- Part 1: Abstract states and update sets
- Part 2: Mathematical Logic
- Part 3: Transition rules and runs of ASMs
- Part 4: The reserve of ASMs


## Signatures

Classification of functions

Definition. A signature $\Sigma$ is a finite collection of function names. - Each function name $f$ has an arity, a non-negative integer.

- Nullary function names are called constants.
- Function names can be static or dynamic.
- Every ASM signature contains the static constants undef, true, false.



## States

## States (continued)

Definition. A state $\mathfrak{A}$ for the signature $\Sigma$ is a non-empty set $X$, the superuniverse of $\mathfrak{A}$, together with an interpretation $f^{\mathfrak{A}}$ of each function name $f$ of $\Sigma$.

- If $f$ is an $n$-ary function name of $\Sigma$, then $f^{\mathfrak{A}}: X^{n} \rightarrow X$. - If $c$ is a constant of $\Sigma$, then $c^{\mathfrak{A}} \in X$.
- The superuniverse $X$ of the state $\mathfrak{A}$ is denoted by $|\mathfrak{A}|$.
- The superuniverse is also called the base set of the state.
- The elements of a state are the elements of the superuniverse.

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland.

## Locations

Definition. A location of $\mathfrak{A}$ is a pair

$$
\left(f,\left(a_{1}, \ldots, a_{n}\right)\right)
$$

where $f$ is an $n$-ary function name and $a_{1}, \ldots, a_{n}$ are elements of $\mathfrak{A}$.

- The value $f^{\mathfrak{A}}\left(a_{1}, \ldots, a_{n}\right)$ is the content of the location in $\mathfrak{A}$.
- The elements of the location are the elements of the set $\left\{a_{1}, \ldots, a_{n}\right\}$.
- We write $\mathfrak{A}(l)$ for the content of the location $l$ in $\mathfrak{A}$.

Notation. If $l=\left(f,\left(a_{1}, \ldots, a_{n}\right)\right)$ is a location for $\mathfrak{A}$ and $\alpha$ is a function defined on $|\mathfrak{A}|$, then $\alpha(l)=\left(f,\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right)\right)$.

- The interpretations of undef, true, false are pairwise different.
- The constant undef represents an undetermined object.
- The domain of an $n$-ary function name $f$ in $\mathfrak{A}$ is the set of all $n$-tuples $\left(a_{1}, \ldots, a_{n}\right) \in|\mathfrak{A}|^{n}$ such that $f^{\mathfrak{A}}\left(a_{1}, \ldots, a_{n}\right) \neq u_{n d e} f^{\mathfrak{A}}$.
- A relation is a function that has the values true, false or undef.
- We write $a \in R$ as an abbreviation for $R(a)=$ true.
- The superuniverse can be divided into subuniverses represented by unary relations.


## Updates and update sets

Definition. An update for $\mathfrak{A}$ is a pair $(l, v)$, where $l$ is a location of $\mathfrak{A}$ and $v$ is an element of $\mathfrak{A}$.

- The update is trivial, if $v=\mathfrak{A}(l)$.
- An update set is a set of updates.

Definition. An update set $U$ is consistent, if it has no clashing updates, i.e., if for any location $l$ and all elements $v, w$, if $(l, v) \in U$ and $(l, w) \in U$, then $v=w$.

## Homomorphisms and isomorphisms

Let $\mathfrak{A}$ and $\mathfrak{B}$ be two states over the same signature.

Definition. A homomorphism from $\mathfrak{A}$ to $\mathfrak{B}$ is a function $\alpha$ from $|\mathfrak{A}|$ into $|\mathfrak{B}|$ such that $\alpha(\mathfrak{A}(l))=\mathfrak{B}(\alpha(l))$ for each location $l$ of $\mathfrak{A}$.

Definition. An isomorphism from $\mathfrak{A}$ to $\mathfrak{B}$ is a homomorphism from $\mathfrak{A}$ to $\mathfrak{B}$ which is a ono-to-one function from $|\mathfrak{A}|$ onto $|\mathfrak{B}|$.

Lemma (Isomorphism). Let $\alpha$ be an isomorphism from $\mathfrak{A}$ to $\mathfrak{B}$ If $U$ is a consistent update set for $\mathfrak{A}$, then $\alpha(U)$ is a consistent update set for $\mathfrak{B}$ and $\alpha$ is an isomorphism from $\mathfrak{A}+U$ to $\mathfrak{B}+\alpha(U)$.

