

States

Definition. A state \mathfrak{A} for the signature Σ is a non-empty set X, the superuniverse of \mathfrak{A} , together with an *interpretation* $f^{\mathfrak{A}}$ of each function name f of Σ .

- If f is an n-ary function name of Σ , then $f^{\mathfrak{A}} \colon X^n \to X$.
- If c is a constant of Σ , then $c^{\mathfrak{A}} \in X$.
- The superuniverse X of the state ${\mathfrak A}$ is denoted by $|{\mathfrak A}|.$
- The superuniverse is also called the *base set* of the state.
- The *elements* of a state are the elements of the superuniverse.

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland

Locations

Definition. A location of A is a pair

(f, (a₁,..., a_n))
where f is an n-ary function name and a₁,..., a_n are elements of A.
The value f^A(a₁,..., a_n) is the content of the location in A.
The elements of the location are the elements of the set {a₁,..., a_n}.
We write A(l) for the content of the location l in A.

Notation. If $l = (f, (a_1, \ldots, a_n))$ is a location for \mathfrak{A} and α is a function defined on $|\mathfrak{A}|$, then $\alpha(l) = (f, (\alpha(a_1), \ldots, \alpha(a_n)))$.

States (continued)

- The interpretations of *undef*, *true*, *false* are pairwise different.
- The constant *undef* represents an undetermined object.
- The *domain* of an *n*-ary function name f in \mathfrak{A} is the set of all *n*-tuples $(a_1, \ldots, a_n) \in |\mathfrak{A}|^n$ such that $f^{\mathfrak{A}}(a_1, \ldots, a_n) \neq undef^{\mathfrak{A}}$.
- A *relation* is a function that has the values *true*, *false* or *undef*.
- We write $a \in R$ as an abbreviation for R(a) = true.
- The superuniverse can be divided into *subuniverses* represented by unary relations.

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland.

Updates and update sets

Definition. An *update* for \mathfrak{A} is a pair (l, v), where l is a location of \mathfrak{A} and v is an element of \mathfrak{A} .

- The update is *trivial*, if $v = \mathfrak{A}(l)$.
- An *update set* is a set of updates.

Definition. An update set U is *consistent*, if it has no clashing updates, i.e., if for any location l and all elements v, w, if $(l, v) \in U$ and $(l, w) \in U$, then v = w.

Firing of updates

Definition. The result of *firing* a consistent update set U in a state \mathfrak{A} is a new state $\mathfrak{A} + U$ with the same superuniverse as \mathfrak{A} such that for every location l of \mathfrak{A} :

 $(\mathfrak{A}+U)(l) = \begin{cases} v, & \text{if } (l,v) \in U; \\ \mathfrak{A}(l), & \text{if there is no } v \text{ with } (l,v) \in U. \end{cases}$

The state $\mathfrak{A} + U$ is called the *sequel* of \mathfrak{A} with respect to U.

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland.

Composition of update sets

 $U \oplus V = V \cup \{(l, v) \in U \mid \text{there is no } w \text{ with } (l, w) \in V\}$

Lemma. Let U, V, W be update sets.

 $\bullet (U \oplus V) \oplus W = U \oplus (V \oplus W)$

• If U and V are consistent, then $U \oplus V$ is consistent.

• If U and V are consistent, then $\mathfrak{A} + (U \oplus V) = (\mathfrak{A} + U) + V$.

Homomorphisms and isomorphisms

Let ${\mathfrak A}$ and ${\mathfrak B}$ be two states over the same signature.

Definition. A homomorphism from \mathfrak{A} to \mathfrak{B} is a function α from $|\mathfrak{A}|$ into $|\mathfrak{B}|$ such that $\alpha(\mathfrak{A}(l)) = \mathfrak{B}(\alpha(l))$ for each location l of \mathfrak{A} .

Definition. An *isomorphism* from \mathfrak{A} to \mathfrak{B} is a homomorphism from \mathfrak{A} to \mathfrak{B} which is a ono-to-one function from $|\mathfrak{A}|$ onto $|\mathfrak{B}|$.

Lemma (Isomorphism). Let α be an isomorphism from \mathfrak{A} to \mathfrak{B} . If U is a consistent update set for \mathfrak{A} , then $\alpha(U)$ is a consistent update set for \mathfrak{B} and α is an isomorphism from $\mathfrak{A}+U$ to $\mathfrak{B}+\alpha(U)$.

