Beispiele

Beispiel 9.4 Betrachte

► $f(f(\underline{x},\underline{y}),z) \rightarrow f(x,f(y,z))$ $f(f(x',y'),\underline{z'}) \rightarrow f(x',f(y',z'))$ Unifizierbar mit $x \leftarrow f(x',y'), y \leftarrow z'$

$$f(f(f(x',y'),z'),z)$$

$$t_1 = f(f(x',y'),f(z',z)) \qquad f(f(x',f(y',z')),z) = t_2$$

► $t = f(x, g(x, a)) \rightarrow h(x)$ $h(x') \rightarrow g(x', x'), t|_1 = t|_{21} = x$ Keine kritischen Paare. Betrachte Variablenüberlappung:

$$f(h(z), g(h(z), a)))$$

$$t_1 = h(h(z))$$

$$f(g(z, z), g(h(z), a)) = t_2$$

$$f(g(z, z), g(g(z, z), a))$$

$$h(g(z, z))$$

Eigenschaften

Seien σ, τ Substitutionen, $x \in V$, $\sigma(y) = \tau(y)$ für $y \neq x$ und $\sigma(x) \to_R \tau(x)$. Dann gilt für jeden Term t:

$$\sigma(t) \stackrel{*}{\rightarrow}_R \tau(t)$$

Seien $l_1 \to r_1, l_2 \to r_2$ Regeln, $u \in O(l_1), l|_u = x \in V$. Sei $\sigma(x)|_w = \sigma(l_2)$, d.h. $\sigma(l_2)$ wird durch $\sigma(x)$ eingeführt. Dann gilt $t_1 \downarrow_R t_2$ für

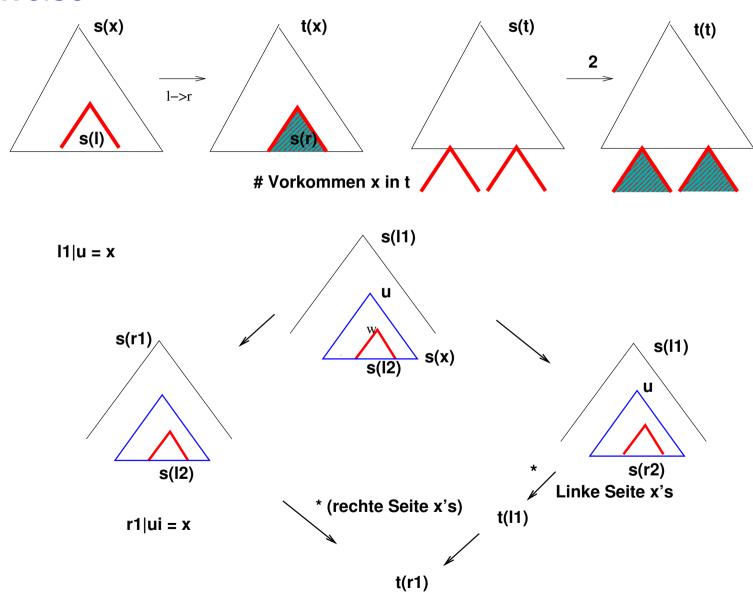
$$t_1 := \sigma(r_1) \leftarrow \sigma(l_1) \rightarrow \sigma(l_1)[\sigma(r_2)]_{uw} =: t_2$$

Lemma 9.2 Critical-Pair Lemma von Knuth/Bendix Sei R ein Regelsystem. Dann gilt:

Aus $t_1 \leftarrow_R t \rightarrow_R t_2$ folgt $t_1 \downarrow_R t_2$ oder $t_1 \leftrightarrow_{CP(R)} t_2$.

Kritische Paare, Unifikation

Beweise



Konfluenztest

Satz 9.1 Hauptergebniss: Sei R ein Regelsystem.

- ▶ R ist genau dann lokal konfluent, wenn alle Paare $(t_1, t_2) \in CP(R)$ zusammenführbar sind.
- ▶ Ist R terminierend, so gilt: R konfluent gdw. $(t_1, t_2) \in CP(R) \rightsquigarrow t_1 \downarrow t_2$.
- ▶ Sei R linear (d.h. für $I, r \in I \rightarrow r \in R$ kommen Variablen höchstens einmal vor). Gilt $CP(R) = \emptyset$, so ist R konfluent.

Beispiel 9.5 Sei $R = \{f(x,x) \rightarrow a, f(x,s(x)) \rightarrow b, a \rightarrow s(a)\}.$ R ist lokal konfluent, aber nicht konfluent:

$$a \leftarrow f(a, a) \rightarrow f(a, s(a)) \rightarrow b$$

aber nicht a \downarrow b. R ist weder terminierend noch links-linear.