## Composition of update sets

Part 2
$U \oplus V=V \cup\{(l, v) \in U \mid$ there is no $w$ with $(l, w) \in V\}$

Lemma. Let $U, V, W$ be update sets.

- $(U \oplus V) \oplus W=U \oplus(V \oplus W)$
- If $U$ and $V$ are consistent, then $U \oplus V$ is consistent.
- If $U$ and $V$ are consistent, then $\mathfrak{A}+(U \oplus V)=(\mathfrak{A}+U)+V$.

Let $\Sigma$ be a signature.

Definition. The terms of $\Sigma$ are syntactic expressions generated as follows:

- Variables $x, y, z, \ldots$ are terms.
- Constants $c$ of $\Sigma$ are terms.
- If $f$ is an $n$-ary function name of $\Sigma, n>0$, and $t_{1}, \ldots, t_{n}$ are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
- A term which does not contain variables is called a ground term.
- A term is called static, if it contains static function names only. - By $t \frac{s}{x}$ we denote the result of replacing the variable $x$ in term $t$ everywhere by the term $s$ (substitution of $s$ for $x$ in $t$ ).


## Evaluation of terms

Definition. Let $\mathfrak{A}$ be a state of $\Sigma$.
Let $\zeta$ be a variable assignment for $\mathfrak{A}$
Let $t$ be a term of $\Sigma$ such that all variables of $t$ are defined in $\zeta$. The value $\llbracket t \rrbracket_{\zeta}^{\mathfrak{A}}$ is defined as follows:

- $\llbracket x \rrbracket_{\zeta}^{\mathfrak{N}}=\zeta(x)$
- $\llbracket c \rrbracket_{\zeta}^{\mathfrak{A}}=c^{\mathfrak{A}}$
$\mathbf{-} \llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{\zeta}^{\mathfrak{A}}=f^{\mathfrak{A}}\left(\llbracket t_{1} \rrbracket_{\zeta}^{\mathfrak{A}}, \ldots, \llbracket t_{n} \rrbracket_{\zeta}^{\mathfrak{A}}\right)$

Let $\mathfrak{A}$ be a state.

Definition. A variable assignment for $\mathfrak{A}$ is a finite function $\zeta$ which assigns elements of $|\mathfrak{A}|$ to a finite number of variables.

- We write $\zeta[x \mapsto a]$ for the variable assignment which coincides with $\zeta$ except that it assigns the element $a$ to the variable $x$ :

$$
\zeta[x \mapsto a](y)= \begin{cases}a, & \text { if } y=x \\ \zeta(y), & \text { otherwise }\end{cases}
$$

- Variable assignments are also called environments.


## Evaluation of terms (continued)

Lemma (Coincidence). If $\zeta$ and $\eta$ are two variable assignments for $t$ such that $\zeta(x)=\eta(x)$ for all variables $x$ of $t$, then $\llbracket t \rrbracket_{\zeta}^{\mathfrak{A}}=\llbracket t \rrbracket_{\eta}^{\mathfrak{A}}$.

Lemma (Homomorphism). If $\alpha$ is a homomorphism from $\mathfrak{A}$ to $\mathfrak{B}$, then $\alpha\left(\llbracket t \rrbracket_{\zeta}^{\mathfrak{A}}\right)=\llbracket t \rrbracket_{\alpha \circ \zeta}^{\mathfrak{B}}$ for each term $t$.

```
Lemma (Substitution). Let \(a=\llbracket s \rrbracket_{\zeta}^{\mathfrak{A}}\).
```

Then $\left.\llbracket t \frac{s}{x} \rrbracket{ }_{\zeta}^{\mathfrak{A}}=\llbracket t\right]_{\zeta[x \mapsto a]}^{\mathfrak{A}}$.

Let $\Sigma$ be a signature.

Definition. The formulas of $\Sigma$ are generated as follows:

- If $s$ and $t$ are terms of $\Sigma$, then $s=t$ is a formula.
- If $\varphi$ is a formula, then $\neg \varphi$ is a formula.
- If $\varphi$ and $\psi$ are formulas, then $(\varphi \wedge \psi),(\varphi \vee \psi)$ and $(\varphi \rightarrow \psi)$ are formulas.
- If $\varphi$ is a formula and $x$ a variable, then $(\forall x \varphi)$ and $(\exists x \varphi)$ are formulas.
- A formula $s=t$ is called an equation.
- The expression $s \neq t$ is an abbreviation for $\neg(s=t)$.