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland.

Part 2

Mathematical Logic

Terms

Let \varSigma be a signature.

Definition. The *terms* of Σ are syntactic expressions generated as follows:

- Variables x, y, z, ... are terms.
- Constants c of \varSigma are terms.
- If f is an n-ary function name of Σ , n > 0, and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.
- A term which does not contain variables is called a ground term.
- A term is called *static*, if it contains static function names only.
- By t^s/_x we denote the result of replacing the variable x in term t everywhere by the term s (substitution of s for x in t).

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland

Evaluation of terms

Definition. Let
$$\mathfrak{A}$$
 be a state of Σ .
Let ζ be a variable assignment for \mathfrak{A} .
Let t be a term of Σ such that all variables of t are defined in
The value $\llbracket t \rrbracket^{\mathfrak{A}}_{\zeta}$ is defined as follows:
• $\llbracket x \rrbracket^{\mathfrak{A}}_{\zeta} = \zeta(x)$
• $\llbracket c \rrbracket^{\mathfrak{A}}_{\zeta} = c^{\mathfrak{A}}$
• $\llbracket f(t_1, \ldots, t_n) \rrbracket^{\mathfrak{A}}_{\zeta} = f^{\mathfrak{A}}(\llbracket t_1 \rrbracket^{\mathfrak{A}}_{\zeta}, \ldots, \llbracket t_n \rrbracket^{\mathfrak{A}}_{\zeta})$

Variable assignments

Let \mathfrak{A} be a state.

Definition. A variable assignment for \mathfrak{A} is a finite function ζ which assigns elements of $|\mathfrak{A}|$ to a finite number of variables.

• We write $\zeta[x \mapsto a]$ for the variable assignment which coincides with ζ except that it assigns the element a to the variable x:

$$\zeta[x \mapsto a](y) = \begin{cases} a, & \text{if } y = x; \\ \zeta(y), & \text{otherwise.} \end{cases}$$

• Variable assignments are also called *environments*.

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland.

Evaluation of terms (continued)

Lemma (Coincidence). If ζ and η are two variable assignments for t such that $\zeta(x) = \eta(x)$ for all variables x of t, then $\llbracket t \rrbracket^{\mathfrak{A}}_{\zeta} = \llbracket t \rrbracket^{\mathfrak{A}}_{\eta}$.

Lemma (Homomorphism). If α is a homomorphism from \mathfrak{A} to \mathfrak{B} , then $\alpha(\llbracket t \rrbracket^{\mathfrak{A}}_{\zeta}) = \llbracket t \rrbracket^{\mathfrak{B}}_{\alpha \circ \zeta}$ for each term t.

Lemma (Substitution). Let $a = [s]^{\mathfrak{A}}_{\zeta}$. Then $[t\frac{s}{x}]^{\mathfrak{A}}_{\zeta} = [t]^{\mathfrak{A}}_{\zeta[x\mapsto a]}$.

Formulas

Let \varSigma be a signature.

Definition. The *formulas* of Σ are generated as follows:

- If s and t are terms of Σ , then s = t is a formula.
- If φ is a formula, then $\neg \varphi$ is a formula.
- If φ and ψ are formulas, then $(\varphi \land \psi)$, $(\varphi \lor \psi)$ and $(\varphi \to \psi)$ are formulas.
- If φ is a formula and x a variable, then $(\forall x \, \varphi)$ and $(\exists x \, \varphi)$ are formulas.
- A formula s = t is called an *equation*.

• The expression
$$s \neq t$$
 is an abbreviation for $\neg(s = t)$

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland

Formulas (continued)

$$\begin{split} & \varphi \wedge \psi \wedge \chi \quad \text{stands for } ((\varphi \wedge \psi) \wedge \chi), \\ & \varphi \vee \psi \vee \chi \quad \text{stands for } ((\varphi \vee \psi) \vee \chi), \\ & \varphi \wedge \psi \to \chi \text{ stands for } ((\varphi \wedge \psi) \to \chi), \text{ etc.} \end{split}$$

- The variable x is *bound* by the quantifier $\forall (\exists)$ in $\forall x \varphi (\exists x \varphi)$.
- The scope of x in $\forall x \varphi (\exists x \varphi)$ is the formula φ .
- A variable x occurs *free* in a formula, if it is not in the scope of a quantifier $\forall x$ or $\exists x$.
- By $\varphi \frac{t}{x}$ we denote the result of replacing all free occurrences of the variable x in φ by the term t. (Bound variables are renamed.)

