
Illustrating Stepwise Refinement
Shortest Path ASMs

Egon Börger

Dipartimento di Informatica, Universita di Pisa
http://www.di.unipi.it/~boerger

© Egon Börger:Shortest Path (ASM Refinements) 2

E. Börger, R. Stärk

Abstract State Machines

A Method for High-Level System Design and Analysis

Springer-Verlag 2003

For update info see AsmBook web page:

http://www.di.unipi.it/AsmBook

For details see Chapter 3.2 (Incremental Design by
Refinements) of:

© Egon Börger:Shortest Path (ASM Refinements) 3

Shortest Path ASMs: Illustrating Stepwise
Refinement

• Computing Graph Reachability Sets: M0

• Wave Propagation of Frontier: M1

• Neighborhoodwise Frontier Propagation : M2

• Edgewise Frontier Extension per Neighborhood: M3

• Queue and Stack Implementation of Frontier and
Neighborhoods: M4

• Introducing abstract weights for measuring paths and
computing shortest paths: M5 (Moore’s algorithm)

• Instantiating data structures for measures and weights

© Egon Börger:Shortest Path (ASM Refinements) 4

Computing Graph Reachability Set
• The problem:

– given a directed graph (NODE, E, source) (here mostly
assumed to be finite) with a distinguished source node

– label every node which is reachable from source via E
– arrange the labeling so that it terminates for finite graphs

• Solution idea:
– starting at source, move along edges to neighbor nodes and

label every reached node as visited
– proceed stepwise, pushing in each step the “frontier” of the

lastly reached nodes one edge further, without revisiting
nodes which have already been labeled as visited

© Egon Börger:Shortest Path (ASM Refinements) 5

Computing Reachability Set: Machine M0

Initially only source is labeled as visited (V(source)=1)
Wave Propagation Rule:

for all (u,v) ∈ E s.t. u is labeled as visited & v is not labeled as visited

label v as visited

Correctness Lemma:
Each node which is reachable
from source is exactly once

labeled as visited

Proof. Existence claim : induction on the
length of paths from source

Uniqueness property follows from the rule
guard enforcing that only nodes not yet

labeled as visited are considered for being
labeled as visited

Termination Lemma:
For finite graphs,

the machine terminates

The meaning of termination:
there is no more edge (u,v) ∈E whose tail u
is labeled as visited but whose head v is not

Proof. By each rule application,
the set of nodes which are not
labeled as visited decreases.

© Egon Börger:Shortest Path (ASM Refinements) 6

Identifying the FRONTIER of wave propagation

• frontier = set of nodes lastly labeled as visited (*)
– Initially: frontier = {source} only source is labeled as visited

M1 ≡ scan
forall u ∈frontier

shift frontier to neighb(u)
delete u from frontier

Lemma: M0 / M1 steps are in 1-1 correspondence & perform the same labelings

Proof: by run induction from (*) above

label v as visited ≡
visited(v):= true

neigb(u) = {v| (u,v) ∈E}
shift frontier to neighb ≡

forall v ∈ neighb
shift frontier to v

shift frontier to v ≡ if v is not labeled as visited
then insert v into frontier

label v as visited
NB.Nodes in frontier are

labeled as visited

© Egon Börger:Shortest Path (ASM Refinements) 7

M1-run computing the reachability set

1

2

3

4

5

6

7
s

t

Fire1 step
frontiervisited

2

1
3

2

3

4

5

6
4

5

6

77

Fire1 stepFire1 stepFire1 step

Animation courtesy
of M. Veanes

Frontier propagation: moving frontier simultaneously for each node in frontier to all its
neighbors (restricted to those which have not yet been labeled as visited)

u

n1,1 n1,kn1,i neighb(u)

n2,1 n2,l

In t steps all nodes reachable by a path
of length at most t are labeled as visited

© Egon Börger:Shortest Path (ASM Refinements) 8

Refinement: Shifting frontier to neighborhood of ONE node per step

• determining one next node for frontier propagation by
abstract scheduling function select (to be refined later)

M2 ≡
let u=select(frontier) in
delete u from frontier

shift frontier to neighb(u)
scan

frontier
not empty

Lemma 2. If M2 in step t labels a node as visited, then M1 does the

same in some step t’ ≤ t . Proof: Ind(t)

Lemma 1. ∀t ∀ u ∈ frontiert(M2) ∃t’ ≤ t s.t. u ∈ frontiert’(M1)
Proof:
Ind(t)

Corollary 3 : M2-labeling is complete if every node
in frontier is eventually selected

Corollary: M1 terminates iff M2 terminates

Corollary 2: Uniqueness of M1-labeling preserved by M2

assuming
finite fan-out

© Egon Börger:Shortest Path (ASM Refinements) 9

Canonically relating M1- and M2- runs (for finite fan-out)

• Each run of M1 can be simulated by a “breadth-first” run of M2
producing the same labelings of nodes as visited, where each
step of M1 applied to frontier (M1) in state S is simulated by
selecting successively all the elements of frontier (M1) in state
S.