## Formulas (continued)

$$
\begin{aligned}
& \varphi \wedge \psi \wedge \chi \quad \text { stands for }((\varphi \wedge \psi) \wedge \chi) \\
& \varphi \vee \psi \vee \chi \text { stands for }((\varphi \vee \psi) \vee \chi), \\
& \varphi \wedge \psi \rightarrow \chi \text { stands for }((\varphi \wedge \psi) \rightarrow \chi), \text { etc. }
\end{aligned}
$$

- The variable $x$ is bound by the quantifier $\forall(\exists)$ in $\forall x \varphi(\exists x \varphi)$.
- The scope of $x$ in $\forall x \varphi(\exists x \varphi)$ is the formula $\varphi$.
- A variable $x$ occurs free in a formula, if it is not in the scope of a quantifier $\forall x$ or $\exists x$.
- By $\varphi \frac{t}{x}$ we denote the result of replacing all free occurrences of the variable $x$ in $\varphi$ by the term $t$. (Bound variables are renamed.)

| symbol | name | meaning |
| :---: | :--- | :--- |
| $\neg$ | negation | not |
| $\wedge$ | conjunction | and |
| $\vee$ | disjunction | or (inclusive) |
| $\rightarrow$ | implication | if-then |
| $\forall$ | universal quantification | for all |
| $\exists$ | existential quantification | there is |

## Semantics of formulas

$$
\begin{aligned}
& \llbracket s=t \rrbracket_{\zeta}^{\mathfrak{A}}= \begin{cases}\text { true, } & \text { if } \llbracket s \rrbracket_{\zeta}^{\mathfrak{A}}=\llbracket t \rrbracket_{\zeta}^{\mathfrak{A}} ; \\
\text { false, } & \text { otherwise. }\end{cases} \\
& \llbracket \neg \varphi \rrbracket_{\zeta}^{\mathfrak{A}}= \begin{cases}\text { true, } & \text { if } \llbracket \varphi \rrbracket_{\zeta}^{\mathfrak{A}}=\text { false; } \\
\text { false, } & \text { otherwise. }\end{cases} \\
& \llbracket \varphi \wedge \psi \rrbracket_{\zeta}^{\mathfrak{A}}= \begin{cases}\text { true, } & \text { if } \llbracket \varphi \rrbracket_{\zeta}^{\mathfrak{A}}=\text { true and } \llbracket \psi \rrbracket_{\zeta}^{\mathfrak{A}}=\text { true; } \\
\text { false, } & \text { otherwise. }\end{cases} \\
& \llbracket \varphi \vee \psi \rrbracket_{\zeta}^{\mathfrak{A}}= \begin{cases}\text { true, } & \text { if } \llbracket \varphi \rrbracket_{\zeta}^{\mathfrak{A}}=\text { true or } \llbracket \psi \rrbracket_{\zeta}^{\mathfrak{A}}=\text { true; } \\
\text { false, } & \text { otherwise. }\end{cases} \\
& \llbracket \varphi \rightarrow \psi \rrbracket_{\zeta}^{\mathfrak{A}}= \begin{cases}\text { true, } & \text { if } \llbracket \varphi \rrbracket_{\zeta}^{\mathfrak{A}}=\text { false or } \llbracket \psi \rrbracket_{\zeta}^{\mathfrak{A}}=\text { true; } \\
\text { false, } & \text { otherwise. }\end{cases} \\
& \llbracket \forall x \varphi \rrbracket_{\zeta}^{\mathfrak{A}}= \begin{cases}\text { true, } & \text { if } \llbracket \varphi \rrbracket_{\zeta[x \mapsto a]}^{\mathfrak{A}}=\text { true for every } a \in|\mathfrak{A}| ; \\
\text { false, } & \text { otherwise. }\end{cases} \\
& \llbracket \exists x \varphi \rrbracket_{\zeta}^{\mathfrak{A}}= \begin{cases}\text { true, } & \text { if there exists an } a \in|\mathfrak{A}| \text { with } \llbracket \varphi \rrbracket_{\zeta[x \mapsto a]}^{\mathfrak{A}} \text { false, } \\
\text { otherwise. }\end{cases}
\end{aligned}
$$

Lemma (Coincidence). If $\zeta$ and $\eta$ are two variable assignments for $\varphi$ such that $\zeta(x)=\eta(x)$ for all free variables $x$ of $\varphi$, then $\left.\llbracket \varphi]_{\zeta}^{\mathfrak{A}}=\llbracket \varphi\right]_{\eta}^{\mathfrak{A}}$.