Beispiel (Fort.)

$$R = \{f(f(x)) \rightarrow g(x)\}$$

$$t_1 = g(f(x)) \leftarrow f(f(f(x))) \rightarrow f(g(x)) = t_2$$

Es gilt nicht, $t_1 \downarrow_R t_2 \rightsquigarrow R$ nicht konfluent.

Füge Regel $t_1 \rightarrow t_2$ zu R hinzu. R_1 ist äquivalent zu R, terminierend und konfluent.

$$g(f(f(x)))$$

$$f(g(f(x)))$$

$$g(g(x))$$

$$f(f(g(x)))$$

- ► $R = \{x + 0 \rightarrow x, x + s(y) \rightarrow s(x + y)\}$, linear ohne krit. Paare \rightsquigarrow confluent.
- ▶ $R = \{f(x) \rightarrow a, f(x) \rightarrow g(f(x)), g(f(x)) \rightarrow f(h(x)), g(f(x)) \rightarrow b\}$ ist lokal konfluent aber nicht konfluent.

Konfluenz ohne Terminierung

Definition 9.10 $\epsilon - \epsilon$ - *Eigenschaften. Sei* $\stackrel{\epsilon}{\rightarrow} = \stackrel{0}{\rightarrow} \cup \stackrel{1}{\rightarrow}$.

- ▶ R heißt $\epsilon \epsilon$ abgeschlossen , falls für jedes kritische Paar $(t_1, t_2) \in CP(R)$ es ein t gibt mit $t_1 \xrightarrow{\epsilon}_{R} t \xleftarrow{\epsilon}_{R} t_2$.
- ▶ $R \text{ heißt } \epsilon \epsilon \text{ konfluent } gdw. \leftarrow \circ \rightarrow R \subseteq R \rightarrow R \circ \leftarrow R$

Folgerung 9.2 \rightarrow $\epsilon - \epsilon$ konfluent \rightsquigarrow \rightarrow streng konfluent.

- ▶ R $\epsilon \epsilon$ abgeschlossen \Rightarrow R $\epsilon \epsilon$ konfluent $R = \{f(x,x) \rightarrow a, f(x,g(x)) \rightarrow b, c \rightarrow g(c)\}$. $CP(R) = \emptyset$, d.h. R $\epsilon \epsilon$ abgeschlossen aber $a \leftarrow f(c,c) \rightarrow f(c,g(c)) \rightarrow b$, d.h. R nicht konfluent ξ .
- ▶ Ist R linear und $\epsilon \epsilon$ abgeschlossen , dann ist R streng konfluent also konfluent (Zeige R ist $\epsilon \epsilon$ konfluent).

Diese Bedingungen sind leider zu einschränkend für die Programmierung.

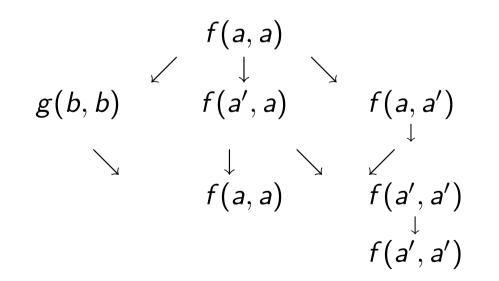
Beispiel

Beispiel 9.6 R links linear $\epsilon - \epsilon$ abgeschlossen reicht nicht aus:

$$R = \{f(a,a) \rightarrow g(b,b), a \rightarrow a', f(a',x) \rightarrow f(x,x), f(x,a') \rightarrow f(x,x), g(b,b) \rightarrow f(a,a), b \rightarrow b', g(b',x) \rightarrow g(x,x), g(x,b') \rightarrow g(x,x)\}$$

Es gilt $f(a', a') \stackrel{*}{\underset{R}{\longleftrightarrow}} g(b', b')$ jedoch nicht $f(a', a') \downarrow_R g(b', b')$.

R links linear $\epsilon - \epsilon$ abgeschlossen :



Parallel Reduktion

Beachte: Seien \rightarrow , \Rightarrow mit $\stackrel{*}{\rightarrow} = \stackrel{*}{\Rightarrow}$. (Oft: $\rightarrow \subseteq \Rightarrow \subseteq \stackrel{*}{\rightarrow}$). Dann ist \rightarrow konfluent gdw. \Rightarrow konfluent.