M2 ≡
let u=select(frontier) in
delete u from frontier

shift frontier to neighb(u)
scan

frontier
not empty

M1 ≡ scan
forall u ∈frontier

delete u from frontier
shift frontier to neighb(u)

© Egon Börger:Shortest Path (ASM Refinements) 10

Refinement: Edgewise frontier extension per neighborhood

• Refine M2-rule “shift frontier to neighb(u)” to a submachine shift-
frontier-to-neighb which selects one by one every node v of
neighb(u) to edgewise “shift frontier to v” (using another
scheduling fct select)

shift-frontier-
to-neighb (n)≡

label

neighb
not empty

let v=select(neighb)
in

delete v from neighb
shift frontier to v

initialize neighb by n

• NB. With an appropriate mechanism for the initialization of
submachines upon calling, executing M2-rule “shift frontier to
neighb(u)” can be replaced by a call to shift-frontier-to-
neighb(u).

© Egon Börger:Shortest Path (ASM Refinements) 11

Machine with edgewise frontier extension per neighborhood

• Each “shift frontier to neighb(u)” step of M2 is refined by a run
of M3-submachine “shift-frontier-to-neighb” with actual
parameter neighb(u): started with initializing neighb to
neighb(u), iterating “shift frontier to v” for every v in neighb, and
exited by returning to scan, thus producing the same labeling of
nodes as visited.

• Corollary: Correctness and Termination Lemma carry over from
M2 to M3 (assuming finite fan-out and fair scheduling functions)

M3 ≡

neighb
not empty

label

let v=select(neighb)
in

delete v from neighb
shift frontier to v

let u=select(frontier) in
delete u from frontier

initialize neighb by neighb(u)

frontier
not empty

scan

© Egon Börger:Shortest Path (ASM Refinements) 12

Refinement of frontier to (fair) queue and of neighb to stack

M4 ≡

neighb
not empty

label

let v=select(neighb)
in

delete v from neighb
shift frontier to v

let u=select(frontier) in
delete u from frontier

initialize neighb by neighb(u)

frontier
not empty

scan

neighborhood as stack select = top delete ≡ pop
for the initialization, neighb(u) is assumed to be given as stack for every u

frontier as queue: select = first (at left end) delete … ≡ frontier := rest(frontier)
insert = append (at right end) NB. No node occurs more than once in frontier

• Exercise. Prove that M4 preserves correctness and termination of M3

• Exercise. Write and test an efficient C++ program for machine M4.

© Egon Börger:Shortest Path (ASM Refinements) 13

Computing the weight of paths from source
to determine “shortest” paths to reachable nodes

• Measuring paths by accumulated weight of edges
– (M,<) well-founded partial order of path measures with

• smallest element 0 and largest element ∞
• greatest lower bound glb(m,m’) for every m,m’∈M

– edge weight: E → WEIGHT
– +: M × WEIGHT → M “adding edge weight to path measure”

• monotonicity: m < m’ implies m + w < m + w
• distributivity wrt glb: glb(m,m’) + w = glb(m + w,m’ + w)

– path weight:PATH → M defined inductively by
• weight(ε) = 0
• weight(pe)= weight(p)+weight(e)

© Egon Börger:Shortest Path (ASM Refinements) 14

Computing minimal weight of paths
• min-weight: NODE → M defined by

– min-weight(u) = glb{weight(p)| p is a path from source to u}
• NB. The function is well-defined since by the well-

foundedness of <, countable sets of measures (which
may occur due to paths with cycles) have a glb

• Successive approximation of min-weight from above
for nodes reachable from source by a function
up-bd: NODE → M
– initially up-bd(u) = ∞ for all u except up-bd(source) = 0
– for every v reachable by an edge e from u s.t. up-bd(v) can

be decreased via up-bd(u)+weight(e),
lower up-bd(v) to glb{up-bd(v), up-bd(u)+weight(e)}

• NB. If not up-bd(v) ≤ up-bd(u)+weight(e), then
glb{up-bd(v), up-bd(u)+weight(e)} < up-bd(v)

© Egon Börger:Shortest Path (ASM Refinements) 15

Refining M4 to compute up-bd ≥min-weight:
same machine refining “frontier shift” to “lowering up-bd”

• Initially: frontier = {source} ctl-state = scan
• up-bd(u)= ∞ for all u except up-bd(source) = 0

shift frontier to v ≡
if v is not labeled as

visited then
label v as visited

insert v into frontier

shift frontier to v ≡
if not up-bd(v) ≤ up-bd(u)+weight(u,v) then

up-bd(v):= glb{up-bd(v), up-
bd(u)+weight(u,v)}

if v∉frontier then insert v into frontier

lower up-bd(v) via u

NB.frontier not a multi-set

neighb
not empty

label

let v=select(neighb) in
delete v from neighb

shift frontier to v

let u=select(frontier) in
delete u from frontier

initialize neighb by (u,neighb(u))

frontier
not empty

scan

M4/5 ≡
Moore
1959

© Egon Börger:Shortest Path (ASM Refinements) 16

Refining termination and completeness proofs for M5

• Moore’s algorithm M5 terminates (for finite graphs)
– each scan step diminishes the size of frontier
– each label step shrinks neighb; each head node v upon

entering frontier gets up-bd(v) updated to a smaller value.
Since < is well-founded, this can happen only finitely often.