Lemma (Substitution). Let $t$ be a term and $a=\llbracket t]_{\zeta}^{\mathfrak{A}}$. Then $\left.\llbracket \varphi \frac{t}{x} \rrbracket_{\zeta}^{\mathfrak{A}}=\llbracket \varphi\right]_{\zeta}^{\mathfrak{A}} \mathfrak{X \mapsto a ]}$.

Lemma (Isomorphism). Let $\alpha$ be an isomorphism from $\mathfrak{A}$ to $\mathfrak{B}$. Then $\llbracket \varphi \rrbracket_{\zeta}^{\mathfrak{A}}=\llbracket \varphi \rrbracket_{\alpha \circ \zeta}^{\mathfrak{B}}$.

> Definition. A state $\mathfrak{A}$ is a model of $\varphi($ written $\mathfrak{A} \models \varphi)$, if $\llbracket \varphi \rrbracket_{\zeta}^{\mathfrak{A}}=$ true for all variable assignments $\zeta$ for $\varphi$.

Copyright © 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland.

## Transition rules

Skip Rule:

## skip

Meaning: Do nothing
Update Rule:

$$
f\left(s_{1}, \ldots, s_{n}\right):=t
$$

Meaning: Update the value of $f$ at $\left(s_{1}, \ldots, s_{n}\right)$ to $t$.
Block Rule:

$$
P \text { par } Q
$$

Meaning: $P$ and $Q$ are executed in parallel.
Conditional Rule: $\quad$ if $\varphi$ then $P$ else $Q$
Meaning: If $\varphi$ is true, then execute $P$, otherwise execute $Q$.
Let Rule:

$$
\text { let } x=t \text { in } P
$$

Meaning: Assign the value of $t$ to $x$ and then execute $P$.
Forall Rule: $\quad$ forall $x$ with $\varphi$ do $P$

Meaning: Execute $P$ in parallel for each $x$ satisfying $\varphi$.

| Choose Rule: | choose $x$ with $\varphi$ do $P$ |
| :--- | :--- |
| Meaning. Choose an $x$ satisfying $\varphi$ and then execute $P$ |  |

## Sequence Rule:

$$
P \boldsymbol{\operatorname { s e q }} Q
$$

Meaning: $P$ and $Q$ are executed sequentially, first $P$ and then $Q$.

$$
\text { Call Rule: } \quad r\left(t_{1}, \ldots, t_{n}\right)
$$

Meaning: Call transition rule $r$ with parameters $t_{1}, \ldots, t_{n}$.

## Variations of the syntax (continued)

| $\begin{aligned} & \text { do forall } x: \varphi \\ & P \\ & \text { enddo } \end{aligned}$ | forall $x$ with $\varphi$ do $P$ |
| :---: | :---: |
| ```choose x:\varphi P endchoose``` | choose $x$ with $\varphi$ do $P$ |
| step <br> $P$ <br> step <br> Q | $P \boldsymbol{\operatorname { s e q }} Q$ |

$\left.\begin{array}{|l|l|}\hline \text { if } \varphi \text { then } & \text { if } \varphi \text { then } P \text { else } Q \\ P \\ \text { else } \\ \\ \text { endif }\end{array}\right]$

## Free and bound variables

Definition. An occurrence of a variable $x$ is free in a transition rule, if it is not in the scope of a let $x$, forall $x$ or choose $x$.

$$
\text { let } x=\underbrace{\text { in } P}_{\text {scope of } x}
$$

$$
\text { forall } x \underbrace{\text { with } \varphi \text { do } P}_{\text {scope of } x}
$$

$$
\begin{array}{|c}
\hline \text { choose } x \underbrace{\text { with } \varphi \text { do } P}_{\text {scope of } x} \\
\hline
\end{array}
$$

Definition. A rule declaration for a rule name $r$ of arity $n$ is an expression

$$
r\left(x_{1}, \ldots, x_{n}\right)=P
$$

where

- $P$ is a transition rule and
- the free variables of $P$ are contained in the list $x_{1}, \ldots, x_{n}$.


## Definition. An abstract state machine $M$ consists of

## - a signature $\Sigma$,

- a set of initial states for $\Sigma$,
- a set of rule declarations,
- a distinguished rule name of arity zero called the main rule name of the machine.