Definition 9.11 Sei R Regelsystem.

- ▶ Die Parallelreduktion, \mapsto_R , ist definiert durch $t \mapsto_R t'$ gdw. $\exists U \subset O(t) : \forall u_i, u_j (u_i \neq u_j \rightsquigarrow u_i | u_j) \ \exists I_i \to r_i \in R, \sigma_i \text{ mit } t|_{u_i} = \sigma_i(I_i) :: t' = t[\sigma_i(r_i)]_{u_i} (u_i \in U) \ (t[u_1 \leftarrow \sigma_1(r_1)]...t[u_n \leftarrow \sigma_1(r_n)]).$
- ► Ein kritisches Paar von $R: (\sigma(r_1), \sigma(l_1[r_2]_u)$ ist parallel 0-zusammenführbar falls $\sigma(l_1[r_2]_u) \mapsto_R \sigma(r_1)$.
- R ist parallel 0-abgeschlossen falls jedes kritische Paar von R parallel 0-zusammenführbar ist.

Eigenschaften: \mapsto_R ist stabil und monoton. Es gilt $\mapsto_R^* = \xrightarrow{*}_R$ und somit ist \mapsto_R konfluent, so auch \to_R .

Parallel Reduktion

Satz 9.2 Ist R links-linear und parallel 0-abgeschlossen, so ist \mapsto_R streng konfluent, also konfluent, und somit ist auch R konfluent.

- **Folgerung 9.3** Erfüllt R die O'Donnel Bedingungen, so ist R konfluent. O'Donnel Bedingungen: R links-linear, $CP(R) = \emptyset$, R links-sequentiell (Redexe sind beim Lesen der Terme von links nach rechts eindeutig: $f(g(x,a),y) \rightarrow 0$, $g(b,c) \rightarrow 1$ hat diese Eigenschaft nicht. Durch Umgruppieren der Argumente kann oft die Eigenschaft erreicht werden, etwa $f(g(a,x),y) \rightarrow 0$, $g(b,c) \rightarrow 1$
 - ▶ Orthogonale Systeme:: R links-linear und $CP(R) = \emptyset$, so R konfluent. (In Lit. auch als reguläre Systeme bezeichnet).
 - ▶ Variationen: R ist stark-abgeschlossen, falls für jedes kritische Paar (s,t) is Terme u,v gibt mit $s \stackrel{*}{\to} u \stackrel{\leq 1}{\longleftarrow} t$ und $s \stackrel{\leq 1}{\to} v \stackrel{*}{\longleftarrow} t$. R linear und stark-abgeschlossen, so R streng-konfluent.

Fogerungen

- Folgt aus $CP(R) = \emptyset$ die Konfluenz? Nein. $R = \{f(x,x) \to a, g(x) \to f(x,g(x)), b \to g(b)\}$. Betrachte $g(b) \to f(b,g(b)) \to f(g(b),g(b)) \to a$ "Outermost" Reduktion. $g(b) \to g(g(b)) \stackrel{*}{\to} g(a) \to f(a,g(a))$ nicht zusammenführbar.
- Reguläre Systeme können nicht terminierend sein: $\{f(x,b) \rightarrow d, a \rightarrow b, c \rightarrow c\}$. Offenbar $CP = \emptyset$. $f(c,a) \rightarrow f(c,b) \rightarrow d$ \downarrow^* $f(c,a) \rightarrow f(c,b)$. Beachte f(c,a) hat eine Normalform. \rightsquigarrow Reduktionsstrategien die Normalformberechnend sind oder kürzeste Berechnungen liefern.
- ▶ Ein Kontext ist ein Term mit "Lücken" \square , z.B. $f(g(\square, s(0)), \square, h(\square))$ als "Baummuster" (pattern) zu Regel $f(g(x, s(0)), y, h(z)) \rightarrow x$. Lücken dürfen beliebig gefüllt werden.

Terminierungs-Kriterien

Satz 9.3 R ist genau dann terminierend, wenn es eine noethersche Partialordnung \succ auf den Grundtermen Term(F) gibt die monoton ist, so dass gilt $\sigma(I) \succ \sigma(r)$ für jede Regel $I \rightarrow r \in R$ und Grundsubstitution σ .

Beweis: \curvearrowright Definiere $s \succ t$ gdw. $s \stackrel{+}{\rightarrow} t$ $(s, t \in Term(F))$ \curvearrowright Ang. \rightarrow_R nicht terminierend, $t_0 \rightarrow t_1 \rightarrow ...(V(t_i) \subseteq V(t_0))$. Sei σ eine Grundsubstitution mit $V(t_0) \subset D(\sigma)$, dann $\sigma(t_0) \succ \sigma(t_1) \succ ... \not\downarrow$. **Problem:** Unendlicher Test.

