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Part 1

Abstract states and update sets
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Signatures

Definition. A signature Σ is a finite collection of function names.

Each function name f has an arity , a non-negative integer.

Nullary function names are called constants .

Function names can be static or dynamic .

Every ASM signature contains the static constants
undef , true, false.

Signatures are also called vocabularies .
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Classification of functions

controlled out

derived

(monitored)
in

(interaction)

static

shared

dynamic

basic

function/relation/location
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States

Definition. A state A for the signature Σ is a non-empty
set X , the superuniverse of A, together with an interpre-

tation f A of each function name f of Σ.

If f is an n-ary function name of Σ, then f A: Xn → X .

If c is a constant of Σ, then cA ∈ X .

The superuniverse X of the state A is denoted by |A|.

The superuniverse is also called the base set of the state.

The elements of a state are the elements of the superuniverse.
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States (continued)

The interpretations of undef , true, false are pairwise different.

The constant undef represents an undetermined object.

The domain of an n-ary function name f in A is the set of all n-tuples
(a1, . . . , an) ∈ |A|n such that f A(a1, . . . , an) 6= undef A.

A relation is a function that has the values true, false or undef .

We write a ∈ R as an abbreviation for R(a) = true.

The superuniverse can be divided into subuniverses represented by
unary relations.
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Locations

Definition. A location of A is a pair

(f , (a1, . . . , an))

where f is an n-ary function name and a1, . . . , an are elements
of A.

The value f A(a1, . . . , an) is the content of the location in A.

The elements of the location are the elements of the set
{a1, . . . , an}.

We write A(l) for the content of the location l in A.

Notation. If l = (f , (a1, . . . , an)) is a location for A and α is a
function defined on |A|, then α(l) = (f , (α(a1), . . . , α(an))).
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Updates and update sets

Definition. An update for A is a pair (l , v ), where l is a location
of A and v is an element of A.

The update is trivial , if v = A(l).

An update set is a set of updates.

Definition. An update set U is consistent, if it has no clashing
updates, i.e., if for any location l and all elements v ,w ,
if (l , v ) ∈ U and (l ,w ) ∈ U , then v = w .
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Firing of updates

Definition. The result of firing a consistent update set U in a
state A is a new state A + U with the same superuniverse as A

such that for every location l of A:

(A + U )(l) =

{
v , if (l , v ) ∈ U ;
A(l), if there is no v with (l , v ) ∈ U .

The state A + U is called the sequel of A with respect to U .
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Homomorphisms and isomorphisms

Let A and B be two states over the same signature.

Definition. A homomorphism from A to B is a function α

from |A| into |B| such that α(A(l)) = B(α(l)) for each loca-
tion l of A.

Definition. An isomorphism from A to B is a homomorphism
from A to B which is a ono-to-one function from |A| onto |B|.

Lemma (Isomorphism). Let α be an isomorphism from A to B.
If U is a consistent update set for A, then α(U ) is a consistent
update set for B and α is an isomorphism from A+U to B+α(U ).
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Composition of update sets

U ⊕ V = V ∪ {(l , v ) ∈ U | there is no w with (l ,w ) ∈ V }

Lemma. Let U ,V ,W be update sets.

(U ⊕ V ) ⊕ W = U ⊕ (V ⊕ W )

If U and V are consistent, then U ⊕ V is consistent.

If U and V are consistent, then A + (U ⊕V ) = (A + U ) + V .
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Part 2

Mathematical Logic
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Terms

Let Σ be a signature.

Definition. The terms of Σ are syntactic expressions generated
as follows:

Variables x , y , z , . . . are terms.

Constants c of Σ are terms.

If f is an n-ary function name of Σ, n > 0, and t1, . . . , tn are
terms, then f (t1, . . . , tn) is a term.

A term which does not contain variables is called a ground term.

A term is called static , if it contains static function names only.

By t s
x we denote the result of replacing the variable x in term t

everywhere by the term s (substitution of s for x in t).

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 13

Variable assignments

Let A be a state.

Definition. A variable assignment for A is a finite function ζ

which assigns elements of |A| to a finite number of variables.

We write ζ [x 7→ a ] for the variable assignment which coincides with ζ
except that it assigns the element a to the variable x :

ζ [x 7→ a ](y) =

{
a, if y = x ;
ζ(y), otherwise.

