs (black box view)
• COLD linked to a dynamic logic proof system supporting ADT

– geared to provide proofs for algebraic specifications of states and their 
dynamics (a la Z, VDM) 

• separate guard stm for Blocking Evaluation of Guards
– (i.e. identity state transition only if the guard is true)

© Egon Börger: Modelling Computation Models by ASMs

COLD statements as ASMs rules

choose n∈N, p1...pn ∈ P
p1 seq...seq pn

USE P END
(arbitrary sequence of 
procedure invocations)

Non-deterministic sequential procedure invocation

choose n∈N, x1...xn ∈ V
choose v1...vn ∈ Value

forall 1≤i≤n   xi:=vi

MOD V END
(arbitrary modification of some 
variables)

Multiple non-deterministic assignment

ASMCOLD
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Specification & Computation Models 
for System Design

• Executable high-level design languages
– UNITY
– COLD

• State-based specification languages
– distributed: Petri Nets 
– sequential: SCR (Parnas Tables), Z/B, VDM 

• Virtual Machines
– Dijkstra’s Abstract Machine Concept
– Active Db
– Data Flow (Neural) Machines

• Stateless Modeling Systems
– Process Algebras (CSP, LOTOS, etc.)
– Logic Based Systems (denotational, algebraic, axiomatic)

© Egon Börger: Modelling Computation Models by ASMs

Modeling Petri Nets as asynchronous multi-agent ASMs

General view of Petri nets as distributed transition 
systems  transforming objects under given conditions 

– Classical instance (Petri):
• objects are marks on places

– places, denoted by circles, are passive net components to store 
objects (“locations”)

• transitions modify objects by adding and deleting marks on places
– transitions are active net components, denoted by boxes (“rules”)

– Modern instances (predicate/transition nets):
• places are locations for objects belonging to abstract data types, 

i.e. variables taking values of given type (marking = variable 
interpretation)

• transitions update vars and extend domains under conds
• conditions are arbitrary first-order formulae

© Egon Börger: Modelling Computation Models by ASMs

Modeling Petri Nets as asynchronous multi-agent ASMs

The numerous extensions of classical Petri nets all are forms 
of the following class of asynchronous multi-agent ASMs:

– State
• P   set of “ places ” (“passive” net components)
• A set of “agents” (which execute transitions)
• F class of “value assigning” (state changing) fcts

– Rules (one agent for each “transition”) of the following form, where
pre/post-places are sequences/sets of places, participating in the “information
flow relation” (local state change):

If cond(pre-places)
then updates(post-places)

where updates(post-places)
(“active net components”) are sets of f(p) := t
Includes view of states as logical predicates, associated 

to places & transformed by actions
© Egon Börger: Modelling Computation Models by ASMs

Avoiding Frame Problem in Petri Nets

The ASM-like view of “states as logical 
predicates”, associated to places and
transformed by actions, helps to avoid a form of 
frame problem traditional Petri nets come with:

– namely when in a transition some “marks” are
deleted from pre-places  to be put back again 
by the transition 

x

yx
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Comparing ASMs and Parnas Tables (SCR)
Common Goals

• provide documentation for 
understanding by humans

• use functions & variables, 
functions are monitored or 
controlled

• standard mathematical 
language

• functions dynamic via time

• structure of buildings blocks 
and decomposition traces

• … through ground models and
hierarchy of refinements

• … functions of arbitrary arity,
arbitrarily complex locs, also 
static, derived, shared fcts

• … and algorithmic (executable) 
process notation

• … and possibly distributed
coming with  different times

• …common programming
structures

Börger Dagstuhl Seminar
Report 149 (1996) © Egon Börger: Modelling Computation Models by ASMs

Comparing ASMs and Parnas Tables (SCR)
Differences

• Parnas tables come with
– frame problem (declarative x/x’-notation yields NC/No Change clauses )

– difficult semantics (see Parnas-Madey in SCP 25,1995)

