7 Die Chomsky-Hierarchie Formale Sprachen, Grammatiken, Automaten

 Σ Alphabet, $L\subseteq \Sigma^*$ formale Sprachen.

- Terme über Signatur (S, Sigma)
- Formeln
- While Programme
- Partielle Korrektheitsformeln
- Ausdrücke (primitiv rekursiv, μ-rekursiv)

Wie beschreibt man Sprachen?

• Durch **Grammatiken** $G=(N,T,\Pi,Z)$ (spezielle Kalküle) N,T disjunkte Alphabete, Π Produktionen über $N\cup T$ $Z\in N$ Startsymbol. Von G **erzeugte** Sprache: $L(G)=\{w\in T^*:Z\vdash_\Pi w\}$, d. h. $Z\vdash_\Pi w_1\vdash_\Pi \cdots\vdash_\Pi w_n=w \qquad n\geq 1$

Problem: Wie entscheidet man $w \in L(G)$?

• Durch Automaten $A = (Q, N, T, \Pi, i, F)$ Q endliche Zustandsmenge, Π Produktionen über $N \cup T$, die Übergang zwischen Konfigurationen beschreiben, i Initialkontext, F Finalkonfigurationen. Von A akzeptierte Sprache:

$$L(A) = \{ w \in T^* : \exists f \in F \ i(w) \vdash_{\Pi} f \}$$

Problem: Wie entscheidet man $w \in L(A)$?

7.1 Grammatiken

7.1 Definition Allgemeine Grammatiken

Eine Grammatik ist ein 4 Tupel

$$G = (N, T, \Pi, Z)$$

- Mit N endliche Menge Nichtterminalsymbole,
- ullet T endliche Menge **Terminalsymbole**, $N\cap T=\varnothing$,
- Π endliche Menge von **Produktionen** $l \to r$ mit $l, r \in (N \cup T)^*$, wobei l mindestens ein Zeichen aus N enthält und $Z \in N$ Startsymbol ist.

Die von G erzeugte Sprache ist die Menge

$$L(G) = \{ w \in T^* : Z \vdash_{\Pi} w \}$$

D.h. es gibt eine Ableitung $\{Z,w_1,\ldots,w_n=w\}$ für w mit $Z \overset{1}{\vdash} w_1 \overset{1}{\vdash} w_2 \overset{1}{\vdash} \cdots \overset{1}{\vdash} w$, d. h. $Z \overset{n}{\vdash} w$ im Wortersetzungssystem $(N \cup T,\Pi)$, für ein $n \geq 1$.

Zwei G_1, G_2 Grammatiken sind **äquivalent**, falls $L(G_1) = L(G_2)$.

7.1 Grammatiken 206

Beispiele

7.2 Beispiel Schreibweisen

a)
$$G = (N, T, \Pi, Z), N = \{Z, Z_1\}, T = \{a, b\}$$

 $\Pi::Z\to aZ_1,Z_1\to bZ_1\mid a$ 3 Produktionen.

Behauptung: $L(G) = \{ab^n a : n \in \mathbb{N}\}$

Beweis: "⊃" Gebe Ableitung an.

$$``\subseteq`` L(Z_1,G) = \{w \in T^* : Z_1 \vdash_\Pi w\} = \{b^n a : n \in \mathbb{N}\}$$

Induktion nach $i:Z_1 \overset{i}{\ \underset{\Pi}{\vdash}} w$, $w \in T^*$

$$i = 1 \leadsto w = a$$

$$i \rightarrow i+1$$
 $Z_1 \stackrel{\imath}{\vdash} b^i Z_1 \vdash b^i a$

b)
$$G = (N, T, \Pi, Z), N = \{Z\}, T = \{a, b\}$$

$$\Pi :: Z \to aZb \mid \varepsilon$$

Behauptung: $L(G) = \{a^n b^n : n \in \mathbb{N}\}$

Sei
$$\alpha \in V^* = (N \cup T)^*$$
, $\alpha \not\in T^*$, $Z \stackrel{n}{\vdash} \alpha$, so $\alpha = a^n Z b^n$.

Induktion nach n.

Dann "⊆" klar, "⊇" Angabe einer Ableitung.

c)
$$N = \{Z, T, S, A, B\}, T = \{a, b\}$$

$$\Pi: Z \to TS, T \to aTA \mid bTB \mid \varepsilon, S \to \varepsilon$$
 $Aa \to aA, \quad Ab \to bA, \quad AS \to aS$
 $Ba \to aB, \quad Bb \to bB, \quad BS \to bS$

Beispiele (Fort.)

Beispiel einer Ableitung:

$$Z \stackrel{1}{\vdash} TS \stackrel{1}{\vdash} aTAS \stackrel{1}{\vdash} abTBAS \stackrel{1}{\vdash} abBAS \stackrel{1}{\vdash} abBaS \stackrel{1}{\vdash} abBaS \stackrel{1}{\vdash} ababS \vdash ababS \stackrel{1}{\vdash} ababS \stackrel{1}{\vdash}$$

Behauptung: $L(G) = \{ww : w \in T^*\}$

Für w=w(a,b), sei $\hat{w}=w(A,B)$ das entsprechende Wort in den Großbuchstaben. Weiterhin sei ρ die Spiegelungsfunktion.

$$\begin{tabular}{l} $`,\supseteq`` Z \vdash_\Pi wT\rho(\hat w)S \vdash_{T\to\varepsilon} w\rho(\hat w)S \vdash_\Pi wwS \vdash_W w \\ $`,\subseteq`` $ Normierte Ableitungen: Erst T-Regeln bis $T\to\varepsilon$ \\ $Z \vdash TS \vdash_\Pi wT\rho(\hat w)S \vdash_W \rho(\hat w)S \vdash_\Pi ww$ \\ \end{tabular}$$

Groß \rightarrow klein, Vertauschregeln, mit $AS \rightarrow aS$, $BS \rightarrow bS$

d)
$$N=\{Z,A,B\},\,T=\{a,b\}$$
 $\Pi::Z\to\varepsilon\mid aAbZ\mid bBaZ,\quad A\to\varepsilon\mid aAbA,\quad B\to\varepsilon\mid bBaB$
Behauptung: $L(G)=\{w\in T^*:|w|_a=|w|_b\}$
 $Z\vdash_\Pi\alpha\in(N\cup T)^*,\,|w|_a=|w|_b$ klar aus Regeln, also $L(G)\subseteq\{w\in T^*\mid |w|_a=|w|_b\}$

"". Ableitung angeben + Induktion $|w|_a = |w|_b$.

Eine andere Möglichkeit: $\Pi':Z\to \varepsilon\mid aZb\mid bZa\mid ZZ$, dann L(G')=L(G). Also sind G und G' äquivalent.

Frage: Einfachste Grammatik, die eine Sprache L erzeugt?

7.1 Grammatiken 208

Beispiele (Forts.)

e)
$$N=\{Z,B,C\},\,T=\{a,b,c\}$$
 $\Pi::Z\to aZBC\mid aBC,\quad CB\to BC,$
 $aB\to ab,\,bB\to bb,$
 $bC\to bc,\,cC\to cc$

$$\mathbf{Behauptung}:\,L(G)=\{a^nb^nc^n:n\ge 1\}$$
 \square " $Z \vdash a^{n-1}S(BC)^{n-1} \vdash S_{S\to aBC} \vdash a^n(BC)^n \vdash S_{S\to aBC} \vdash a^nb^nc^n$

" \subseteq " Jede Ableitung lässt sich "normieren", erst alle Anwendungen von Z-Regeln (d. h. keine $CB \to BC$ Anwendung), dann die restlichen Regeln.

$$Z \vdash_{\Pi} a^n ZW(B,C) \vdash^{1} a^{n+1}BCW(B,C) \vdash$$

$$a^{n+1}b^{n+1}c^{n+1}$$

$$\operatorname{mit} |W(B,C)|_B = |W(B,C)|_C = n$$

Aus aW(B,C) mit $|W(B,C)|_B = |W(B,C)|_C$ lässt sich nur ab^nc^n ableiten (als terminales Wort).