neighb
not empty

label

let v=select(neighb)
in

delete v from neighb
lower up-bd(v) via u

let u=select(frontier) in
delete u from frontier

initialize neighb by (u,neighb(u))

frontier
not empty

scan

© Egon Börger:Shortest Path (ASM Refinements) 17

Correctness Proof for the computation of min-weight

• Theorem. When Moore’s algorithm M5 terminates,
min-weight(u)= up-bd(u) for every u.
– Proof. min-weight(u) ≤up-bd(u) (lemma 1). Since up-bd(u) is

a lower bound for weight(p) for every path p from source to u
(lemma 2) and since min-weight by definition is the glb of
such path weights, also ≥ holds.

• Lemma 1. At each step t and for each v: min-weight(v)
≤up-bd(v)t.

• Lemma 2. When M5 terminates, up-bd(v) ≤ weight(p)
for every path p from source to v.

© Egon Börger:Shortest Path (ASM Refinements) 18

Proof for the approximation of min-weight by up-bd
• Lemma 1. At each step t, for each v: min-weight(v) ≤up-bd(v)t.

– Proof 1. Ind(t). For t=0 the claim holds by definition.

• At t+1 (only) rule “lower up-bd(v) via u” sets up-bd(v)t+1, namely
to glb{up-bd(v)t, up-bd(u)t +weight(u,v)}. Remains to show
– min-weight(v) ≤up-bd(v)t (which is true by ind.hyp. for v)

– min-weight(v) ≤ up-bd(u)t +weight(u,v)
• The latter relation follows from

(*) min-weight(v) ≤ min-weight(u)+weight(u,v)
by min-weight(u) ≤up-bd(u)t (ind.hyp.) via monotonicity of +

• ad (*): glb({weight(p)| p path from source to v}) ≤
glb({weight(p.(u,v)) | p path from source to u}) = def weight
glb({weight(p)+weight(u,v) | p path from source to u}) = glb distrib

glb({weight(p) | p path from source to u}) +weight(u,v)
= min-weight min-weight(u) +weight(u,v)

lower up-bd(v) via u ≡ if not up-bd(v) ≤ up-bd(u)+weight(u,v) then
up-bd(v):= glb{up-bd(v), up-bd(u)+weight(u,v)}

if v∉frontier then insert v into frontier

© Egon Börger:Shortest Path (ASM Refinements) 19

Proof for lower bound up-bd(v) of weight of paths to v

• Lemma 2. When M5 terminates, up-bd(v) ≤ weight(p)
for every path p from source to v.
– Proof 2. Ind(path length). For t=0 the claim holds by

definition.
• Let p.(u,v) be a path of length t+1.
• up-bd(v) ≤ up-bd(u) +weight(u,v)

• by termination of M5 (otherwise lower up-bd(v) via u could fire)

• up-bd(u) ≤ weight(p) (ind.hyp.), thus by monotonicity of +

up-bd(u) +weight(u,v) ≤ weight(p) +weight(u,v)
=def weight weight(p.(u,v))

lower up-bd(v) via u ≡ if not up-bd(v) ≤ up-bd(u)+weight(u,v) then
up-bd(v):= glb{up-bd(v), up-bd(u)+weight(u,v)}

if v∉frontier then insert v into frontier

© Egon Börger:Shortest Path (ASM Refinements) 20

Instantiating data structures for weight and
measure

• (M,<) = (Nat ∪{∞},<) well-founded order of
shortest path measures with

• smallest element 0 and largest element ∞
• greatest lower bound glb(m,m’) = min(m,m’)

• WEIGHT = (Nat, +) with n+ ∞= ∞
• monotonicity: m<m’ implies m+w<m’+w
• glb distributive wrt +: glb(m +w,m’ +w) = glb(m,m’)+w

• For an instantiation to the constrained shortest path
problem see K. Stroetmann’s paper in JUCS 1997.

• For Dijkstra’s refinement M5 see Ch.3.2.1 of the
AsmBook

© Egon Börger:Shortest Path (ASM Refinements) 21

References
• E. F. Moore: The Shortest Path Through a Maze.

– Proc. International Symposium on the Theory of Switching,
Part II, Vol. 30 of “The Annals of the Computation
Laboratory of Harvard University”, Cambridge, MA, 1959,
Harvard University Press.

• K. Stroetmann: The Constrained Shortest Path
Problem: A Case Study in Using ASMs
– In: J. of Universal Computer Science 3 (4), 1997.

• E. Börger, R. Stärk: Abstract State Machines. A
Method for High-Level System Design and Analysis
Springer-Verlag 2003, see Chapter 3.2.1
http://www.di.unipi.it/AsmBook