• complex classification of tables

• no semantical foundation for use of auxiliary functions

– restriction to sequential systems of finitely many  state 
variables (functions of time, either monitored or controlled)

– special matrix notation (2-dimensional layout of CASE OF) 

– hard to extend to cope with practical needs like relations (in 
particular non-determinism), composition,  sequencing, stepwise 
refinement, typing (see SCR paper in NASA LFM’2000)

• Parnas tables are special forms of ASMs

© Egon Börger: Modelling Computation Models by ASMs

Normal Parnas Tables
Assign value ti,j to f(x,y) under i-th row & j-th column condition

t1,1 … t1,n

tm,1 … tm,n

r1...
ri
...
rm

ti,j

N(f) c1 … cj … cn ASM notation
forall i≤≤n, j≤≤m
if ri and cj
then f(x,y) := ti,j

Functional notation f(x,y) := case exp of 

ri & cj: ti,j
© Egon Börger: Modelling Computation Models by ASMs

Inverted Parnas Tables

If ri(x,y)  then
If c i,j(x,y) then f(x,y) := t j

Assign a value tj to f(x,y) under a leading/side condition

I(f) t1 … tj … tn

r1...
ri
...
rm

c1,1 … c1,n

cm,1 … cm,n

ci,j
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Parnas Decision Tables

ASM notation : forall j ≤≤ n if for all i ≤≤m ri,j(si)
then trigger t j

Trigger column action tj under column condition

s1

...

sm

r1,1 … r1,j ... r1,n

D(f) t1 … tj … tn

rm,1 … rm,j ... rm,n

.

.

.

.

.

.

.

.

.

How to distinguish with table notation if instead of 
forall j ≤≤ n one means for one j ≤≤ n ?

© Egon Börger: Modelling Computation Models by ASMs

Comparing ASM and Z/B
• Z specs difficult to make executable Anthony Hall in ZUM'97,LNCS 1212

• B machines/refinements (B-Book 1996) are based upon
– pocket calculator model (one operation/event “per time unit”)

– finite sets/functions and states of finitely many variables

• B has axiomatic foundation by wp theory, using syntactic global 
concept of substitution (used to define  local assignment x := t & parallel 
composition), interpreted by set-theoretic models

• B fixed link between design & proofs (relating syntactical pgm
constructs & proof rules) restricting design space (e.g. including M allowed to 
call only one operation of included M’)

• B tailored for termination proofs, using restricted refinement 
notions, of single operations/events (with “unchanged” properties)

• B geared to obtain executable programs from logical descrps

• B has industrial tool kits (B toolkit, Atelier B), ASM has public domain 
tools Workbench, ASMGofer, XASM and the MSR tool AsmL

© Egon Börger: Modelling Computation Models by ASMs

Comparing the Computation Model of B Machines & ASMs

• “Pocket calculator model”
set of operations (which are callable by the user) or of events
(which may happen) 
– one at a time (“no simultaneity bw the exec of two events”)
– hiding the machine state (giving the user “the ability to 

activate the operations” - to “modify the state within the limits 
of the invariant” - “not to access its state directly”, pg.230)

Structured ASMs provide atomic (zero-time) synchronous 
parallel execution of entire (sub)machines whose computations, 
analysed in isolation, may have duration & may access the 
needed state portion (interface). Turbo ASMs combine atomic 
black box & durative white box view Börger/Schmid (LNCS 1862)

• B has to define a “multiple generalized substitution” to define 
the parallel composition of two machines, which is a basic 
concept in ASMs.