7.1 Grammatiken 209

7.2 Chomsky Hierarchie

7.3 Definition Klassifikation nach Form der Produktionen

Sei $G = (N, T, \Pi, Z)$ Grammatik.

- 0) G ist vom **Typ 0**, falls keine Einschränkungen.
- 1) G ist vom **Typ 1 (kontext-sensitiv)**, falls $l \to r \in \Pi$, so l = xAy, r = xzy mit $x, y \in (N \cup T)^*$, mit $A \in N$, $z \in (N \cup T)^+$ (d. h. $|l| \leq |r|$). **Ausnahme**: $Z \to \varepsilon$ (ε Regel) erlaubt, falls Z in keiner rechten Seite einer Produktion vorkommt.
- 2) G ist vom **Typ 2 (kontext-frei)**, falls $l \to r \in \Pi$, so l = A, r = z mit $A \in N, z \in (N \cup T)^*$.
- 3) G ist vom **Typ 3 (rechts-linear)**, falls $l \to r \in \Pi$, so $l = A, r = aB|a|\varepsilon, A, B \in N, a \in T$.

Eine Sprache $L \subseteq T^*$ heißt **vom Typ i**, falls es eine Grammatik G vom Typ i gibt mit L = L(G).

Im **Beispiel** 7.2: a) Typ 3, b) Typ 2, c) Typ 0, d) Typ 2, e) Typ 0.

Beachte: G rechts-linear, so G kontext-frei, G kontext-frei ohne ε -Regeln, so G kontext-sensitiv.

Normierungen für Grammatiken

7.4 Bemerkung Normierte Grammatiken - Eigenschaften

 Es gibt stets eine äquivalente Grammatik vom gleichen Typ, für die das Startsymbol in keiner rechten Seite einer Produktion vorkommt.

$$\Pi_1 = \Pi \cup \{Z_1 \to Z\}$$

Für Typ 3 $\{Z_1 \to \alpha \colon \mathrm{für} \ Z \to \alpha \in \Pi\}$

- $\bullet \;$ Für eine kontext-freie Grammatik G und Wörter $x,y,z,u,v \in (N \cup T)^*$ gilt
 - $x \vdash_{\Pi} y$ so $uxv \vdash_{\Pi} uyv$ (gilt sogar für beliebige G)
 - $xy \stackrel{n}{\vdash}_{\Pi} z$, so gibt es $z_1, z_2 \in (N \cup T)^*$ mit $z = z_1 z_2$ und $x \stackrel{\leq n}{\vdash}_{\Pi} z_1$, $y \stackrel{\leq n}{\vdash}_{\Pi} z_2$ (Ind. nach n).
- Für jede kontext-freie Grammatik G gibt es eine ε -freie kontext-freie Grammatik G_1 mit $L(G_1) = L(G) \{\varepsilon\}$. Ist $\varepsilon \in L(G)$, dann gibt es eine kontext-freie Grammatik G' mit L(G') = L(G), wobei die einzige Regel in G', die ε als rechte Seite hat, $Z' \to \varepsilon$ ist. Hierbei ist Z' Startsymbol von G', und Z' kommt in keiner rechten Seite einer Regel vor.

Normierungen - Abschlusseigenschaften

Beweisidee:

Sei
$$U_1 = \{X : X \to \varepsilon \in \Pi\}$$
 und $U_{i+1} = U_i \cup \{X : X \to \alpha \in \Pi, \alpha \in U_i^*\}.$

Offenbar $U_i\subseteq N$, $U_i\subseteq U_{i+1}$. D. h. es gibt k mit $U_k=U_{k+1}$ und somit $U_k=U_{k+v}$, für $v=0,1,2,3\ldots$

Behauptung: $X \vdash_{\Pi} \varepsilon \text{ gdw } X \in U_k$. (Beweis: Übung).

Insbesondere: $\varepsilon \in L(G) \text{ gdw } Z \in U_k$.

Definiere: $G_1 = (N, T, \Pi_1, Z)$ mit

 $X \to \alpha' \in \Pi_1$ gdw es gibt $X \to \alpha \in \Pi, \alpha' \neq \varepsilon$ entsteht durch Streichen von Buchstaben in U_k (kein Streichen erlaubt).

7.5 Lemma Abschlusseigenschaften von \mathcal{L}_i

 \mathcal{L}_i ist abgeschlossen bzgl. \cup , \circ , * für i = 0, 1, 2, 3.

Beweis:

$$L_1 \circ L_2 = \{uv : u \in L_1, v \in L_2\}$$

$$L^* = \{u_1 \dots u_n : n \in \mathbb{N}, u_i \in L\} = \bigcup_{n \ge 0} L^n \quad (L^0 = \{\varepsilon\})$$

Sei L_j erzeugt von $G_j=(N_j,T_j,\Pi_j,Z_j)$. G_j vom Typ i (i=0,1,2,3), j=1,2.

Abschlusseigenschaften

O.B.d.A. auf linken Seiten von Produktionen kommen keine terminalen Buchstaben vor. (Für $a \in T$ Platzhalter $A_a \in N$, ersetze Vorkommen von a in linker Seite durch A_a . Hinzunahme von Produktionen $A_a \to a$). $N_1 \cap N_2 = \varnothing$.

- a) \cup : G= $(N_1\cup N_2\cup \{Z\}, T_1\cup T_2, \Pi_1\cup \Pi_2\cup \{Z\to Z_1\mid Z_2\})$ Für Typ (3): $Z\to \alpha$ für $Z_1\to \alpha\in \Pi_1$ oder $Z_2\to \alpha\in \Pi_2$. G ist vom Typ i und $L(G)=L(G_1)\cup L(G_2)$.
- b) $\circ: G = (N_1 \cup N_2 \cup \{Z\}, T_1 \cup T_2, \Pi_1 \cup \Pi_2 \cup \{Z \to Z_1 Z_2\})$ G ist vom Typ i für i=0,1,2.

Behauptung: $L(G) = L(G_1) \circ L(G_2)$.

$$\square \subseteq Z \vdash_{\Pi} Z_1 Z_2 \vdash_{\Pi} u Z_2 \vdash uv \text{ für } u \in L(G_1), v \in L(G_2).$$

$$\subseteq Z \vdash_{\Pi}^{1} Z_{1}Z_{2} \vdash_{\Pi} X \text{ und } X \in (T_{1} \cup T_{2})^{*}.$$

$$\operatorname{Dann}\, Z_1 \underset{\Pi_1}{\vdash} X_1 \text{ und } Z_2 \underset{\Pi_2}{\vdash} X_2 \text{, } X = X_1 X_2.$$

Da linke Seiten nur aus nichtterminalen Buchstaben und $N_1 \cap N_2 = \emptyset$, d. h. keine Vermischungen.

Für Typ 3 - Grammatiken:

 Π_1' entstehe aus Π_1 durch Ersetzen von jeder Produktion $X \to a|arepsilon$ durch $X \to aZ_2$ bzw. $X \to \alpha$ für $Z_2 \to \alpha \in \Pi_2$.

$$G=(N_1\cup N_2,T_1\cup T_2,\Pi'\cup\Pi_2,Z_1)$$
 erfüllt Forderung.

