Detailed definition of ASMs

m Part 1: Abstract states and update sets

m Part 2: Mathematical Logic

m Part 3: Transition rules and runs of ASMs
m Part 4: The reserve of ASMs
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Signatures

m Each function name f has an arity, a non-negative integer.
= Nullary function names are called constants.
» Function names can be static or dynamic.

m Every ASM signature contains the static constants
undef, true, false.

Definition. A signature . is a finite collection of function names.

Signatures are also called vocabularies.
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Part 1

Abstract states and update sets

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland.

Classification of functions

static

function/relation/location

basic derived

dynamic

in
(monitored)

controlled shared

out

(interaction)
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States

Definition. A state 2 for the signature ' is a non-empty
set X, the superuniverse of 2, together with an interpre-
tation f* of each function name f of X.

mlf f is an n-ary function name of X, then A xn - X
mlf ¢ is a constant of 3, then Aex.
m The superuniverse X of the state 2 is denoted by ||

m The superuniverse is also called the base set of the state.
m The elements of a state are the elements of the superuniverse.
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Locations

States (continued)

m The interpretations of undef, true, false are pairwise different.
m The constant undef represents an undetermined object.

m The domain of an n-ary function name f in 2 is the set of all n-tuples
(a1, ..., an) € |A™ such that f&(ay, ..., ap) # undef2.

m A relation is a function that has the values true, false or undef.
m We write @ € R as an abbreviation for R(a) = true.

m [ he superuniverse can be divided into subuniverses represented by
unary relations.
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Updates and update sets

Definition. A location of 2 is a pair

{ai,...,an}.
= We write (/) for the content of the location [ in 2.

(f, (a1, ..., an))
where f is an n-ary function name and ay, ..., a, are elements
of 2.
m The value fgl(a,l7 ..., ap) is the content of the location in 2.

m The elements of the location are the elements of the set

Notation. If [ = (f,(ay,..., ay)) is a location for 2 and « is a
function defined on |2, then (1) = (f, (a(a1), ..., a(ap))).
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Definition. An update for 21 is a pair ([, v), where [ is a location
of 2 and v is an element of 2.

= The update is trivial, if v = ({).
m An update set is a set of updates.

Definition. An update set U is consistent, if it has no clashing
updates, i.e., if for any location [ and all elements v, w,

if ({,v) € U and (I,w) € U, then v = w.
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Firing of updates

Definition. The result of firing a consistent update set U in a
state 2 is a new state 2 + U with the same superuniverse as 2
such that for every location [ of 2:

o, if (Z,U) e U,;
@V+UXU—‘{mu% if there is no v with (I,v) € U.

The state A + U is called the sequel of 2 with respect to U.

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland.

Homomorphisms and isomorphisms

Let 2 and B be two states over the same signature.

Definition. A homomorphism from 2l to 28 is a function «
from || into |®B| such that a(A(1)) = B(«(l)) for each loca-
tion [ of .

Definition. An isomorphism from 2 to 8 is a homomorphism
from 2 to B which is a ono-to-one function from |2| onto |B|.

Lemma (Isomorphism). Let « be an isomorphism from 2 to 8.
If U is a consistent update set for 2, then a(U) is a consistent
update set for 98 and « is an isomorphism from 2+ U to B+a(U).

Composition of update sets
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Part 2

UV =VU{(l,v) € U|thereis no w with ([, w) € V}

Lemma. Let U, V, W be update sets.

(U V)eoW=Us (Ve W)

mlf U and V are consistent, then U @ V is consistent.

nlf U and V are consistent, then A+ (U@ V) = A+ U)+ V.
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Mathematical Logic

Copyright (©) 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland.

12



Terms Variable assignments

Let ) [ .
et X be a signature Let A be a state.