Remark: Recursive rule declarations are allowed.

The semantics of transition rules is defined in a calculus by rules:

$$
\frac{\text { Premise }_{1} \cdots \text { Premise }_{n}}{\text { Conclusion }^{2}} \text { Condition }
$$

The predicate

$$
\text { yields }(P, \mathfrak{A}, \zeta, U)
$$

means:
The transition rule $P$ yields the update set $U$ in state $\mathfrak{A}$ under the variable assignment $\zeta$.

## Semantics of transition rules (continued)



| $\frac{\text { yields }(P, \mathfrak{A}, \zeta[x \mapsto a], U)}{\text { yields }(\text { choose } x \text { with } \varphi \text { do } P, \mathfrak{A}, \zeta, U)}$ | if $a \in \operatorname{range}(x, \varphi, \mathfrak{A}, \zeta)$ |
| :--- | :--- |
| $\overline{\text { yields }(\text { choose } x \text { with } \varphi \text { do } P, \mathfrak{A}, \zeta, \emptyset)}$ | if $\operatorname{range}(x, \varphi, \mathfrak{A}, \zeta)=\emptyset$ |
| $\frac{\text { yields }(P, \mathfrak{A}, \zeta, U) \quad \text { yields }(Q, \mathfrak{A}+U, \zeta, V)}{\text { yields }(P \text { seq } Q, \mathfrak{A}, \zeta, U \oplus V)}$ | if $U$ is consistent |
| $\frac{\text { yields }(P, \mathfrak{A}, \zeta, U)}{\text { yields }(P \text { seq } Q, \mathfrak{A}, \zeta, U)}$ | if $U$ is inconsistent |
| $\frac{\text { yields }\left(P \frac{t_{1} \cdots t_{n}}{x_{1} \cdots x_{n}}, \mathfrak{A}, \zeta, U\right)}{\text { yields }\left(r\left(t_{1}, \ldots, t_{n}\right), \mathfrak{A}, \zeta, U\right)}$ | where $r\left(x_{1}, \ldots, x_{n}\right)=P$ is a <br> rule declaration of $M$ |

$$
\operatorname{range}(x, \varphi, \mathfrak{A}, \zeta)=\left\{a \in|\mathfrak{A}|:[\varphi]_{\zeta\{x \mapsto a]}^{\mathfrak{A}}=\operatorname{true}\right\}
$$

Lemma (Coincidence). If $\zeta(x)=\eta(x)$ for all free variables $x$ of a transition rule $P$ and $P$ yields $U$ in $\mathfrak{A}$ under $\zeta$, then $P$ yields $U$ in $\mathfrak{A}$ under $\eta$.

Lemma (Substitution). Let $t$ be a static term and $a=\llbracket t \rrbracket_{\zeta}^{\mathfrak{A}}$.
Then the rule $P \frac{t}{x}$ yields the update set $U$ in state $\mathfrak{A}$ under $\zeta$ iff $P$ yields $U$ in $\mathfrak{A}$ under $\zeta[x \mapsto a]$.

Lemma (Isomorphism). If $\alpha$ is an isomorphism from $\mathfrak{A}$ to $\mathfrak{B}$ and $P$ yields $U$ in $\mathfrak{A}$ under $\zeta$, then $P$ yields $\alpha(U)$ in $\mathfrak{B}$ under $\alpha \circ \zeta$.

## Move of an ASM

Definition. A machine $M$ can make a move from state $\mathfrak{A}$ to $\mathfrak{B}$ (written $\mathfrak{A} \xlongequal{M} \mathfrak{B}$ ), if the main rule of $M$ yields a consistent update set $U$ in state $\mathfrak{A}$ and $\mathfrak{B}=\mathfrak{A}+U$.

- The updates in $U$ are called internal updates.
- $\mathfrak{B}$ is called the next internal state.