Abschlusseigenschaften (Fort.)

c) $*: L^* = \{w: \exists n \in \mathbb{N}, w \in L^n, w = v_1 \dots v_n, v_i \in L\}$ Sei $G = (N_1 \cup \{Z\}, T_1, \Pi_1 \cup \{Z \to \varepsilon, Z \to Z_1, Z_1 \to Z_1 Z_1\})$. Dann ist G vom Typ i für i = 0, 1, 2 und $L(G) = L(G_1)^*$. Für Typ 3 Grammatiken: Übung.

7.6 Folgerung

• Jede endliche Sprache ist vom Typ 3:

$$w = a_1 \dots a_n \quad a_i \in T \quad n \ge 0$$

$$Z \to a_1 A_1, A_1 \to a_2 A_2, \dots, A_{n-1} \to a_n A_n, A_n \to \varepsilon$$

$$N = \{Z, A_1, \dots, A_n\}$$

- $\mathcal{L}_{\text{endl}} \subsetneq \mathcal{L}_{T_3} \subsetneq \mathcal{L}_{T_2} \subsetneq \mathcal{L}_{T_1} \subsetneq \mathcal{L}_{T_0}$
- Wie ordnen sich die Sprachklassen in Hierarchie ein?

$$\mathcal{L}_{endl} \subsetneq \mathcal{L}_{prim-rek} \subsetneq \mathcal{L}_{rek-entsch.} \subsetneq \mathcal{L}_{rek-aufzb.}$$

Ist L(G) entscheidbar für beliebiges G ?

7.7 Lemma

Sei $G=(N,T,\Pi,Z)$ Grammatik, dann ist L(G) rekursiv aufzählbar.

Idee: Führe systematisch alle Ableitungen aus Z der Länge nach durch.

Ableitbare Wörter aus $(N \cup T)^*$ in $1, 2, 3 \dots$ Ableitungsschritte.

L(G) ist rekursiv aufzählbar

- Verfahren hält mit Eingabe $w \ \mathrm{gdw} \ s \ \overset{i}{\vdash} \ w$ für ein i d.h. w kommt in Stufe i vor.
- Verfahren ist effektiv und hält bei Eingabe $w \text{ gdw } w \in L(G)$.

Formal: Sei $\Sigma = N \dot{\cup} T \dot{\cup} \{\vdash\}, \Pi = \{l_1 \rightarrow r_1, \dots, l_n \rightarrow r_n\}$ und

$$M=\{w\in \Sigma^*\colon \text{Es gibt } w_1,\ldots,w_m\in (N\cup T)^* \text{ mit } \\ w=\vdash Z\vdash w_1\vdash\cdots\vdash w_m\vdash \text{ und } \\ Z\vdash w_1,w_i\vdash w_{i+1} \text{ für } i\geq 1\}$$

M ist die Menge der Ableitungen in G.

Für $\alpha, \beta \in V^*$ sei

$$Q_i(\alpha, \beta)$$
 gdw $\alpha \vdash_{l_i \to r_i} \beta$ gdw
$$\exists \alpha', \alpha'' \leq \alpha. \ \alpha = \alpha' l_i \alpha'' \land \beta = \alpha' r_i \alpha''$$

$$Q(\alpha, \beta)$$
 gdw $\alpha \vdash_{\Pi} \beta$ gdw $Q_1(\alpha, \beta) \lor \cdots \lor Q_n(\alpha, \beta)$.

Offenbar
$$Q_1, \ldots, Q_n \in \mathcal{P}(\Sigma), Q \in \mathcal{P}(\Sigma)$$
.

M ist primitiv rekursiv (verwende Anfangswort, Teil- und Endwort).

 $\bullet x \in L(G) \text{ gdw } \exists w. \ w \in M \land \mathsf{Endwort}(\vdash x \vdash, w).$

Umkehrung

7.8 Lemma

 $L\subset \Sigma^*$ rekursiv aufzählbar, dann gibt es eine Grammatik $G=(N,\Sigma,\Pi,Z)$ mit L=L(G).

Beweisidee: Simuliere mit der Grammatik die TM-Schritte einer TM die L akzeptiert rückwärts.

Sei o.B.d.A. T eine TM, die L akzeptiert mit nur einem Haltezustand q. D. h. $F=\{q\}$. $T=(Q,\Sigma,\Gamma,\delta,q_0,F)$

Die Konfigurationen von T werden in Klammern eingeschlossen: $\lceil uq_iv \rceil$.

Produktionen von *G* bewirken:

1-Gruppe: $Z \vdash_G [uqv] \quad u,v \in \Gamma^* \quad (u,v \text{ lang genug}).$

2-Gruppe: $[k_{i+1}] \vdash_G [k_i]$, falls $k_i \vdash_T k_{i+1}$, dabei ist $|k_i| = |k_{i+1}|$.

Dann gilt: $[uqv] \vdash_G [\Box^s q_0 \Box x \Box^t]$, falls $q_0 \Box x \vdash_T^* uqv \quad (x \in \Sigma^*)$.

3-Gruppe: $[\Box^s q_0 \Box x \Box^t] \vdash_G x$ für alle $s, t \in \mathbb{N}, x \in \Sigma^*$.

Wählt man s,t genügend groß, so verlässt die TM bei ihrer Berechnung nie den Block $\Box^s x \Box^t$.

Produktionen (Forts.)

Produktionen 1-Gruppe:

$$Z \rightarrow [Z_0], Z_0 \rightarrow Z_0 b \mid bZ_0 \mid q \ (b \in \Gamma).$$

Produktionen 2-Gruppe: z. B. aus Turing Programm

$$q_i: a \longrightarrow q_{i+1}a \longrightarrow q_ib \quad b \in \Gamma$$

$$q_i: R \longrightarrow bq_{i+1} \longrightarrow q_ib \quad b \in \Gamma$$

$$q_i: A$$
 \longrightarrow $q_{i+1}A$ \longrightarrow q_ib $b \in \Gamma$
 $q_i: R$ \longrightarrow bq_{i+1} \longrightarrow q_ib $b \in \Gamma$
 $q_i: L$ \longrightarrow $q_{i+1}b$ \longrightarrow bq_i $b \in \Gamma$
 $q_i: q_k$ \longrightarrow q_k \longrightarrow q_i

$$q_i:q_k \longrightarrow q_k \longrightarrow q_i$$

$$q_i:a,q_k \quad \leadsto \quad q_ka \quad \longrightarrow \quad q_ia \quad \text{ und } q_{i+1}b \longrightarrow q_ib \ (b \neq a)$$

Produktionen 3-Gruppe:

$$q_0 \to T_1$$
, $\square T_1 \to T_1$, $\lceil T_1 \square \to T_2 \rceil$

$$T_2b \rightarrow bT_2$$
, $b \in \Sigma$, $T_2 \rightarrow T_3$,

$$T_3 \square \to T_3, T_3] \to \varepsilon.$$

G ist Typ-0 Grammatik!

Hierbei ist $N=\{Z,Z_0,T_1,T_2,T_3,\lceil,\rceil\}\cup Q\cup (\Gamma-\Sigma)$

Es gilt $Z \vdash_G x \in \Sigma^* \text{ gdw } T$ akzeptiert x, d. h. L(G) = L.