Formulas (continued)

symbol	name	meaning
	negation	not
\wedge	conjunction	and
\vee	disjunction	or (inclusive)
\rightarrow	implication	if-then
\forall	universal quantification	for all
Ξ	existential quantification	there is

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland

Semantics of formulas

$$\begin{split} [s = t]^{\mathfrak{A}}_{\zeta} &= \begin{cases} true, & \text{if } [s]^{\mathfrak{A}}_{\zeta} = [t]^{\mathfrak{A}}_{\zeta}; \\ false, & \text{otherwise.} \end{cases} \\ [\neg \varphi]^{\mathfrak{A}}_{\zeta} &= \begin{cases} true, & \text{if } [\varphi]^{\mathfrak{A}}_{\zeta} = false; \\ false, & \text{otherwise.} \end{cases} \\ [\varphi \land \psi]^{\mathfrak{A}}_{\zeta} &= \begin{cases} true, & \text{if } [\varphi]^{\mathfrak{A}}_{\zeta} = true \text{ and } [\psi]^{\mathfrak{A}}_{\zeta} = true; \\ false, & \text{otherwise.} \end{cases} \\ [\varphi \lor \psi]^{\mathfrak{A}}_{\zeta} &= \begin{cases} true, & \text{if } [\varphi]^{\mathfrak{A}}_{\zeta} = true \text{ or } [\psi]^{\mathfrak{A}}_{\zeta} = true; \\ false, & \text{otherwise.} \end{cases} \\ [\varphi \to \psi]^{\mathfrak{A}}_{\zeta} &= \begin{cases} true, & \text{if } [\varphi]^{\mathfrak{A}}_{\zeta} = false \text{ or } [\psi]^{\mathfrak{A}}_{\zeta} = true; \\ false, & \text{otherwise.} \end{cases} \\ [\varphi \to \psi]^{\mathfrak{A}}_{\zeta} &= \begin{cases} true, & \text{if } [\varphi]^{\mathfrak{A}}_{\zeta} = false \text{ or } [\psi]^{\mathfrak{A}}_{\zeta} = true; \\ false, & \text{otherwise.} \end{cases} \\ [\forall x \varphi]^{\mathfrak{A}}_{\zeta} &= \begin{cases} true, & \text{if } [\varphi]^{\mathfrak{A}}_{\zeta[x \mapsto a]} = true \text{ for every } a \in |\mathfrak{A}|; \\ false, & \text{otherwise.} \end{cases} \\ [\exists x \varphi]^{\mathfrak{A}}_{\zeta} &= \begin{cases} true, & \text{if there exists an } a \in |\mathfrak{A}| \text{ with } [\varphi]^{\mathfrak{A}}_{\zeta[x \mapsto a]} = true; \\ false, & \text{otherwise.} \end{cases} \end{cases} \end{split}$$

17

Coincidence, Substitution, Isomorphism

Lemma (Coincidence). If ζ and η are two variable assignments for φ such that $\zeta(x) = \eta(x)$ for all free variables x of φ , then $[\![\varphi]\!]^{\mathfrak{A}}_{\zeta} = [\![\varphi]\!]^{\mathfrak{A}}_{\eta}$.

Lemma (Substitution). Let t be a term and $a = \llbracket t \rrbracket_{\zeta}^{\mathfrak{A}}$. Then $\llbracket \varphi \frac{t}{x} \rrbracket_{\zeta}^{\mathfrak{A}} = \llbracket \varphi \rrbracket_{\zeta [x \mapsto a]}^{\mathfrak{A}}$.

Lemma (Isomorphism). Let α be an isomorphism from \mathfrak{A} to \mathfrak{B} . Then $\llbracket \varphi \rrbracket^{\mathfrak{A}}_{\zeta} = \llbracket \varphi \rrbracket^{\mathfrak{B}}_{\alpha \circ \zeta}$.

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland

Part 3

Transition rules and runs of ASMs

Models

Definition. A state \mathfrak{A} is a *model* of φ (written $\mathfrak{A} \models \varphi$), if $\llbracket \varphi \rrbracket_{\zeta}^{\mathfrak{A}} = true$ for all variable assignments ζ for φ .