If $\alpha$ is an isomorphism from $\mathfrak{A}$ to $\mathfrak{A}^{\prime}$, the following diagram commutes:

$$
\begin{aligned}
\mathfrak{A} & \stackrel{M}{\Longrightarrow} \mathfrak{B} \\
\alpha \downarrow & \downarrow \alpha \\
\mathfrak{A}^{\prime} & \stackrel{M}{\Longrightarrow} \mathfrak{B}^{\prime}
\end{aligned}
$$

## Run of an ASM

Let $M$ be an ASM with signature $\Sigma$.
A run of $M$ is a finite or infinite sequence $\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots$ of states for $\Sigma$ such that

- $\mathfrak{A}_{0}$ is an initial state of $M$
- for each $n$,
- either $M$ can make a move from $\mathfrak{A}_{n}$ into the next internal state $\mathfrak{A}_{n}^{\prime}$ and the environment produces a consistent set of external or shared updates $U$ such that $\mathfrak{A}_{n+1}=\mathfrak{A}_{n}^{\prime}+U$,
- or $M$ cannot make a move in state $\mathfrak{A}_{n}$ and $\mathfrak{A}_{n}$ is the last state in the run.
- In internal runs, the environment makes no moves.
- In interactive runs, the environment produces updates.


## The reserve of ASMs

## The reserve of a state

- New dynamic relation Reserve.
- Reserve is updated by the system, not by rules.
- $\operatorname{Res}(\mathfrak{A})=\left\{a \in|\mathfrak{A}|: \operatorname{Reserve}^{\mathfrak{A}}(a)=\right.$ true $\}$
- The reserve elements of a state are not allowed to be in the domain and range of any basic function of the state.

Definition. A state $\mathfrak{A}$ satisfies the reserve condition with respect to an environment $\zeta$, if the following two conditions hold for each element $a \in \operatorname{Res}(\mathfrak{A}) \backslash \operatorname{ran}(\zeta)$ :

- The element $a$ is not the content of a location of $\mathfrak{A}$.
- If $a$ is an element of a location $l$ of $\mathfrak{A}$ which is not a location for Reserve, then the content of $l$ in $\mathfrak{A}$ is undef.


## Import rule:

## import $x$ do $P$

Meaning: Choose an element $x$ from the reserve, delete it from the reserve and execute $P$.


## Semantics of ASMs with a reserve

$$
\begin{array}{ll}
\hline \frac{\text { yields }(P, \mathfrak{A}, \zeta[x \mapsto a], U)}{\text { yields }(\text { import } x \text { do } P, \mathfrak{A}, \zeta, V)} & \text { if } a \in \operatorname{Res}(\mathfrak{A}) \backslash \operatorname{ran}(\zeta) \text { and } \\
\frac{\text { yields }(P, \mathfrak{A}, \zeta, U) \text { yields }(Q, \mathfrak{A}, \zeta, V)}{\text { yields }(P \text { par } Q, \mathfrak{A}, \zeta, U \cup V)} & V=U \cup\{((\operatorname{Reserve}, a), \text { false })\} \\
\frac{\text { yields }\left(P, \mathfrak{A}, \zeta[x \mapsto a], U_{a}\right) \quad \text { for each } a \in I}{\text { yields }\left(\text { forall } x \text { with } \varphi \text { do } P, \mathfrak{A}, \zeta, \bigcup_{a \in I} U_{a}\right) \cap E l(U) \cap E l(V) \subseteq \operatorname{ran}(\zeta)} & \text { if } I=\operatorname{Res}(\mathfrak{A}) \cap E l\left(U_{a}\right) \cap E l\left(U_{b}\right) \subseteq \operatorname{ran}(\zeta)
\end{array}
$$

- $E l(U)$ is the set of elements that occur in the updates of $U$.
- The elements of an update $(l, v)$ are the value $v$ and the elements of the location $l$.

Problem 1: New elements that are imported in parallel must be different.

```
import }x\mathrm{ do parent(x)= root
import }y\mathrm{ do parent(y)= root
```

Problem 2: Hiding of bound variables.

```
import x do
    f(x):=0
    let }x=1\mathrm{ in
        import y do f(y):=x
```

Syntactic constraint. In the scope of a bound variable the same variable should not be used again as a bound variable (let, forall, choose, import).

## Lemma (Independence).

Let $P$ be a rule of an ASM without choose. If

- $\mathfrak{A}$ satisfies the reserve condition wrt. $\zeta$,
- the bound variables of $P$ are not in the domain of $\zeta$,
- $P$ yields $U$ in $\mathfrak{A}$ under $\zeta$,
- $P$ yields $U^{\prime}$ in $\mathfrak{A}$ under $\zeta$,
then there exists a permutation $\alpha$ of $\operatorname{Res}(\mathfrak{A}) \backslash \operatorname{ran}(\zeta)$ such that $\alpha(U)=U^{\prime}$.