Definition 9.12 Eine Reduktionsordnung ist Partialordnung \succ auf Term(F, V) mit $(i) \succ ist$ Noethersch $(ii) \succ ist$ stabil und $(iii) \succ ist$ monoton.

Satz 9.4 R ist genau dann Noethersch, wenn es eine Reduktionsordnung \succ gibt mit $I \succ r$ für alle $I \rightarrow r \in R$

Terminierungs-Kriterien

Beachte: Es gibt keine totalen Reduktionsordnungen.

$$x \succ y? \rightsquigarrow \sigma(x) \succ \sigma(y)$$

f(x,y) > f(y,x)? Kommutativität kann nicht gerichtet werden.

Beispiele für Reduktionsordnungen:

Knuth-Bendix Ordnungen: Gewicht für jedes Funktionssymbol und Präzedenz auf F.

Rekursive Pfad Ordnungen (RPO): Präzedenz auf F wird rekursiv auf Pfade (Wörter) in den zu vergleichenden Termen fortgesetzt.

Lexikographische Pfad Ordnungen (LPO), Polynominterpretationen, usw.

$$f(f(g(x))) = f(h(x)) \quad f(f(x)) = g(h(g(x))) \quad f(h(x)) = h(g(x))$$
 $\downarrow KB \quad \rightarrow \quad l(f) = 3 \quad l(g) = 2 \quad \rightarrow \quad l(h) = 1 \quad \rightarrow \quad \leftarrow$
 $\downarrow KPO \quad \leftarrow \quad g > h \quad > f \quad \leftarrow \quad \leftarrow$

Konfluenz Modulo Aquivalenzrelation (z.B. AC):

 $R:: f(x,x) \to g(x)$ $G:: \{(a,b)\}$ $g(a) \leftarrow f(a,a) \sim f(a,b)$ jedoch nicht $g(a) \downarrow_{\sim} f(a,b)$.

Knuth-Bendix Vervollständigungsverfahren

Eingabe: E Gleichungsmenge, \succ Reduktionsordnung, $R = \emptyset$.

Repeat while *E* nicht leer

- (1) Entferne t = s aus E mit $t \succ s$, $R := R \cup \{t \rightarrow s\}$ sonst abort
- (2) Bringe rechte Seite der Regeln in Normalform mit R
- (3) Erweitere E um alle mit R normalisierten kritischen Paare die $t \rightarrow s$ mit R bildet
- (4) Entferne alle Regeln aus R, deren linke Seite eine echte Instanz von t enthalten.
- (5) Verwende R um beide Seiten von Gleichungen aus E zu Normalisieren. Entferne Identitäten.

Ausgang: Terminierung mit R konvergent, äquivalent zu E. Abbruch (abort), Nicht Terminierung (läuft unendlich lange).

Beispiele für Knuth-Bendix-V

Beispiel 9.7 \blacktriangleright *WES*:: $\Sigma = \{a, b, c\}, E = \{a^2 = \lambda, b^2 = \lambda, ab = c\}$ $u < v \text{ gdw. } |u| < |v| \text{ oder } |u| = |v| \text{ und } u <_{lex} v \text{ mit } a <_{lex} b <_{lex} c$ $E_0 = \{a^2 = \lambda, b^2 = \lambda, ab = c\}, R_0 = \emptyset$ $E_1 = \{b^2 = \lambda, ab = c\}, R_1 = \{a^2 \to \lambda\}, CP_1 = \emptyset$ $E_2 = \{ab = c\}, R_2 = \{a^2 \to \lambda, b^2 \to \lambda\}, CP_2 = \emptyset$ $R_3 = \{a^2 \rightarrow \lambda, b^2 \rightarrow \lambda, ab \rightarrow c\}, NCP_3 = \{(b, ac), (a, cb)\}$ $E_3 = \{b = ac, a = cb\}$ $R_4 = \{a^2 \rightarrow \lambda, b^2 \rightarrow \lambda, ab \rightarrow c, ac \rightarrow b\}, NCP_4 = \emptyset, E_4 = \{a = cb\}$ $R_5 = \{a^2 \rightarrow \lambda, b^2 \rightarrow \lambda, ab \rightarrow c, ac \rightarrow b, cb \rightarrow a\}, NCP_5 = \emptyset, E_5 = \emptyset$