Definition. The terms of Y are syntactic expressions generated :
= llleve: Definition. A variable assignment for 2 is a finite function (

TS 5 e o ST T which assigns elements of |2| to a finite number of variables.

m Constants ¢ of ) are terms.

mIf f is an n-ary function name of X, n >0, and fy,..., 1, are m We write [z — a] for the variable assignment which coincides with
terms, then f(#,..., &) is a term. except that it assigns the element a to the variable x:
| a, if y=x;
= A term which does not contain variables is called a ground term. Clz = al(y) = C(y), otherwise.
m A term is called static, if it contains static function names only.
= By t% we denote the result of replacing the variable z in term ¢ . _ ,
i . m Variable assignments are also called environments.
everywhere by the term s (substitution of s for z in t).
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Evaluation of terms Evaluation of terms (continued)

Lemma (Coincidence). If ( and 7 are two variable

assignments for ¢ such that ((z) = n(z) for all
Definition. Let 2 be a state of Y. variables z of ¢, then [¢t]% [[tﬂ%

Let ¢ be a variable assignment for 2. S
Let ¢ be a term of X such that all variables of ¢ are defined in (.

The value M( s defined as follows: Lemma (Homomorphism). If a is a homomorphism
. [[55]]? = ((z) from 2 to B, then a([[t}]?l) = M?OC for each term ¢.
n [[c]}? =M

Lemma (Substitution). Let a = [[s}]%[

Then [t2]2 = [[t]]gl[%a].
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Formulas

Let X' be a signature.

Definition. The formulas of 3 are generated as follows:

mlf s and ¢ are terms of X, then s = ¢ is a formula.

mIf o is a formula, then = is a formula.

nlf ¢ and 1) are formulas, then (¢ A ), (¢ V ¥) and (p — )
are formulas.

mlIf © is a formula and x a variable, then (Vz ) and (Jz ) are
formulas.

m A formula s = t is called an equation.

= The expression s # t is an abbreviation for =(s = t).
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Formulas (continued)

Formulas (continued)

@ A A x stands for (0 A1) A x),
@V Vx stands for ((¢ V)V x),
@ AN — x stands for ((@ A1) — x), etc.

m The variable z is bound by the quantifier ¥ (3) in Vz ¢ (3z ¢).
m The scope of z in Vz ¢ (Jz ¢) is the formula .

m A variable x occurs free in a formula, if it is not in the scope of a
quantifier Vz or dx.

= By cp% we denote the result of replacing all free occurrences of the
variable z in ¢ by the term ¢. (Bound variables are renamed.)

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland.

symbol | name meaning
— | negation not
A | conjunction and
V| disjunction or (inclusive)
—  |implication if-then
YV | universal quantification |for all
J  |existential quantification |there is
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Semantics of formulas
PR R DR D'
[s = ﬂ]% _ [ true, i [s]¢ = [t]¢:
: false, otherwise.
true, if [o]? = false;
Hﬂ‘ﬁﬂ% — o H‘Pﬂg. f
false, otherwise.
true, if [p]* = true and []* = true;
A A ) ¢ ¢
Lo A 9lc {false, otherwise.
: A _ A .
[0V M]? _ [ true, if [p]¢ = true or [Y]¢ = true;
false, otherwise.
[0 — B]2 = true, if ﬂ@}]%_: Jalse or [{]2 = true;
¢ false, otherwise.
Vopld = true, if [[tp]]?[?wl] = true for every a € |2;
false, otherwise.
Bro? = t?"?t@, if there- exists an a € || with [[gp]]?[wa] = true;
¢ false, otherwise.
19 Copyright (©) 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 20



Coincidence, Substitution, Isomorphism Models

Lemma (Coincidence). If  and 7 are two variable
assignments for ¢ such that ((z) = n(z) for all free
variables z of ¢, then [[go]]? = [[cp}]%

2A Definition. A state 2 is a model of ¢ (written 2 |= ),
o

Lemma (Substitution). Let ¢ be a term and a = [{] if [@}]? = true for all variable assignments ( for .

Then [pZ2 = [01Z,, .o

Lemma (Isomorphism). Let o be an isomorphism
from 2 to B. Then [gp]]? = [¢]B

ao(”

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland. 21 Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland.
Part 3 Transition rules
Skip Rule: skip
Meaning: Do nothing
Update Rule: f(s1,---,8p) =t
Transition rules and runs of ASMs Meaning: Update the value of f at (sq,...,sp) to t.
Block Rule: P par @)

Meaning: P and () are executed in parallel.