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland

Transition rules Skip Rule: skip Meaning: Do nothing $f(s_1,\ldots,s_n):=t$ Update Rule: Meaning: Update the value of f at (s_1, \ldots, s_n) to t. Block Rule: P par QMeaning: P and Q are executed in parallel. Conditional Rule: if φ then P else Q Meaning: If φ is true, then execute P, otherwise execute Q. Let Rule: let x = t in PMeaning: Assign the value of t to x and then execute P.

Transition rules (continued)

Forall Rule:

forall x with φ do P

Meaning: Execute P in parallel for each x satisfying φ .

Choose Rule:

choose x with φ **do** P

Meaning: Choose an x satisfying φ and then execute P.

Sequence Rule:P seq QMeaning: P and Q are executed sequentially, first P and then Q.

Call Rule: $r(t_1, \ldots, t_n)$

Meaning: Call transition rule r with parameters t_1, \ldots, t_n .

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland.

Variations of the syntax (continued)

do forall $x: \varphi$	forall x with $arphi$ do P
enddo	
choose $x: \varphi$ P	choose x with φ do P
endchoose	
step P	P seq Q
$\substack{\mathbf{step}\ Q}$	

Variations of the syntax

if φ then P	if φ then P else Q
else	
Q	
enair	
[do in-parallel]	P_1 par par P_n
P_1	
:	
P_n	
[enddo]	

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland.

Free and bound variables

Definition. An occurrence of a variable x is *free* in a transition rule, if it is not in the scope of a **let** x, **forall** x or **choose** x.

let
$$x = t in P$$

scope of x

Rule declarations

Abstract State Machines

Definition. A *rule declaration* for a rule name r of arity n is an expression $r(x_1, \ldots, x_n) = P$ where • P is a transition rule and • the free variables of P are contained in the

list x_1, \ldots, x_n .

Remark: Recursive rule declarations are allowed.

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland

Semantics of transition rules

The semantics of transition rules is defined in a calculus by rules:

 $\frac{\textit{Premise}_1 \cdots \textit{Premise}_n}{\textit{Conclusion}} \textit{Condition}$

The predicate

 $\mathsf{yields}(P,\mathfrak{A},\zeta,U)$

means:

The transition rule P yields the update set U in state \mathfrak{A} under the variable assignment ζ .

Definition. An *abstract state machine* M consists of **•** a signature Σ ,

- a set of initial states for Σ ,
- a set of rule declarations,
- a distinguished rule name of arity zero called the main rule name of the machine.

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland.

Semantics of transition rules (continued)

$\label{eq:starsest} \begin{split} \overline{yields(skip,\mathfrak{A},\zeta,\emptyset)} \\ \overline{yields(f(s_1,\ldots,s_n) \coloneqq t,\mathfrak{A},\zeta,\{(l,v)\})} \\ \underline{yields(P,\mathfrak{A},\zeta,U) yields(Q,\mathfrak{A},\zeta,V)} \\ \overline{yields(P \; par \; Q,\mathfrak{A},\zeta,U \cup V)} \end{split}$	where $l = (f, (\llbracket s_1 \rrbracket_{\zeta}^{\mathfrak{A}}, \dots, \llbracket s_n \rrbracket_{\zeta}^{\mathfrak{A}}))$ and $v = \llbracket t \rrbracket_{\zeta}^{\mathfrak{A}}$
$\frac{yields(P,\mathfrak{A},\zeta,U)}{yields(if\;\varphi\;then\;P\;else\;Q,\mathfrak{A},\zeta,U)}$	$\text{if } \llbracket \varphi \rrbracket^{\mathfrak{A}}_{\zeta} = true$
$\frac{\text{yields}(Q,\mathfrak{A},\zeta,V)}{\text{yields}(\text{if }\varphi\text{ then }P\text{ else }Q,\mathfrak{A},\zeta,V)}$	$\text{if } \llbracket \varphi \rrbracket^{\mathfrak{A}}_{\zeta} = false$
$\frac{yields(P,\mathfrak{A},\zeta[x\mapsto a],U)}{yields(let\;x=t\;in\;P,\mathfrak{A},\zeta,U)}$	where $a = \llbracket t \rrbracket^{\mathfrak{A}}_{\zeta}$
$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	where $I=range(x,\varphi,\mathfrak{A},\zeta)$

29

Semantics of transition rules (continued)

