
© Egon Börger: Backtracking ASM 1

Backtracking Machine (for Tree Computations)

• If mode = ramify then
Let k = |alternatives (Params)|
Let o1 ,..., ok =new (NODE)

candidates (currnode) := { o1 ,..., ok }
forall 1 ≤ i ≤ k do

parent (oi) := currnode
env (oi) := i-th (alternatives (Params))

mode := select

• If mode = select then
If candidates (currnode) = ∅

then backtrack
else try-next-candidate

mode := execute

curr
node

o1 ok

candidates

parent

curr
node

o1 ok

© Egon Börger: Backtracking ASM 2

Backtracking Machine

• backtrack ≡ if parent (currnode) = root
then mode := Stop
else currnode := parent (currnode)

• try-next-candidate ≡ depth-first tree traversal
currnode:= next (candidates(currnode))
delete next (candidates(currnode)) from candidates (currnode)

• The fctn next is a choice fct, possibly dynamic, which
determines the order for trying out the alternatives.

• The fct alternatives, possibly dynamic and coming with
parameters, determines the solution space.

• The execution machine may update mode again to ramify (in
case of successful exec) or to select (for failed exec)

© Egon Börger: Backtracking ASM 3

Backtracking Machine: logic progg instantiation
• Prolog Börger/Rosenzweig Science of Computer Programming 24 (1995)

– alternatives = procdef (act,pgm), yielding a
sequence of clauses in pgm, to be tried out in this
order to execute the current statement (“goal”) act

• procdef (act,constr,pgm) in CLAM with constraints for
indexing mechanism Börger/Salamone OUP 1995

– next = first-of-sequence (depth-first left-to-right tree
traversal)

– execute mode resolves act against the head of the
next candidate, if possible, replacing act by that
clauses’ body & proceeding in mode ramify,
otherwise it deletes that candidate & switches to
mode select

© Egon Börger: Backtracking ASM 4

Backtracking Machine: functional progg instantiation
• Babel Börger et al. IFIP 13 World Computer Congress 1994, Vol.I

– alternatives = fundef (currexp,pgm), yielding the
list of defining rules provided in pgm for the outer
fct of currexp

– next = first-of-sequence
– execute applies the defining rules in the given

order to reduce currexp to normal form (using
narrowing, a combination of unification and
reduction)

© Egon Börger: Backtracking ASM 5

Backtracking Machine: context free grammar instantiation
• Generating leftmost derivations of cf grammars G

– alternatives (currnode,G), yields sequence of symbols
Y1...Yk of the conclusion of a G-rule with premisse X
labeling currnode. Includes a choice bw different rules X→w

– env yields the label of a node: variable X or terminal letter a
– next = first-of-sequence (depth-first left-to-right tree traversal)
– execute mode

• for nodes labeled by a variable triggers tree expansion
• for terminal nodes extracts the yield, concatenating terminal word to

output, continues derivation at parent node in mode select

Initially NODE = {root}
root=currnode

env(root)=G-axiom
mode=ramify

alternatives can be a
dynamic fct (possibly

monitored by the user) or
static (with first argument

in VAR)

If mode = execute then
If env (currnode)∈VAR

then mode:=ramify
else output:=output * env(currnode)

currnode:= parent(currnode)
mode := select

© Egon Börger: Backtracking ASM 6

Backtracking Machine: instantiation for attribute grammars
• Synthesis of node attribute from children’s attributes via

backtrack ≡ if parent (currnode) = root then mode := Stop

else currnode := parent (currnode)
X.a := f(Y1.a1, ..., Yk.ak)

• where X = env(parent(currnode)), Yi =env(oi) for children nodes

• Inheriting attribute from parent and siblings
– included in update of env (e.g. upon node creation)

generalized to update also node attributes

• Attribute conditions for grammar rules
– included in execute-rules as additional guard to yielding

output

If mode = execute then ...
else If Cond(currnode.a, parent(currnode).b, siblings(currnode).c)

then output:=output * env(currnode)
currnode:= parent(currnode) , mode := select

Johnson/
Moss

Linguistics
&Philosophy
17 (1994)
537-560

© Egon Börger: Backtracking ASM 7

X

m
k-thChild

X

p
j-thChild

X

Tree Adjoining Grammars
Generalizing Parikh’s analysis of context free languages by

pumping of cf trees from basis trees (with terminal yield) and
recursion trees (with terminal yield except for the root variable)

If n=k-thChild(m) &
symb(n)=symb(root(T))

& T ∈ RecTree &
foot(T) = j-thChild(p)

Then

Let T’=new copy(T) in
k-thChild(m):=root(T’)

j-thChild(p’):=n

m
k-thChild

X

p
j-thChild

X

© Egon Börger: Backtracking ASM 8

References
• E.Börger and D. Rosenzweig: Mathematical Definition

of Full Prolog
– In: Science of Computer Programming 24 (1995) 249-286

• E.Börger and R.F.Salamone: CLAM Specification for
Provably Correct Compilation of CLP (R) Programs
– In: E.Börger (Ed.) Specification and Validation Methods.

Oxford University Press, 1995, 97-130
• E.Börger, F.J.Lopez-Fraguas, M.Rodrigues-Artalejo: A

Model for Mathematical Analysis of Functional
Programs and their Implementations
– In: B.Pehrson and I.Simon (Eds.): IFIP 13 World Computer

Congress 1994, Vol.I: Technology/Foundations, 410-415
• D. Johnson and L. Moss: Grammar Formalisms

Viewed als Evolving Algebras
– Linguistics and Philosophy 17 (1994) 537-560