7.9 Satz

 $L\subseteq \Sigma^*$ ist rekursiv aufzählbar gdw es gibt eine Typ-0 Grammatik $G = (N, \Sigma, \Pi, Z)$ mit L = L(G).

Insbesondere sind Typ-0-Sprachen abgeschlossen gegenüber ∩ aber nicht gegen ¬ (Komplement) und es gibt nicht entscheidbare Typ-0-Sprachen.

Wortprobleme

7.10 Definition Wortproblem, uniformes Wortproblem

Sei $G=(N,\Sigma,\Pi,Z)$. Das Wortproblem für G ist definiert:

$$WP(x) \text{ gdw } x \in L(G) \quad (x \in \Sigma^*)$$

Ist $\mathcal G$ eine Klasse von Grammatiken, so ist das **uniforme Wortpro-blem** für $\mathcal G$ definiert durch

$$UWP(G, x) \text{ gdw } x \in L(G) \quad (G \in \mathcal{G}, x \in T_G^*)$$

7.11 Folgerung

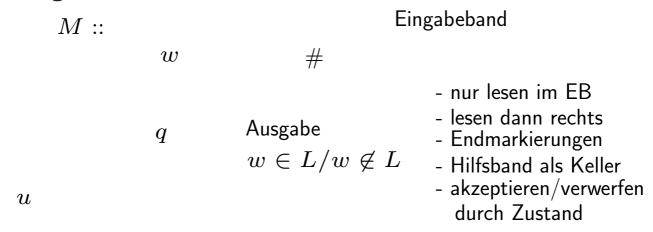
- UWP ist nicht entscheidbar für Typ-0 Grammatik.
- Es gibt Typ-0 Grammatik mit unentscheidbaren WP.
- Das uniforme WP für Typ 1 Grammatiken ist primitiv rekursiv.

$$\mathcal{L}_{\text{endl.}} \subsetneq \mathcal{L}_{\text{Typ}-3} \subseteq \mathcal{L}_{\text{Typ}-2} \subseteq \mathcal{L}_{\text{Typ}-1} \subseteq \mathcal{L}_{\text{prim-rek}} \subsetneq \mathcal{L}_{\text{Typ}-0} = \mathcal{L}_{\text{rek-aufzb.}}$$

endliche	Keller-	linear	TM als
Automaten	automaten	beschränkte	akzeptierende
EA	PDA	Automaten	Automaten
		LBA	

Formale Sprachen und akzeptierende Automaten

Einschränkungen der Turing-Maschinen: Möglichkeiten



Konfigurationen: $uqw \vdash_M u'q'w'$ mit Hilfe von Produktionen.

7.12 Definition Automaten für Sprachen

Ein Automat (oder Akzeptor) $A=(Q,N,T,\Pi,i,F)$ mit endlicher Zustandsmenge Q, endlicher Menge N von Hilfssymbolen und endlichem Eingabealphabet T, so dass Q,N,T paarweise disjunkt sind, $i:T^* \to (N \cup T)^* \cdot Q \cdot (N \cup T)^*$: Initialkonfiguration zur Eingabe $w \in I^*$, einer endlichen Menge von Finalkonfigurationen F der Form $lqr \in (N \cup T)^*q(N \cup T)^*$ und einer endlichen Menge Π von Produktionen der Form $lqr \to l'q'r'$ $(l,l',r,r' \in (N \cup T)^*q,q' \in Q)$.

 $L(A) = \{ w \in T^* : \exists f \in F \quad i(w) \vdash_{\Pi} f \} \text{ die von } A \text{ akzeptierte Sprache}.$

7.3 Endliche Automaten - reguläre Sprachen - Typ 3-Sprachen

Typ-3 Grammatik: $G=(N,T,\Pi,\Sigma)$, Π mit Produktionen der Form $A\to aB|a|\varepsilon$, $A,B\in N,a\in T$

7.13 Definition Endliche Automaten

- a) Ein (deterministischer) endlicher Automat (DEA) ist ein 5-Tupel $A=(Q,\Sigma,\Pi,q_0,F)$ mit $q_0\in Q$ Startzustand, $F\subset Q$ Menge der Finalzustände (akzeptierende Zustände). $\Pi=\{qa\to q': q,q'\in Q,a\in\Sigma\}$: Für jedes Paar $(q,a)\in Q\times \Sigma$ gibt es genau eine Produktion $qa\to q'$.
- b) Ein indeterministischer endlicher Automat (NEA) ist ebenfalls ein 5-Tupel A wie eben mit dem Unterschied, dass es für jedes Paar $(q,a) \in Q \times \Sigma$ eine endliche (eventuell leere) Menge von Produktionen der Form $qa \to q'$ sowie Produktionen der Form $q \to q'$ (Spontanübergänge, ε -Übergänge) gibt.
- c) Initialkonfiguration bei Eingabe $w\in \Sigma^*:q_0w$, d. h. $i(w)=q_0w$ für $w\in \Sigma^*$.

Finalkonfigurationen: F.

d) Die von A akzeptierte Sprache ist die Menge $L(A) = \{ w \in \Sigma^* : q_0 w \vdash_{\Pi} f \text{ für ein } f \in F \}.$ Schreibe auch $q_0 w \vdash_A f$.

Beispiele - Darstellungsarten Zustandsgraph oder Automatendiagramme

7.14 Beispiel

1.
$$A = (\{q_0, q_1\}, \{a, b\}, \Pi, q_0, \{q_0\})$$

 $\Pi :: q_0 a \to q_0, q_0 b \to q_1, q_1 a \to q_1, q_1 b \to q_0$

Behauptung: $q_0w \vdash_A q_0 \text{ gdw } |w|_b$ gerade.

Beweis: Induktion nach $|w|_b$, d. h. $L(A) = \{w \in \{a, b\}^* : |w|_b \text{ gerade}\}.$

Diagramm: Knoten \leftrightarrow Zustand, gerichtete Kante \leftrightarrow Produktion

$$q_0$$
 Anfangszustand

$$\begin{array}{c|ccc} q_0 & q_0 & q_1 \\ q_1 & q_1 & q_0 \end{array}$$

Beispiele - Darstellungsarten Zustandsgraph oder Automatendiagramme (Forts.)

Bei indeterminierten Automaten: mehrere Kanten aus Zustand können mit Buchstaben a oder ε markiert sein.

Tabellendarstellung: Zustandsmengen $+ \varepsilon$ -Spalte.

2. Betrachte

Behauptung: $L(A) = \{ab, aba\}^*$ " \supseteq " klar. " \subseteq " Es gelte: $q_0w \vdash_A q_0$.

Dann $w = \varepsilon$ oder w fängt mit a an. $q_0aw' \vdash q_1w' \vdash_A q_0 \leadsto w'$ fängt mit b an. q_0w'' Induktion q_1bw'' q_2w'' w'' mit a +Ind.

Beispiele (Fort.)

3. $L = \{w \in \{a, b\}^* : w \text{ enthält nicht } bbb \text{ als TW}\}.$

b Beschreibung der Wege, die von q_0 nach q_i führen.

$$q_0 \leadsto q_0 : \varepsilon, \{a\}^*, \{a\}^* \{ba\}^* \{a\}^*, a^*bbaa^*, \dots$$

Reguläre Ausdrücke zur Beschreibung von Sprachen.

4. Betrachte

Operationen: Verkettung, Vereinigung, Iteration (*).

Beispiele (Fort.)