Variable assignments are also called environments .
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Evaluation of terms

Definition. Let A be a state of Σ.
Let ζ be a variable assignment for A.
Let t be a term of Σ such that all variables of t are defined in ζ.
The value [[t ]]Aζ is defined as follows:

[[x ]]Aζ = ζ(x )

[[c]]Aζ = cA

[[f (t1, . . . , tn)]]Aζ = f A([[t1]]
A
ζ , . . . , [[tn ]]Aζ )
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Evaluation of terms (continued)

Lemma (Coincidence). If ζ and η are two variable
assignments for t such that ζ(x ) = η(x ) for all
variables x of t , then [[t ]]Aζ = [[t ]]Aη .

Lemma (Homomorphism). If α is a homomorphism
from A to B, then α([[t ]]Aζ ) = [[t ]]Bα◦ζ for each term t .

Lemma (Substitution). Let a = [[s ]]Aζ .

Then [[t s
x ]]Aζ = [[t ]]A

ζ [x 7→a ]
.
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Formulas

Let Σ be a signature.

Definition. The formulas of Σ are generated as follows:

If s and t are terms of Σ, then s = t is a formula.

If ϕ is a formula, then ¬ϕ is a formula.

If ϕ and ψ are formulas, then (ϕ ∧ ψ), (ϕ ∨ ψ) and (ϕ → ψ)
are formulas.

If ϕ is a formula and x a variable, then (∀x ϕ) and (∃x ϕ) are
formulas.

A formula s = t is called an equation.

The expression s 6= t is an abbreviation for ¬(s = t).
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Formulas (continued)

symbol name meaning

¬ negation not

∧ conjunction and

∨ disjunction or (inclusive)

→ implication if-then

∀ universal quantification for all

∃ existential quantification there is

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 18

Formulas (continued)

ϕ ∧ ψ ∧ χ stands for ((ϕ ∧ ψ) ∧ χ),

ϕ ∨ ψ ∨ χ stands for ((ϕ ∨ ψ) ∨ χ),

ϕ ∧ ψ → χ stands for ((ϕ ∧ ψ) → χ), etc.

The variable x is bound by the quantifier ∀ (∃) in ∀x ϕ (∃x ϕ).

The scope of x in ∀x ϕ (∃x ϕ) is the formula ϕ.

A variable x occurs free in a formula, if it is not in the scope of a
quantifier ∀x or ∃x .

By ϕ t
x we denote the result of replacing all free occurrences of the

variable x in ϕ by the term t . (Bound variables are renamed.)
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Semantics of formulas

[[s = t ]]Aζ =

{

true, if [[s ]]Aζ = [[t ]]Aζ ;

false, otherwise.

[[¬ϕ]]Aζ =

{

true, if [[ϕ]]Aζ = false;

false, otherwise.

[[ϕ ∧ ψ]]Aζ =

{

true, if [[ϕ]]Aζ = true and [[ψ]]Aζ = true;

false, otherwise.

[[ϕ ∨ ψ]]Aζ =

{

true, if [[ϕ]]Aζ = true or [[ψ]]Aζ = true;

false, otherwise.

[[ϕ→ ψ]]Aζ =

{

true, if [[ϕ]]Aζ = false or [[ψ]]Aζ = true;

false, otherwise.

[[∀x ϕ]]Aζ =

{

true, if [[ϕ]]A
ζ[x 7→a] = true for every a ∈ |A|;

false, otherwise.

[[∃x ϕ]]Aζ =

{

true, if there exists an a ∈ |A| with [[ϕ]]A
ζ[x 7→a] = true;

false, otherwise.
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Coincidence, Substitution, Isomorphism

Lemma (Coincidence). If ζ and η are two variable
assignments for ϕ such that ζ(x ) = η(x ) for all free
variables x of ϕ, then [[ϕ]]Aζ = [[ϕ]]Aη .

Lemma (Substitution). Let t be a term and a = [[t ]]Aζ .

Then [[ϕ t
x ]]Aζ = [[ϕ]]A

ζ [x 7→a ]
.

Lemma (Isomorphism). Let α be an isomorphism
from A to B. Then [[ϕ]]Aζ = [[ϕ]]Bα◦ζ .
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Models

Definition. A state A is a model of ϕ (written A |= ϕ),
if [[ϕ]]Aζ = true for all variable assignments ζ for ϕ.
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Part 3

Transition rules and runs of ASMs
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Transition rules

Skip Rule: skip

Meaning: Do nothing

Update Rule: f (s1, . . . , sn) := t

Meaning: Update the value of f at (s1, . . . , sn) to t .