$\boxed{ \begin{array}{l} \displaystyle \underbrace{ yields(P,\mathfrak{A},\zeta[x\mapsto a],U) } \\ \displaystyle yields(\mathbf{choose}\ x\ \mathbf{with}\ \varphi\ \mathbf{do}\ P,\mathfrak{A},\zeta,U) \end{array} }$	$\text{ if } a \in range(x,\varphi,\mathfrak{A},\zeta)$
$\overline{\text{yields}(\text{choose } x \text{ with } \varphi \text{ do } P, \mathfrak{A}, \zeta, \emptyset)}$	$\text{if } range(x,\varphi,\mathfrak{A},\zeta)=\emptyset$
$\boxed{ \begin{array}{l} \frac{yields(P,\mathfrak{A},\zeta,U) yields(Q,\mathfrak{A}+U,\zeta,V)}{yields(P \; seq \; Q,\mathfrak{A},\zeta,U \oplus V) } \end{array} }$	if U is consistent
$\frac{yields(P,\mathfrak{A},\zeta,U)}{yields(P \; \mathbf{seq} \; Q,\mathfrak{A},\zeta,U)}$	if U is inconsistent
$\frac{yields(P\frac{t_1\cdots t_n}{x_1\cdots x_n},\mathfrak{A},\zeta,U)}{yields(r(t_1,\ldots,t_n),\mathfrak{A},\zeta,U)}$	where $r(x_1, \ldots, x_n) = P$ is a rule declaration of M

 $range(x,\varphi,\mathfrak{A},\zeta) = \{a \in |\mathfrak{A}| : \llbracket \varphi \rrbracket_{\zeta[x \mapsto a]}^{\mathfrak{A}} = true\}$

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland.

Move of an ASM

Definition. A machine M can make a *move* from state \mathfrak{A} to \mathfrak{B} (written $\mathfrak{A} \stackrel{M}{\Longrightarrow} \mathfrak{B}$), if the main rule of M yields a consistent update set U in state \mathfrak{A} and $\mathfrak{B} = \mathfrak{A} + U$.

- The updates in U are called *internal updates*.
- \mathfrak{B} is called the *next internal state*.

If α is an isomorphism from \mathfrak{A} to \mathfrak{A}' , the following diagram commutes:

$$\begin{array}{ccc} \mathfrak{A} \stackrel{M}{\Longrightarrow} \mathfrak{B} \\ \alpha \downarrow & \downarrow \alpha \\ \mathfrak{A}' \stackrel{M}{\Longrightarrow} \mathfrak{B}' \end{array}$$

Coincidence, Substitution, Isomorphisms

Lemma (Coincidence). If $\zeta(x) = \eta(x)$ for all free variables x of a transition rule P and P yields U in \mathfrak{A} under ζ , then P yields U in \mathfrak{A} under η .

Lemma (Substitution). Let t be a static term and $a = \llbracket t \rrbracket_{\zeta}^{\mathfrak{A}}$. Then the rule $P\frac{t}{x}$ yields the update set U in state \mathfrak{A} under ζ iff P yields U in \mathfrak{A} under $\zeta[x \mapsto a]$.

Lemma (Isomorphism). If α is an isomorphism from \mathfrak{A} to \mathfrak{B} and P yields U in \mathfrak{A} under ζ , then P yields $\alpha(U)$ in \mathfrak{B} under $\alpha \circ \zeta$.

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland.

Run of an ASM

Let M be an ASM with signature Σ .

- A *run* of M is a finite or infinite sequence $\mathfrak{A}_0, \mathfrak{A}_1, \ldots$ of states for Σ such that
- $\bullet \mathfrak{A}_0$ is an initial state of M
- for each n,
- either M can make a move from \mathfrak{A}_n into the next internal state \mathfrak{A}'_n and the environment produces a consistent set of external or shared updates U such that $\mathfrak{A}_{n+1} = \mathfrak{A}'_n + U$,
- $-\operatorname{or} M$ cannot make a move in state \mathfrak{A}_n and \mathfrak{A}_n is the last state in the run.
- In *internal* runs, the environment makes no moves.
- In *interactive* runs, the environment produces updates.

The reserve of ASMs

Import rule:

Meaning: Choose an element x from the reserve, delete it from the reserve and execute P.

let x = new(X) **in** P abbreviates

 $\begin{array}{l} \text{import } x \text{ do} \\ X(x) := true \\ P \end{array}$

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland.