5. Dezimalzahlen, die durch 5 teilbar sind.

	0	1	2	3	4	5	6	7	8	9
q_0	$egin{array}{c} q_0 \ q_0 \ q_0 \ q_0 \ q_0 \ \end{array}$	q_1	q_2	q_3	q_4	q_0	q_1	q_2	q_3	q_4
q_1	q_0	q_1	q_2	q_3	q_4	q_0	q_1	q_2	q_3	q_4
q_2	q_0	q_1	q_2	q_3	q_4	q_0	q_1	q_2	q_3	q_4
q_3	q_0	q_1	q_2	q_3	q_4	q_0	q_1	q_2	q_3	q_4
q_4	q_0	q_1	q_2	q_3	q_4	q_0	q_1	q_2	q_3	q_4

$$q_0w \vdash q_i \text{ gdw } w \equiv i \pmod{5}, F = \{q_0\}$$

Automat mit 2 Zustände genügt!

→ Äquivalente Automaten, minimale Automaten.

Endliche Automaten und Typ-3-Grammatiken

7.15 Lemma Charakterisierungssatz

Ist $A=(Q,\Sigma,\Pi,q_0,F)$ EA, so ist L(A) eine Typ-3 (rechtslineare) Sprache.

Beweis:

Definiere rl-Grammatik $G=(N,\Sigma,\Pi_G,Z)$ mit N=Q, $Z=q_0$, so dass für alle $x\in\Sigma^*$ gilt:

$$(*) \qquad q_0x \vdash_A q_i \text{ gdw } Z \vdash_G xq_i$$

Endliche Automaten und Typ-3-Grammatiken

Definiere:

$$\Pi_{G} = \{q_{i} \rightarrow aq_{j} : q_{i}a \rightarrow q_{j} \in \Pi\}$$

$$\cup \{q_{i} \rightarrow a : q_{i}a \rightarrow q \in \Pi \land q \in F\}$$

$$\cup \{Z \rightarrow \varepsilon : \text{falls } q_{0} \in F\}$$

G ist rechts-lineare Grammatik.

Behauptung: (*) gilt für G:

Beweis: Induktion nach |x|.

$$\begin{array}{ll} \text{"}\Rightarrow \text{"} & x=\varepsilon,\,q_0\varepsilon \underset{A}{\vdash} q_0,\,Z=q_0 \underset{G}{\vdash} q_0 \\ x \leadsto xa,\,q_0x \underset{A}{\vdash} q_i,\,\operatorname{Ind.} \operatorname{Vor} Z \underset{G}{\vdash} xq_i \\ \operatorname{Sei} q_ia \to q_j \in \Pi,\,\operatorname{dann} q_0xa \underset{A}{\vdash} q_ia \underset{A}{\vdash} q_j \\ \operatorname{Da} q_i \to aq_j \in \Pi_G \operatorname{folgt} Z \underset{G}{\vdash} xq_i \overset{1}{\vdash} xaq_j \\ \text{"}\Leftarrow \text{"} & x=\varepsilon,\,Z \underset{G}{\vdash} q_i,\,\operatorname{dann} q_i=q_0 \\ x \leadsto xa,\,Z \underset{G}{\vdash} xaq_j.\,\operatorname{Da} \Pi_G \operatorname{rechts-linear ist,\,folgt} \\ Z \underset{G}{\vdash} xq_i \overset{1}{\vdash} xaq_j \operatorname{mit} \operatorname{Regel} q_i \to aq_j \in \Pi_G. \\ \operatorname{Dann\,aber} q_ia \to q_j \in \Pi. \\ \operatorname{Nach\,Ind.} \operatorname{Vor:} q_0x \underset{A}{\vdash} q_i \operatorname{und\,somit} q_0xa \underset{A}{\vdash} q_ia \overset{1}{\vdash} q_j. \end{array}$$

Endliche Automaten und Typ-3-Grammatiken (2)

Behauptung: L(A) = L(G)

$$\label{eq:continuous_continuous$$

Beachte:

G ist rechts-linear und "eindeutig", d. h. ist $w \in L(G)$, so gibt es genau eine Ableitung für w.

Falls A NEA, so Problem mit Spontanübergängen, diese würden Regeln der Form $q_i \to q_j$ bedeuten. Sonst ok.

Beispielkonstruktion

7.16 Beispiel Sei $A = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \Pi, q_0, \{q_0\}).$

П	a	b
q_0	q_2	q_1
q_1	q_3	q_0
q_2	q_0	q_3
q_3	q_1	q_2

$$G_A = (N, \Sigma, \Pi_G, Z), N = \{q_0, \dots, q_3\}, Z = q_0$$

$$\Pi_G: q_0 \to aq_2|bq_1|\varepsilon \quad (q_0 \in F)$$

$$q_1 \to aq_3|bq_0|b \quad (q_0 \in F)$$

$$q_2 \to aq_0|a|bq_3 \quad (q_0 \in F)$$

$$q_3 \to aq_1|bq_2$$

Beachte: $|\Pi_G| \leq 2 \cdot |\Sigma| \cdot |Q| + 1$.

Frage: Wird jede Typ-3 Sprache von einem DEA akzeptiert?

Problem: Bei Typ-3 Grammatiken ist $A \to aB$ und $A \to aC$ erlaubt, d. h. Indeterminismus.

Endliche Automaten und Typ-3-Grammatiken (3)

7.17 Lemma Charakterisierungssatz

Zu jeder Typ-3 Sprache L gibt es NEA A mit L=L(A).

Beweis: Sei G Typ-3 Grammatik $G=(N,T,\Pi_G,Z)$ mit L=L(G).

Definiere:

$$A = (Q, T, \Pi_A, q_0, F) \text{ mit } Q = N \cup \{S\}, q_0 = Z.$$

$$\Pi_A: \{Xa \to Y: \text{ für } X \to aY \in \Pi_G\}$$
$$\cup \{Xa \to S: \text{ für } X \to a \in \Pi_G\}$$

$$F = \{S\} \cup \{X \mid X \to \varepsilon \in \Pi_G\}$$

Behauptung:

- a) $q_0w \vdash_A X \text{ gdw } Z \vdash_G wX \text{ für } X \in N, w \in T^*.$
- b) $w \in L(A)$ gdw $w \in L(G)$ gdw $Z \underset{G}{\vdash} w$ für $w \in T^*$.

Beweis:

a) Induktion nach
$$|w| :: -: w = arepsilon$$

$$,\Rightarrow "X=q_0=Z,$$

$$-: w = va$$

$$\text{``}\Rightarrow\text{``}\quad q_0va \mathrel{\mathop{\vdash}_A} X\text{, } x \in N\text{: Dann } q_0v \mathrel{\mathop{\vdash}_A} Y\text{, } Y \in N \text{ und } ya \vdash X\text{.}$$

D. h. nach Ind. Vor.
$$Z \vdash_G vY \vdash_G^1 vaX$$
.

Konstruktion-Beispiele

"
$$\Leftarrow$$
" $Z \vdash_G vaX$, $X \in N$. Dann $Z \vdash_G vY$, für ein $Y \in N$ und $Y \to aX \in \Pi_G$. Dann $q_0va \vdash_A Ya \vdash_A X$.

b) $w \in L(A)$. Dann $q_0w \vdash_A S$ oder $q_0w \vdash_X mit\ X \to \varepsilon \in \Pi_G$. Dann aber $w = va,\ q_0w \vdash_A Xa \vdash_S$. $X \in N \leadsto Z \vdash_G vX \vdash_G va \in L(G) \text{ oder } Z \vdash_G wX \vdash_G w \in L(G). \leadsto \text{Behauptung}.$

7.18 Beispiel

1.
$$G=(N,\Sigma,\Pi_G,Z),\ N=\{Z,T\},\ \Sigma=\{a,b\}$$
 $\Pi_G::Z\to aZ|aT,\ T\to bT|b$ Behauptung: $L(G)=\{a^nb^m:n,m\geq 1\}$ (klar). Konstruktion:

T a a ohne - arepsilon Übergänge b Z

b

Beispiele

2. Betrachte

a

a

b

b

a

b

a

b

 $L(A) = \{ab, aba\}^*$

DEA

a, b

3. Sei

b

 $L(A) = \{ab, aba\}^*$

a

NEA b

a

Beispiele

4. Sei

$$a$$

$$\varepsilon \qquad \qquad L(A) = \{ab, aba\}^*$$
 b NEA fast deterministisch

Kann man Spontanübergänge vermeiden?