© Egon Börger: Modelling Computation Models by ASMs

Comparing the Refinement Notions for B Machines & ASMs

• B-refinement only of single operations with unchanged 
signature, tailored to provide “unchanged” properties

• ASMs provide refinement notions which allow change of 
signature (data refinement) & of operation sequences

with equivalence ≡ definable to relate the locations of interest in
states of interest, which result from comp segments of interest.
Properties can be “preserved” modulo the ref/abs relations

State
τ1 …τm State’

ref absabs ref

RefState RefState’
σ1 …σn

≡
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Comparing Links bw Design and Proofs in B Machines & ASMs

• B links design & proofs by relating syntactical
program constructs & proof principles, at the price of
restricting the design space
– Exl. Let M include M’. Then “at most one operation of the 

included machine can be called from within an operation 
of the including machine. Otherwise we could break the 
invariant of the included machine.” (B-Book pg.317))

– Exl. Let M’ have the following operations, satisfying the invariant v ≤ w :

• increment ≡≡ If v < w then v := v+1

• decrement ≡≡ If v < w then w := w-1

– Let M include M’ and contain the following operation:
• If v<w then increment

decrement

– Then the invariant v ≤≤ w is broken by M for w = v+1.
• ”…formal reasoning involving events…It would be quite complicated to 

envisage that two (or more) events could happen simultaneously”
(Abrial/Mussat 1996) © Egon Börger: Modelling Computation Models by ASMs

Comparing ASM and VDM

• VDM restricted to sequential runs
• Abstraction level of VDM fixed

– for sets by VDM-SL types
• to be built from basic types by constructors

– for functions by explicit and implicit definitions
– for operations by procedures (with side effects)

– for states by records of read/write variables

• Biased to functional modeling
• VDM-SL has ISO standard & tool support developed by IFAD

(Reference: J. Fitzgerald, P. Gorm Larsen: Modelling Systems, Cambridge UP
1998)
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Specification & Computation Models 
for System Design

• Executable high-level design languages
– UNITY
– COLD

• State-based specification languages
– distributed: Petri Nets 
– sequential: SCR (Parnas Tables), Z/B, VDM 

• Virtual Machines 
– Dijkstra’s Abstract Machine Concept
– Active Db
– Data Flow (Neural) Machines
– JVM (platform independent machine for programming lg interpretation)

• Stateless Modeling Systems
– Process Algebras (CSP, LOTOS, etc.)
– Logic Based Systems (denotational, algebraic, axiomatic)
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Dijkstra’s Concept of Abstract Machines
• In 1968, when formulating the T.H.E. operating system, 

Dijkstra coined the term Abstract Machines with abstract 
instructions providing local modifications 

• The notion of Abstract Machines was preceded and followed 
by a large number of concrete definitions of such machines
– Dahl’s Simula67 classes, Landin’s SECD, Warren’s WAM, Java VM
– IBM’s Virtual Machine concept for high-level OS view, hierarchical 

systems, layered architectures, data spaces
– VDM, B machines, etc.

• The definition of ASMs conceptually clarifies the underlying 
general meaning of “abstract instruction” for such machines 

• see sect. 3.1 in E. Börger: High Level System Design and Analysis using 
Abstract State Machines. Springer LNCS 1641 (1999) 1-43

• All those abstract or virtual machines can be naturally defined 
as particular ASMs (see some example below) 
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Active Database Machines
• Rules of form 

If event & condition Then action
• event : the trigger which may result in firing the rule
• condition : the relevant part of “state” (context) in which an 

event occurs, must be additionally satisfied for rule execution
• action : the task to be carried out by the database rule

• Different active databases result from varying
– the underlying notion of state, as constituted by syntax and 

semantics of events, conditions and actions, and of their 
relation to the underlying database states 

– the scheduling of the evaluation of condition and action 
components relative to the occurrence of events (coupling 
modes, priority declarations, etc.)