Semantics of ASMs with a reserve

$\frac{yields(P,\mathfrak{A},\zeta[x\mapsto a],U)}{yields(import\;x\;\mathbf{do}\;P,\mathfrak{A},\zeta,V)}$	$ \begin{array}{l} \text{if } a \in Res(\mathfrak{A}) \setminus ran(\zeta) \text{ and} \\ V = U \cup \{((Reserve, a), false)\} \end{array} $
$\frac{yields(P,\mathfrak{A},\zeta,U) yields(Q,\mathfrak{A},\zeta,V)}{yields(P \text{ par } Q,\mathfrak{A},\zeta,U\cup V)}$	$\text{if } Res(\mathfrak{A}) \cap El(U) \cap El(V) \subseteq ran(\zeta)$
$\frac{\mathrm{yields}(P,\mathfrak{A},\zeta[x\mapsto a],U_a)\text{for each }a\in I}{\mathrm{yields}(\mathrm{forall}\;x\;\mathrm{with}\;\varphi\;\mathrm{do}\;P,\mathfrak{A},\zeta,\bigcup_{a\in I}U_a)}$	if $I = range(x, \varphi, \mathfrak{A}, \zeta)$ and for $a \neq b$ $Res(\mathfrak{A}) \cap El(U_a) \cap El(U_b) \subseteq ran(\zeta)$

- El(U) is the set of elements that occur in the updates of U.
- \blacksquare The elements of an update (l,v) are the value v and the elements of the location l.

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland

The reserve of a state

- New dynamic relation *Reserve*.
- *Reserve* is updated by the system, not by rules.
- $\bullet \operatorname{Res}(\mathfrak{A}) = \{ a \in |\mathfrak{A}| : \operatorname{Reserve}^{\mathfrak{A}}(a) = \operatorname{true} \}$
- The reserve elements of a state are not allowed to be in the domain and range of any basic function of the state.

Definition. A state \mathfrak{A} satisfies the *reserve condition* with respect to an environment ζ , if the following two conditions hold for each element $a \in Res(\mathfrak{A}) \setminus ran(\zeta)$:

- The element a is not the content of a location of \mathfrak{A} .
- If a is an element of a location l of \mathfrak{A} which is not a location for *Reserve*, then the content of l in \mathfrak{A} is *undef*.

39

Problem

Problem 1: New elements that are imported in parallel must be different.

```
import x do parent(x) = root
import y do parent(y) = root
```

Problem 2: Hiding of bound variables.

 $\begin{array}{l} \text{import } x \text{ do} \\ f(x) := 0 \\ \text{let } x = 1 \text{ in} \\ \text{import } y \text{ do } f(y) := x \end{array}$

Syntactic constraint. In the scope of a bound variable the same variable should not be used again as a bound variable (**let**, **forall**, **choose**, **import**).

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland

Permutation of the reserve

Lemma (Permutation of the reserve). Let \mathfrak{A} be a state that satisfies the reserve condition wrt. ζ . If α is a function from $|\mathfrak{A}|$ to $|\mathfrak{A}|$ that permutes the elements in $Res(\mathfrak{A}) \setminus ran(\zeta)$ and is the identity on non-reserve elements of \mathfrak{A} and on elements in the range of ζ , then α is an isomorphism from \mathfrak{A} to \mathfrak{A} .

Preservation of the reserve condition

Lemma (Preservation of the reserve condition).

If a state \mathfrak{A} satisfies the reserve condition wrt. ζ and P yields a consistent update set U in \mathfrak{A} under ζ , then

- $\mbox{ \bullet the sequel } \mathfrak{A} + U$ satisfies the reserve condition wrt. $\zeta,$
- $Res(\mathfrak{A} + U) \setminus ran(\zeta)$ is contained in $Res(\mathfrak{A}) \setminus El(U)$.

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland.

Independence of the choice of reserve elements

Lemma (Independence). Let P be a rule of an ASM without choose. If • \mathfrak{A} satisfies the reserve condition wrt. ζ , • the bound variables of P are not in the domain of ζ , • P yields U in \mathfrak{A} under ζ , • P yields U' in \mathfrak{A} under ζ , then there exists a permutation α of $Res(\mathfrak{A}) \setminus ran(\zeta)$ such that $\alpha(U) = U'$.