JA: Idee $q\sim q'$ gdw es gibt $q_0,\ldots,q_n\in Q$ $q_0=q,q_n=q',\,q_i\to q_{i+1}\in\Pi.$ Lässt sich effektiv berechnen!

$$\Pi^*=\{qa\to q':\exists q''(q\sim q''\wedge q''a\to q'\in\Pi)\}$$

$$F^*=\{q:\exists f\in F:q\sim f\}$$
 Dann $L(A)=L(A^*).$

Wir haben somit:

7.19 Lemma

 $L \subseteq T^*$ ist Typ-3 Sprache $\operatorname{gdw} L = L(A)$ für ein NEA A.

Charakterisierungssatz für r.l. Sprachen

7.20 Satz

Zu jedem NEA A gibt es einen DEA A^\prime mit $L(A) = L(A^\prime)$.

Beweis: Sei $A=(Q,\Sigma,\Pi,q_0,F)$ ein NEA. A enthalte keine ε -Übergänge. Definition DEA $A'=(Q',\Sigma,\Pi',q_0',F')$ mit

- $Q' = \text{Potenzmenge von } Q = \{T : T \subseteq Q\}$
- $\Pi' = \{Ta \to \{q' \in Q : \exists q \in T \mid qa \to q' \in \Pi\} : T \in Q', a \in \Sigma\}$
- $q_0' = \{q_0\}$
- $F' = \{T \subseteq Q : T \cap F \neq \emptyset\}$

Behauptung: L(A') = L(A).

Beweis: Es gilt $Ty \vdash_{A'} \{q' \in Q: \exists q \in T \ qy \vdash_{A} q'\} =: T'$ für $T \subseteq Q, y \in \Sigma^*$.

Ind. nach $|y|:y=\varepsilon$, so T'=T, da keine Spontanübergänge.

Sei y = az, $a \in \Sigma$, dann

$$\begin{array}{ll} Taz & \vdash_{A'} \{q': \exists q \in T \ qa \rightarrow q' \in \Pi\}z \\ & \vdash_{A'} \{q'': \exists q' \exists q \in T \ qa \rightarrow q' \in \Pi, q'z \vdash_{A} q''\} \\ & \vdash_{A'} \text{Ind.Vor.} \\ & = \{q'': \exists q \in T \ qaz \vdash_{A} q''\} \end{array}$$

Beispiele

Sei

$$y \in L(A')$$
 gdw $\exists T \in Q \ (T \cap F \neq \emptyset \land \{q_0\}y \vdash_{A'} T)$
gdw $\{q \in Q : q_0y \vdash_A q\} \cap F \neq \emptyset$
gdw $y \in L(A)$

7.21 Beispiel

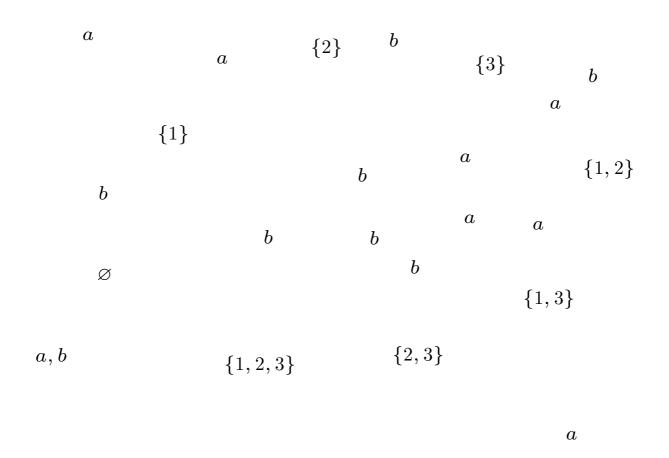
• Sei

ohne ε -Übergänge

Neue Zustandsmenge:

$$\emptyset$$
, $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, $\{1,3\}$, $\{2,3\}$, $\{1,2,3\}$

Beispiele (Fort.)



Konstruktion liefert oft zu viele Zustände. Nicht erreichbare Zustände (vom Startzustand aus) streichen.

Beispiele (Fort.)

a, b

Ist dies minimaler DEA der L(A) akzeptiert, d.h. minimale Anzahl von Zuständen? JA.

$$x \sim_A y \text{ gdw } (q_0 x \vdash_A q \text{ gdw } q_0 y \vdash_A q).$$

 $\underset{A}{\sim}$ ist rechtsinvariant, d.h.

$$x \underset{A}{\sim} y \to xz \sim yz$$
 für alle $z \in \Sigma^*$.

Index = Anzahl der Äquivalenzklassen.

L(A) ist Vereinigung von Äquivalenzklassen (Myhill-Nerode).

Es gibt Verfahren um einen äquivalenten minimalen DEA zu bestimmen.

Folgerungen

7.22 Folgerung

a) Rechts-lineare Sprachen sind abgeschlossen gegenüber Komplement und Durchschnitt.

$$\begin{split} A &= (Q, \Sigma, \Pi, q_0, F) \text{ DEA } L = L(A). \\ A' &= (Q, \Sigma, \Pi, q_0, Q - F) \text{ DEA mit } L(A') = \neg L. \\ L_1 \cap L_2 &= \overline{\bar{L}}_1 \cup \overline{\bar{L}}_2 \text{ oder direkt mit Produktautomaten.} \end{split}$$

$$A_1 \times A_2 = (Q_1 \times Q_2, \Sigma, \Pi_1 \times \Pi_2, (q_{0_1}, q_{0_2}), F_1 \times F_2).$$

- b) Jede Typ-3 Sprache kann von Typ-3 Grammatik G erzeugt werden mit: Π enthält für $X \in N, a \in \Sigma \ X \to aY$ oder $X \to a$ (genau eine Produktion $X \to aY$). D. h. G ist eindeutig und somit ist jede Typ-3 Sprache eindeutig.
- c) Das WP für Typ-3 Grammatiken ist in linearer Zeit entscheidbar.
- d) Pumping-Lemma für Typ-3 Sprachen.

Zu jeder Typ-3 Sprache L gibt es ein $n \in \mathbb{N}$, so dass für alle $y \in L$ gilt: Ist $|y| \geq n$. Dann lässt sich y zerlegen in y = uvw mit $0 < |v| \leq |uv| \leq n$, so dass für alle $i \in \mathbb{N}$ $uv^iw \in L$.