– the rule ordering (if any), etc. © Egon Börger: Modelling Computation Models by ASMs

Data Flow Machines:  Neural Nets

• A Neural Net is usually seen as a black-box yielding output
to the env, as result of an internal computation which is 
triggered by an input taken from the env. The internal 
computation consists of a finite sequence of atomic actions 
performed by the basic computing elements (nodes of a 
directed data-flow graph)
– In forward propagation mode, the network input is transmitted by the

input units to the internal units which propagate their results through 
the graph until the output units are reached

newInputToBeConsum
ed := false

copyNetInput (input)
schedUnits :=

nextExecUnits
(∅, inputType(input))

input
newInputToBe

Consumed
activate

Neural Kernel
compute

more units 
to be 

computed

NK step

NO

YES

clearState

Börger/Sona JUCS 2001

variety of 
schedulersschedUnits:= nextExecUnits(schedUnits,inputType)

forall u ∈ schedUnits

computeUnit(u)

© Egon Börger: Modelling Computation Models by ASMs

Data Flow Unit Computation in Neural Nets

computeUnit (u) ≡ if inputType = forward then
let result = forwardValue(u) in

propagateForward (u, result)
updateLocalStateForward(u, result)

if inputType = backward then
let result = backwardValue(u) in

propagateBackward(u, result)
updateLocalStateBackward(u, result)

propagateForward (u, dataToPropagate) ≡
forall d ∈ dest (u)

inForward int (d, u) := intValueForw (d, u, dataToPropagate)
if u ∈ outputUnits then

output (u) := extValueForw (u, dataToPropagate)

propagateBackward (u, dataToPropagate) ≡
forall s ∈ source (u)

inBackward int (s, u) := intValueBack (s, u, dataToPropagate)
if u ∈ inputUnits then

outputBack(u) := extValueBack (u, dataToPropagate)
© Egon Börger: Modelling Computation Models by ASMs

Specification & Computation Models 
for System Design

• Executable high-level design languages
– UNITY
– COLD

• State-based specification languages
– distributed: Petri Nets 
– sequential: SCR (Parnas Tables), Z/B, VDM 

• Virtual Machines
– Dijkstra’s Abstract Machine Concept
– Active Db
– Data Flow (Neural) Machines

• Stateless Modeling Systems
– Functional programming paradigm
– Process Algebras (CSP, LOTOS, etc.)
– Logic Based Systems (denotational, algebraic, axiomatic)



© Egon Börger: Modelling Computation Models by ASMs

ASM Model for Functional Programming Features

Theoretical basis: value returning Turbo ASMs
containing possibly seq,iterate

• Let R(x)=body be a rule definition, actual params a
[[ R(a) ]]A = [[ body(a/x) ]]A Börger/Schmid 2000

• [[ l ←R ]]A = [[ body(l/result) ]]A

• Let y1=R1 (a1), …, yn=Rn (an) in  S defined as
Let l1,…,ln = new(LOC) in 

forall 1 ≤ i ≤ n do li ← Ri (ai) seq
let  y1=l1,…,yn=ln in S

Definition allows to use arbitrary functional equations x=R(a)
for value returning subcomputations of R, for parameter a, as standard 
refinement of an ASM 

© Egon Börger: Modelling Computation Models by ASMs

Example: Turbo ASM Model for Quicksort

Quicksort(L) = 

If |L| ≤ 1 then result:=L else
Let

x=Quicksort (tail(L) < head(L) )
y= Quicksort(tail(L) ≥head(L) )

in
result := concatenate(x,head(L),y) 

© Egon Börger: Modelling Computation Models by ASMs

Example: Turbo ASM Model for Mergesort

Mergesort(L) = 
If |L| ≤ 1 then result:=L else

Let   x=Mergesort (LeftHalf(L))
y= Mergesort (RightHalf(L))

in                 result := Merge(x,y) 
Merge(L,L') = 
If L=[] or  L'=[] then result:= (the unique l s.t. ( l∈ {L,L'} and l ≠ []))

elseif head(L) ≤ head(L') then
let x=Merge(tail(L),L') in result:= concatenate(head(L),x)

elseif head(L') ≤ head(L) then 
let x= Merge(L,tail(L')) in result := concatenate(head(L'),x)