Block Rule: P par Q

Meaning: P and Q are executed in parallel.

Conditional Rule: if ϕ then P else Q

Meaning: If ϕ is true, then execute P , otherwise execute Q .

Let Rule: let x = t in P

Meaning: Assign the value of t to x and then execute P .
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Transition rules (continued)

Forall Rule: forall x with ϕ do P

Meaning: Execute P in parallel for each x satisfying ϕ.

Choose Rule: choose x with ϕ do P

Meaning: Choose an x satisfying ϕ and then execute P .

Sequence Rule: P seq Q

Meaning: P and Q are executed sequentially, first P and then Q .

Call Rule: r (t1, . . . , tn)

Meaning: Call transition rule r with parameters t1, . . . , tn .
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Variations of the syntax

if ϕ then
P

else
Q

endif

if ϕ then P else Q

[do in-parallel]
P1
...
Pn

[enddo]

P1 par . . . par Pn

{P1, . . . ,Pn} P1 par . . . par Pn
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Variations of the syntax (continued)

do forall x :ϕ
P

enddo

forall x with ϕ do P

choose x :ϕ
P

endchoose

choose x with ϕ do P

step
P

step
Q

P seq Q
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Free and bound variables

Definition. An occurrence of a variable x is free in a transition
rule, if it is not in the scope of a let x , forall x or choose x .

let x = t in P︸︷︷︸

scope of x

forall x with ϕ do P
︸ ︷︷ ︸

scope of x

choose x with ϕ do P
︸ ︷︷ ︸

scope of x
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Rule declarations

Definition. A rule declaration for a rule
name r of arity n is an expression

r (x1, . . . , xn) = P

where

P is a transition rule and

the free variables of P are contained in the
list x1, . . . , xn .

Remark: Recursive rule declarations are allowed.
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Abstract State Machines

Definition. An abstract state machine M consists of

a signature Σ,

a set of initial states for Σ,

a set of rule declarations,

a distinguished rule name of arity zero called the
main rule name of the machine.
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Semantics of transition rules

The semantics of transition rules is defined in a calculus by rules:

Premise1 · · · Premisen

Conclusion
Condition

The predicate

yields(P ,A, ζ,U )

means:

The transition rule P yields the update set U in
state A under the variable assignment ζ.
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Semantics of transition rules (continued)

yields(skip,A, ζ, ∅)

yields(f (s1, . . . , sn) := t ,A, ζ, {(l , v )})

where l = (f , ([[s1]]
A

ζ , . . . , [[sn ]]Aζ ))

and v = [[t ]]Aζ

yields(P ,A, ζ,U ) yields(Q ,A, ζ,V )

yields(P par Q ,A, ζ,U ∪ V )

yields(P ,A, ζ,U )

yields(if ϕ then P else Q ,A, ζ,U )
if [[ϕ]]Aζ = true

yields(Q ,A, ζ,V )

yields(if ϕ then P else Q ,A, ζ,V )
if [[ϕ]]Aζ = false

yields(P ,A, ζ [x 7→ a ],U )

yields(let x = t in P ,A, ζ,U )
where a = [[t ]]Aζ

yields(P ,A, ζ [x 7→ a ],Ua) for each a ∈ I

yields(forall x with ϕ do P ,A, ζ,
⋃

a∈I Ua)
where I = range(x , ϕ,A, ζ)
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Semantics of transition rules (continued)

yields(P ,A, ζ [x 7→ a ],U )

yields(choose x with ϕ do P ,A, ζ,U )
if a ∈ range(x , ϕ,A, ζ)

yields(choose x with ϕ do P ,A, ζ, ∅)
if range(x , ϕ,A, ζ) = ∅

yields(P ,A, ζ,U ) yields(Q ,A + U , ζ,V )

yields(P seq Q ,A, ζ,U ⊕ V )
if U is consistent

yields(P ,A, ζ,U )

yields(P seq Q ,A, ζ,U )
if U is inconsistent

yields(P t1···tn
x1···xn

,A, ζ,U )

yields(r (t1, . . . , tn),A, ζ,U )

where r (x1, . . . , xn) = P is a
rule declaration of M

range(x , ϕ,A, ζ) = {a ∈ |A| : [[ϕ]]A
ζ[x 7→a] = true}
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Coincidence, Substitution, Isomorphisms

Lemma (Coincidence). If ζ(x ) = η(x ) for all free variables x of
a transition rule P and P yields U in A under ζ, then P yields U

in A under η.