Beweis:

Sei A DEA mit L(A) = L und n := |Q|. Ist $y \in L(A)$, $|y| \geq n$. Betrachte

 $\begin{array}{l} q_0y \stackrel{1}{\vdash} q_1y_1 \vdash \cdots \stackrel{1}{\vdash} q_{n-1}y_{n-1} \stackrel{1}{\vdash} q_ny_n \vdash \cdots \stackrel{1}{\vdash} q \in F, \\ \{q_0,\ldots,q_n\} \subseteq Q. \text{ Es gibt Zustand } q', \text{ der zweimal vorkommt} \\ q_0uvw \models_A q'vw \models_A q'w \vdash q_0, v \neq \varepsilon, |uv| \leq n. \text{ Dann aber} \\ q_0uv^iw \vdash q \text{ für alle } i \geq 0. \end{array}$

Beispiel

7.23 Beispiel

 $L = \{w \in \{a, b\}^* : |w|_a = |w|_b\}$ nicht Typ 3 Sprache.

Angenommen, L ist rechts-linear, sei n Konstante für L.

Betrachte $y = a^n b^n \in L$

Pumping-Lemma $\leadsto a^{k_0}(a^k)^ia^{k_1}b^n\in L$ für alle $i\ (k_0+k+k_1=n,k>0)$ $\not\in$

Oder: $L \cap \{a\}^*\{b\}^* = \{a^nb^n \mid n \geq 0\}$ wäre rechts-linear, falls L es ist. \not

- e) Für eine Typ-3 Sprache sind folgende Probleme entscheidbar. Dabei soll L durch eine Typ-3 Grammatik, oder durch einen DEA, oder durch einen NEA gegeben sein.
 - lst L leer?
 - Ist $L = \Sigma^*$?
 - lst L endlich?
 - Ist $L = L_1$ für eine Typ-3 Sprache L_1 ?

Es gibt weitere Charakterisierungen von rl-Sprachen, z.B. durch rechtsinvariante Äquivalenzrelationen auf Σ^* von endlichen Index (d.h. nur endlich viele Äquivalenzklassen) oder etwa durch reguläre Ausdrücke.

Andere Charakterisierung von Typ-3 Sprachen

Reguläre Ausdrücke über $\Sigma: REG(\Sigma)$

Wörter über $\Sigma \cup \{\Lambda, \varepsilon, \cup, *, (,)\}$ (oft + für \cup).

Kalkül:

$$\overline{\Lambda}$$
, $\overline{\varepsilon}$, \overline{a} für $a \in \Sigma$, $\frac{\alpha, \beta}{(\alpha \beta)}$, $\frac{\alpha, \beta}{(\alpha \cup \beta)}$, $\frac{\alpha}{\alpha^*}$

Semantik: Reguläre Sprachen, die durch reg. Ausdrücke über Σ dargestellt werden: $\langle \ \rangle$: reg. Ausdruck \to Sprachen über Σ

•
$$\langle \Lambda \rangle = \emptyset$$

$$\bullet \ \langle \varepsilon \rangle = \{ \varepsilon \}$$

•
$$\langle a \rangle = \{a\} \ a \in \Sigma$$

•
$$\langle a \rangle = \{a\} \ a \in \Sigma$$
 • $\langle (\alpha \beta) \rangle = \langle \alpha \rangle \circ \langle \beta \rangle$

•
$$\langle (\alpha \cup \beta) \rangle = \langle \alpha \rangle \cup \langle \beta \rangle$$
 • $\langle \alpha^* \rangle = \langle \alpha \rangle^*$

$$\bullet \langle \alpha^* \rangle = \langle \alpha \rangle$$

7.24 Satz

L ist Typ-3 Sprache $\operatorname{gdw} L$ ist reguläre Sprache, d. h. es gibt $\alpha \in REG(\Sigma) : \langle \alpha \rangle = L$.

Beweis:

" \Leftarrow " Typ-3 Sprachen enthalten \varnothing , $\{\varepsilon\}$, $\{a\}$ für $a\in\Sigma$ und sind abgeschlossen gegen \cdot , \cup , *.

"
$$\Rightarrow$$
" Sei $A=(Q,\Sigma,\Pi,q_1,F)$, $Q=\{q_1,\ldots,q_n\}$ DEA mit $L(A)=L$. Für $i,j\in\{1,\ldots,n\}$ und $t\in\{0,\ldots,n\}$ definiere

$$L_{ij}^t = \{y \in \Sigma^* : q_i y \overset{1}{\vdash} q_{i_1} y_1 \overset{1}{\vdash} \cdots \overset{1}{\vdash} q_{i_k} y_k \overset{1}{\vdash} q_j \\ \text{mit Zwischenzuständen} \\ q_{i_1}, \ldots, q_{i_k} \in \{q_1, \ldots, q_t\}\}$$

Behauptung: Jedes L_{ij}^t ist durch regulären Ausdruck darstellbar. Insbesondere auch L(A).

Beweis: Induktion nach t:

$$\begin{split} L^0_{ij} &= \{y \in \Sigma^* : q_i y \overset{1}{\vdash} q_j\} \text{ ist endlich.} \\ L^{t+1}_{ij} &= L^t_{ij} \cup L^t_{it+1} (L^t_{t+1t+1})^* L^t_{t+1j} \\ L(A) &= \bigcup_{q_j \in F} L^n_{1j} \end{split}$$

7.25 Beispiel

1

Varianten + Verallgemeinerungen EA

Endliche Automaten mit Ausgaben Mealy und Moore Automaten

$$\Sigma = \{0,1\} \times \{0,1\}$$

01011

mod 2 Addierer.

00110

10001

0.0/0

 q_0

10/0

11/0

 $0 \ 1/1$

 $q_1 0.1/0$

 $0 \ 0/1$

 $1 \ 0/1$

 $1 \, 1/1$

0 1

0 0

1 0

 $s_0/0$

1 1

 $s_1/0$

 $\begin{smallmatrix}0&1,1&0\end{smallmatrix}$

1 1

11 01,10

0 0

 $s_0/1$

0 0

 $s_1/1$

0 1, 1 0

1 1

Spezifikation von Prozessen Dynamisches Verhalten

Statecharts, Petri-Netze, SDL

UML Verhaltensdiagramme (Statecharts, Activity diagrams, MSC)

Event-Condition-Action: e[c]a: Übergänge.

Prozess: Bauer/Boot /Fluss, Gans/Fuchs/Korn.

7.4 Kontextfreie Sprachen - Typ2-Sprachen

Erinnerung Sei $G = (N, T, \Pi, Z)$ Grammatik.

G ist vom Typ 2 (kontextfrei), falls $l \to r \in \Pi$, so $l = A, r = z, A \in N, z \in (N \cup T)^*$.

Eine Sprache heißt kontextfrei, falls sie durch eine kontextfreie Grammatik erzeugt werden kann.

Beispiel:
$$G=(N,T,\Pi,Z),\,T=\{a,b\},\,N=\{Z\}.$$
 $\Pi:Z\to aZb\mid \varepsilon\qquad L(G)=\{a^nb^n\mid n\in\mathbb{N}\}$

Behauptung: L(G) ist nicht rechtslinear. Sei n Konstante für L $y=a^nb^n$. Pumping-Lemma $\leadsto (a^{k_0})(a^k)^i(a^{k_1})b^n\in L$ für alle $i\in\mathbb{N}$ $(k_0+k+k_1=n,k>0)$ \not

Gibt es auch ein Pumping-Lemma für kontextfreie Sprachen?