© Egon Börger: Modelling Computation Models by ASMs

Modeling Process Algebras by ASMs

• Each CSP is a particular multi-agent ASM with
– agents reacting to events
– communication
– non-deterministic choice

• The Occam and Transputer realization of CSP 
have been modeled by particular ASMs:
– Succinct ASM model for the realization of CSP by OCCAM

Börger/Durdanovic/Rosenzweig PROCOMET’94

– The ASM model for OCCAM has been refined to a proven to be correct
ASM model for the compilation of Occam programs to TRANSPUTER
code Börger/Durdanovic Computer J.1996

• A general model for process-algebraic concepts within 
the ASM framework has been given in terms of 
Abstract State Processes (ASPs) Bolognesi/Börger 2002
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UML Activity Diagram for semantics of Occam Börger/Cavarra/Riccobene LNCS 1816

By ASM model for act dgms only the atomic actions need to be instantiated

writerAvailable(c) ≡ ∃writer∈Agent ∃n ∈Node:
active(writer) = in(n) & action(n) = d!t 
& eval(d,e(writer)) = eval(c,e(self))

readerAvailable(c) ≡ ∃reader∈Agent ∃n ∈Node:
active(reader) = in(n) & action(n) = c?v 

& eval(d,e(self)) = eval(c,e(reader))

b: c?v ≡
eval(b,e(self)) &

writerAvailable(c)

c?v ≡ e(self) := e(self)[v/ eval(term(writer_c),e(writer_c))] d!t ≡ skip

assign(v,t) ≡
e:= e[v/ eval(t,e]

pass e ≡ e(self)
:= e(parent(self))

collect e ≡
e(self):= ∪i<k e(ai)
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ASMs & Logic Based Specification Systems
Every modeling language affects the form of the models (design 

space), their comprehension, the means for their analysis
ASMs separate design from analysis (Maths: defining ≠ proving)
to avoid premature design decisions (“specify for change”, keep design structure open)

ASMs separate validation from verification
• no  a priori commitment neither to proof rules nor to specific proof rules 

distinguishing different levels of rigor for system justification
• a posteriori compatibility with any (formal or computerized) proof system

– PVS verification of ASM based correctness proof (pipelining of DLX ,
Verifix compiler project)

– KIV verification of ASM based correctness proof (compiling PROLOG
programs to WAM code, Java programs in Java Reference Manual, etc.)

– Model checking of safety and liveness properties for ASM models 
(Production Cell, Flash protocol, etc.)

• declarative features can be built into ASMs as assumptions (on state, 
environment, store, applicability of rules). 
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Axiomatic/Denotational Specification Methods

• Denotational: program denotation defined by 
systems of equations (usually inductively, using fixed-
point operators) 

• Scott-Strachey, VDM (D. Bjoerner, C. Jones), Monadic Semantics (E. 
Moggi), Predicate Transformers (E. Dijkstra) & multiple variants (see Action 
Semantics book and survey by P. Mosses in PSI’01)

• Axiomatic: algebraic (Hoare), dynamic logic (Harel),
temporal logic TLA (Lamport), etc.

• Ax/Den approaches mainly tailored for semantics of 
programming languages, not a general system 
development method (See survey by P. Mosses Proc. PSI’01)

– states are specialized, namely based upon abstract syntax 
trees with still to be executed pgm, already computed 
intermediate values, env, store,… (transition“labels”)
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Logical Character of Axiomatic/Denotational Spec Methods

Ax/Den approaches follow the pattern of logic: specs 
typically expressed by systems of axioms and 
inference rules

– spec perceived as a logical expression or 
equation

– implementation understood as implication
– composition defined as conjunction

• Problems:
– frame problem via declarative nature of 

axiomatization
– difficult to control order of rule applications

• e.g. non-determinism hidden in rule application by user
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SOS Specification Methods

• Structural Operational Semantics (Plotkin 1981)
– tailored for semantics of programming languages (See survey 

by P. Mosses Proc. CSL’99)