Lemma (Substitution). Let t be a static term and a = [[t ]]Aζ .

Then the rule P t
x yields the update set U in state A under ζ iff

P yields U in A under ζ [x 7→ a ].

Lemma (Isomorphism). If α is an isomorphism from A to B

and P yields U in A under ζ, then P yields α(U ) in B under
α ◦ ζ.
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Move of an ASM

Definition. A machine M can make a move from state A

to B (written A
M

=⇒ B), if the main rule of M yields a
consistent update set U in state A and B = A + U .

The updates in U are called internal updates .

B is called the next internal state.

If α is an isomorphism from A to A
′, the following diagram commutes:

A
M

=⇒ B

α ↓ ↓ α

A
′ M

=⇒ B
′
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Run of an ASM

Let M be an ASM with signature Σ.

A run of M is a finite or infinite sequence A0,A1, . . . of states
for Σ such that

A0 is an initial state of M

for each n,

– either M can make a move from An into the next internal
state A

′
n and the environment produces a consistent set of

external or shared updates U such that An+1 = A
′
n + U ,

– or M cannot make a move in state An and An is the last state
in the run.

In internal runs, the environment makes no moves.

In interactive runs, the environment produces updates.
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Part 4

The reserve of ASMs
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Importing new elements from the reserve

Import rule: import x do P

Meaning: Choose an element x from the reserve, delete it from the
reserve and execute P .

let x = new (X ) in P abbreviates
import x do

X (x ) := true

P
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The reserve of a state

New dynamic relation Reserve.

Reserve is updated by the system, not by rules.

Res(A) = {a ∈ |A| : ReserveA(a) = true}

The reserve elements of a state are not allowed to be in the domain
and range of any basic function of the state.

Definition. A state A satisfies the reserve condition with respect
to an environment ζ, if the following two conditions hold for each
element a ∈ Res(A) \ ran(ζ):

The element a is not the content of a location of A.

If a is an element of a location l of A which is not a location for
Reserve, then the content of l in A is undef .
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Semantics of ASMs with a reserve

yields(P ,A, ζ [x 7→ a ],U )

yields(import x do P ,A, ζ,V )

if a ∈ Res(A) \ ran(ζ) and
V = U ∪ {((Reserve, a), false)}

yields(P ,A, ζ,U ) yields(Q ,A, ζ,V )

yields(P par Q ,A, ζ,U ∪ V )
if Res(A) ∩ El(U ) ∩ El(V ) ⊆ ran(ζ)

yields(P ,A, ζ [x 7→ a ],Ua) for each a ∈ I

yields(forall x with ϕ do P ,A, ζ,
⋃

a∈I

Ua)

if I = range(x , ϕ,A, ζ) and for a 6= b
Res(A) ∩ El(Ua) ∩ El(Ub) ⊆ ran(ζ)

El(U ) is the set of elements that occur in the updates of U .

The elements of an update (l , v ) are the value v and the elements of
the location l .
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Problem

Problem 1: New elements that are imported in parallel must be different.

import x do parent(x ) = root

import y do parent(y) = root

Problem 2: Hiding of bound variables.

import x do

f (x ) := 0

let x = 1 in

import y do f (y) := x

Syntactic constraint. In the scope of a bound variable the same
variable should not be used again as a bound variable (let, forall,
choose, import).
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Preservation of the reserve condition

Lemma (Preservation of the reserve condition).
If a state A satisfies the reserve condition wrt. ζ and P yields a
consistent update set U in A under ζ, then

the sequel A + U satisfies the reserve condition wrt. ζ,

Res(A + U ) \ ran(ζ) is contained in Res(A) \ El(U ).
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Permutation of the reserve

Lemma (Permutation of the reserve). Let A be a state that
satisfies the reserve condition wrt. ζ. If α is a function from |A|
to |A| that permutes the elements in Res(A) \ ran(ζ) and is the
identity on non-reserve elements of A and on elements in the range
of ζ, then α is an isomorphism from A to A.
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Independence of the choice of reserve elements

Lemma (Independence).
Let P be a rule of an ASM without choose. If

A satisfies the reserve condition wrt. ζ,

the bound variables of P are not in the domain of ζ,

P yields U in A under ζ,

P yields U ′ in A under ζ,

then there exists a permutation α of Res(A) \ ran(ζ) such that
α(U ) = U ′.
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