Conditional Rule: if © then P else ()

Meaning: If o is true, then execute P, otherwise execute ().

Let Rule: letz=¢inP

Meaning: Assign the value of ¢ to = and then execute P.
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Transition rules (continued)

Forall Rule:

forall z with © do P

Meaning: Execute P in parallel for each z satisfying (.

Choose Rule:

choose z with ¢ do P

Meaning: Choose an z satisfying (o and then execute P.

Sequence Rule:

Meaning: P and () are executed sequentially, first P and then Q).

Call Rule:

P seq )

T(fl, ceey tn)

Meaning: Call transition rule r with parameters ¢, ..., 5.
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Variations of the syntax (continued)

do forall z:
P
enddo

forall z with © do P

choose z: ¢
P
endchoose

choose z with ¢ do P

step
P
step

Q

P seq @)
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Variations of the syntax

if © then
P
else

Q
endif

[do in-parallel] P; par ...
Py

if o then P else ()

par P,

Py
lenddo]
{Py,..., Py}

Py par ... par P,
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Free and bound variables

Definition. An occurrence of a variable z is free in a transition
rule, if it is not in the scope of a let z, forall z or choose .

letz=tin P

scope of x

forall z with v do P
—

scope of x

choose z with ¢ do P
~—

scope of x
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Rule declarations

Definition. A rule declaration for a rule
name 7 of arity n is an expression

r(xy,..., o) = P

where
m P is a transition rule and

m the free variables of P are contained in the
list z1,...,%p.

Remark: Recursive rule declarations are allowed.
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Semantics of transition rules

The semantics of transition rules is defined in a calculus by rules:

Premise; --- Premisey,

Condition

Conclusion

The predicate

yields(P,2(, ¢, U)

means:

The transition rule P yields the update set U in
state 2 under the variable assignment (.
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Abstract State Machines

Definition. An abstract state machine M consists of
ma signature ./,

ma set of initial states for X,

ma set of rule declarations,

m a distinguished rule name of arity zero called the
main rule name of the machine.
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Semantics of transition rules (continued)

yields(skip, 2, ¢, )
where [ = (f, ([[31]]?7 A [[s,,}]?))
yields(f(s1, ..., s0) = ¢, 2,¢, {({,v)}) and v = [t[2

yields(P, 24, ¢, U) vyields(Q, 2, ¢, V)
yields(P par @, 2, (, UU V)

yields(P, A, ¢, U)

if [o]® = ¢
yields(if o then P else (.21, (, U) if [p]¢ = true

(
(
(
(
(
yields(Q, 2, ¢, V)
(
(
(
(
(

S
yields(if  then P else Q,2,C, V) i |iglf¢ = et

yields(P, 2, C[z +— a], U)
yields(let z =t in P, 2, ¢, U)

— 142
where a = [¢[¢

yields(P, 2, ¢[z + a], U,) foreach a €I
yields(forall z with ¢ do P, 2, ¢, U,c; Us)

where I = range(z, ¢, 2, ()
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Semantics of transition rules (continued)

yields(P, 2, C[z +— a], U)

if o9,
yields(choose z with ¢ do P, 2, (, U) if a € range(z, v, %, ¢)

if o(z, ) =
yields(choose z with ¢ do P, 2L, ¢, ) if range(z, ,%,¢) = 0

yields(P, A, ¢, U) vyields(Q, A+ U,(, V)
yields(P seq Q,A,(, U@ V)

(
(
(
yields(P, 2, ¢, U)
(
(P
(r

if U is consistent

if U is inconsistent

yields(P seq @, 2, ¢, U)

yields oL Tn = 21,¢,U) where 7(z1,...,7,) = Pisa

yields(r(ty, ..., £,), %, ¢, U) rule declaration of M

range(w, p,%,¢) = {a € 12| : [¢]2, _,; = true}
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Move of an ASM

Definition. A mac]‘h4ine M can make a move from state 2l
to B (written A = B), if the main rule of M yields a
consistent update set U in state %l and B =2+ U.

m The updates in U are called internal updates.
n’B is called the next internal state.