– transitions specified structurally, with implicit control, by 
axioms and inference rules (typically of Horn clause like 
equational, rewriting, tile logic) reflecting the steps of 
compound phrases in terms of steps of its component 
phrases

• “frame rules” expressing that component rules (‘small-
step’) propagate to enclosing structures (‘one-hole term 
contexts’, generalized in tile logic to multiple hole 
contexts)

• Natural Semantics (G. Kahn): inference rules a la Gentzen’s
sequents calculi for Natural Deduction, involving only 
initial/final (no intermediate) states (“big-step”)

– Exl: Big-Step Def of Standard ML semantics (Milner et al 1997)
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Variants of SOS Specification Methods

– Reduction Semantics: standard term rewriting
• difficult to control order of traditional reduction steps

– e.g. by leftmost outermost reduction sequences or by restricting
reduction steps to occur with predefined evaluation contexts (Felleisen)

– Rewriting Logic (Meseguer TCS’92): conditional concurrent 
rewrite rules modulo an equivalence relation over terms

– Modular SOS (Mosses Proc. MFCS’99) with independent 
transition rules for each language construct

• relevant state info incorporated into labels α of transition rules → α
(‘semantic entities’ treated as ‘components of labels’, formally as 
arrows of a category where the labels of adjacent steps are 
composable)

• implementation in Maude (executable Rewriting Logic), translating
label formulae to equations about the corresponding state, for 
prototyping AN descriptions of programming languages

© Egon Börger: Modelling Computation Models by ASMs

Relating Mosses’ Action Notation and ASMs

• AN tailored to support development of 
programming langs (not a general purpose sw/hw
system design framework, no ground model or 
refinement notion) 
– enriching denotational with practically useful operational 

features
• overcoming pragmatically dissatisfactory aspects  of purely 

denotational approach by directly reflecting (primitive and composed) 
actions corresponding to programming concepts (semantic mapping 
of AST to predefined actions)

– making a compromise between competing language 
development requirements, corresponding to views of 
designer, implementer, programmer

• AN aims at generation of tool env from lang spec
– semantics directed generation of interpreters, compilers,…

• Technical comparison: ASM-based Montages spec of AN 
semantics & implementation of AN in XASM by Anlauff et al ‘01
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Relating Mosses’ Action Notation and ASMs

• Actions categorize general ASM function updates and
declarations by a classification on the basis of
– different computational aspects 

• control (seq, par, non-determinism) (“basic facet”)

• data storage
– transient between actions (“functional facet”)
– stable in cells  (“imperative facet”)

• communication describing interactions between distributed agents 
(“communicative facet”)

• scope information (“declarative facet”)

– types of effect propagation of actions
• transient (intermediate results), stable (cell data for values of vars),

permanent (communication data), scoped (binding tokens to data)

– types of action performance
• Execution may complete, escape, fail, diverge

• These features are not directly available (though definable) in ASMs
(see Börger/Schmid 2000, Anlauff et al 2001)
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Exercise
Describe Schönhage’s Storage Modification Machines
(SIAM J. Computing  9, 1980) as ASMs using only 0-ary

or unary dynamic functions, no static or shared 
function and only input as monitored function. An SMM 
has as memory a dynamic graph whose nodes n are named 
(not necessarily uniquely) by sequences of labels for edges, 
forming a path from a distinguished center node to n. Besides 
usual instructions for control (Goto s, If input = i goto si (for
i=0,1), If n=n’ Then s Else s’ conditioned by an equality test for 
node names) and instructions to write output symbols on an 
output tape, there are two characteristic instructions to create
new nodes and to redirect edges between nodes: new (n,e) 
redirects edge e from (the node named by) n to a new node 
which is linked (by an edge) to the same nodes n is linked to,
set e to n’ redirects e to n’.

Every ASM restricted in this way is lock-step equivalent to an SMM (see the 
article by S. Dexter, P. Doyle, Y. Gurevich in JUCS 3 (4) 1997).
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