If o is an isomorphism from 2 to A, the following diagram commutes:

A L

a | | «
o M g

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland.

35

Coincidence, Substitution, Isomorphisms

Lemma (Coincidence). If {(z) = n(z) for all free variables z of
a transition rule P and P yields U in 2l under ¢, then P yields U
in 2 under 7.

Lemma (Substitution). Let ¢ be a static term and a = M%

Then the rule P% yields the update set U in state 2 under ( iff
P yields U in 2 under ([z — al.

Lemma (Isomorphism). If « is an isomorphism from 2 to B
and P yields U in 2 under (, then P yields o(U) in B under

ao(.
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Run of an ASM

Let M be an ASM with signature 2.

A run of M is a finite or infinite sequence %Ay, %A, ... of states
for X' such that

m 2 is an initial state of M

m for each n,

—either M can make a move from 2, into the next internal
state 2/, and the environment produces a consistent set of
external or shared updates U such that 2,1 =2/, + U,

—or M cannot make a move in state 2, and 2l,, is the last state
in the run.

m [n internal runs, the environment makes no moves.
m In interactive runs, the environment produces updates.
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Part 4

The reserve of ASMs
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The reserve of a state

= New dynamic relation Reserve.
m Reserve is updated by the system, not by rules.
m Res(2) = {a € || : Reserve®(a) = true}

= The reserve elements of a state are not allowed to be in the domain
and range of any basic function of the state.

Definition. A state 2 satisfies the reserve condition with respect

to an environment (, if the following two conditions hold for each

element a € Res(A) \ ran(():

m The element a is not the content of a location of 2.

mlf a is an element of a location [ of 2l which is not a location for
Reserve, then the content of [ in 2 is undef.
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Importing new elements from the reserve

Import rule: import z do P

Meaning: Choose an element x from the reserve, delete it from the
reserve and execute P.

import = do
let = new(X) in P | abbreviates X(z) := true
P
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Semantics of ASMs with a reserve

yields(P, 2, ¢[z — a], U)
yields(import z do P,2(,(, V)

yields(P, 21, ¢, U) yields(Q,2A,¢, V)

( if a € Res(2) \ ran(¢) and
(
(
yields(P par Q,2,(, U U V)
(
(

V = U U{((Reserve, a), false)}

if Res(A) N EW(U) N EL(V) C ran(()

yields(P, 2, ([z — a], U,) foreach a €I if I = range(z, ¢,
yields(forall z with o do P,2,¢, |J U,) Res(&) N El(U,) N

acl

A, () and for a # b
(Us) € ran(()

m [I(U) is the set of elements that occur in the updates of U.

m The elements of an update (I, v) are the value v and the elements of
the location /.
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Problem

Problem 1: New elements that are imported in parallel must be different.

import z do parent(x) = root

import y do parent(y) = root

Problem 2: Hiding of bound variables.

import z do
f(z):=0
letz=1in
import y do f(y) .=z
Syntactic constraint. In the scope of a bound variable the same

variable should not be used again as a bound variable (let, forall,
choose, import).
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Preservation of the reserve condition

Lemma (Preservation of the reserve condition).

If a state 2 satisfies the reserve condition wrt. ¢ and P yields a
consistent update set U in 2 under (, then

m the sequel 2 + U satisfies the reserve condition wrt. ,

m Res(2A+ U) \ ran(() is contained in Res(A) \ ElI(U).
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Permutation of the reserve

Lemma (Permutation of the reserve). Let 2 be a state that
satisfies the reserve condition wrt. (. If « is a function from ||
to || that permutes the elements in Res(2A) \ ran(¢) and is the
identity on non-reserve elements of 2 and on elements in the range
of ¢, then « is an isomorphism from 2{ to 2.
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Independence of the choice of reserve elements

Lemma (Independence).

Let P be a rule of an ASM without choose. If

n 2 satisfies the reserve condition wrt. (,

mthe bound variables of P are not in the domain of (,
m P yields U in 2 under ¢,

m P yields U’ in 2 under (,

then there exists a permutation « of Res(2l) \ ran(() such that
a(U)=U".
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