Es ist $aaabbb \in L(G)$. Ableitung als Baum:

Z

$$a$$
 Z b

 ε

Ableitungsbäume - Strukturbäume

7.26 Definition

Sei G eine kontextfreie Grammatik und (Z, u_1, \ldots, u_n) eine Ableitung in G. Der Strukturbaum zu dieser Ableitung wird induktiv über n definiert:

- 1. Der Strukturbaum zur Ableitung (Z) besteht aus einem einzigen mit Z beschrifteten Knoten. Blattwort ist Z.
- 2. Es sei die Ableitung $(Z, u_1, \ldots, u_n, u_{n+1})$ mit $u_n = uAv$, $u_{n+1} = ub_1 \ldots b_m v$ und eine Produktion $A \to b_1 \ldots b_m$ von G mit einzelnen Zeichen b_i gegeben. Sei weiter der Strukturbaum von (Z, u_1, \ldots, u_n) schon konstruiert. Erweitere in diesem Baum den (|u|+1)-ten Knoten (mit dem zu ersetzenden A beschriftet) mit m Folgeknoten, die mit b_1, \ldots, b_m beschriftet sind. (ε als Zeichen erlaubt). Blattwort ist u_{n+1} .

7.27 Beispiel

Strukturbäume

Es gibt zu a + b * c verschiedene Ableitungen:

(i)
$$(Z, Z + Z, a + Z, a + Z * Z, a + b * Z, a + b * c)$$

(ii)
$$(Z, Z + Z, Z + Z * Z, Z + Z * c, Z + b * c, a + b * c)$$

Die Ableitungen (i) und (ii) sind unterschiedlich, erzeugen aber denselben Strukturbaum: a).

Desweiteren wird in Ableitung (i) immer das am weitesten links stehende Nichtterminalzeichen ersetzt. (siehe \uparrow).

Betrachte die Ableitungen:

(iii)
$$(Z, Z*Z, Z+Z*Z, a+Z*Z, a+b*Z, a+b*c)$$

(iv)
$$(Z, Z*Z, Z*c, Z+Z*c, Z+b*c, a+b*c)$$

Strukturbäume

Ableitungen (iii) und (iv) erzeugen Strukturbaum b). Insgesamt:

- 1. Ein Strukturbaum repräsentiert eine Menge von Ableitungen.
- 2. Ein ableitbares Wort kann verschiedene Ableitungen haben, die nicht durch **einen** Strukturbaum dargestellt werden können.

Punkt 2 kann Schwierigkeiten bereiten, wenn einem ableitbaren Ausdruck eine Semantik (etwa ein Wert) zugeordnet werden soll.

Eindeutigkeit der Termsyntax geht verloren, wenn auf Klammern verzichtet wird. Was ist der Wert von 1+2*3?

$$(1+2)*3 = 6$$

 $1+(2*3) = 7$

Eindeutigkeit

7.28 Definition

Eine kontextfreie Grammatik G heißt **eindeutig**, falls für jedes $w \in L(G)$ gilt: Alle Ableitungen von w besitzen denselben Strukturbaum. Eine k.f. Sprache L ist **eindeutig**, falls L = L(G), mit G eindeutig.

7.29 Beispiel Betrachte Grammatik $G=(N,T,\Pi,Z)$ mit $N=\{Z\},\,T=\{a,b,c,+,*,(,)\},$

$$\Pi: \quad Z \to (Z+Z)$$

$$Z \to (Z*Z)$$

$$Z \to a|b|c$$

G ist eindeutig und somit die Sprache L(G) auch. \leadsto Übung.

7.30 Definition

Sei G eine kontextfreie Grammatik und (u_0, u_1, \ldots, u_n) eine Ableitung in G. Die Ableitung heißt **Linksableitung** in G, falls für alle i < n u_{i+1} aus u_i durch Ersetzen des am weitesten links stehende Nichterminalzeichen mit Hilfe einer Regel in G entsteht.

(Rechtsableitung analog).

7.31 Beispiel G aus vorherigem Beispiel

$$\begin{array}{l} (Z,(Z*Z),((Z+Z)*Z),((a+Z)*Z),\\ ((a+b)*Z),((a+b)*c)) \end{array}$$

Ableitung für $((a + b) * c) \rightsquigarrow Linksableitung$.

Eindeutigkeit k.f. Grammatiken

7.32 Lemma

Eine kontextfreie Grammatik ist genau dann eindeutig, wenn jedes durch die Grammatik erzeugte Wort genau eine Linksableitung (bzw. Rechtsableitung) besitzt.

Beweis: Übung.

Beachte:

- 1. Ist $w \in L(G)$, so gibt es eine Linksableitung zu w.
- 2. Jede rechtslineare Sprache ist eindeutig.
- 3. Es gibt sogenannte ererbt mehrdeutige kontextfreie Sprachen, etwa

$$L = \begin{cases} a^{n}b^{n}c^{m}d^{m} \mid n, m \ge 1 \} \cup \\ \{a^{n}b^{m}c^{m}d^{n} \mid n, m \ge 1 \} \end{cases}$$

Man kann zeigen:

Jede kontextfreie Grammatik G, die L erzeugt, ist mehrdeutig.

Problem: Wie kann man möglichst effizient testen, ob ein Wort aus einer kontextfreien Grammatik ableitbar ist?

→ Konstruiere Automaten, der den Strukturbaum einer Ableitung in einer bestimmten Weise aufbaut: Top-Down, Preorder.

LL-Automaten zu einer k.f. Grammatik

7.33 Definition

Sei $G=(N,T,\Pi,Z)$ eine kontextfreie Grammatik. Der **LL-Automat** zu G ist das folgende Tupel

$$A_{LL}(G) = (\{\#\}, N, T, \Pi_{LL}(G), Z\#, \{\#\})$$

Mit folgenden Produktionen in $\Pi_{LL}(G)$:

Für alle $t \in T$ und alle Produktionen

 $A o B_1 \dots B_n \in \Pi$ mit einzelnen Zeichen B_i

$$A\# \to B_n \dots B_1\#$$
 (Produce) (Beachte die Reihenfolge der B's) $t\# t \to \#$ (Compare)

Ableitbarkeit in A_{LL} bedeutet Ableitbarkeit in diesem Wortersetzungssystem. Die von A_{LL} akzeptierte Sprache ist die Menge

$$\{x\in T^*:Z\#x \mathrel{\mathop{\vdash}}_{\Pi_{LL}(G)}\#\}$$

Initialkonfiguration bei Eingabe $x \in T^*: Z \# x$, d. h. i(X) = Z # x.

Finalkonfigurationen: $\{\#\}$

7.34 Lemma Sei G eine kontextfreie Grammatik.

Es ist $x \in L(G)$ gdw $x \in L(A_{LL}(G))$.

Beispielkonstruktion

7.35 Beispiel G aus vorherigem Beispiel,

$$\Pi_{LL}(G): \quad Z\# \to)Z + Z(\#$$

$$Z\# \to)Z * Z(\#$$

$$Z\# \to a\# |b\#| c\#$$

$$a\# a \to \#$$

$$b\# b \to \#$$

$$\vdots$$

$$)\#) \to \#$$

Wir wissen $((a+b)*c) \in L(G)$.

Betrachte Ableitung (Berechnung)

Spezielle Eigenschaften kontextfreier Sprachen Pumping-Lemma

Erinnerung: Syntaxanalyse: G Typ-2 Grammatik.

• $w \in L(G)$, so gibt es eine Linksherleitung (Ableitung) für w aus z, d. h.

$$Z \stackrel{1}{\vdash}_{G} \alpha_{1} \stackrel{1}{\vdash}_{G} \alpha_{2} \stackrel{1}{\vdash}_{G} \cdots \vdash \alpha_{n} = w$$

- LL-Automat akzeptiert w (simuliert die Linksableitung).
- ullet Zugehöriger Strukturbaum (geordneter markierter Baum, mit Blattwort w).

Z

w

• G ist eindeutig gdw für kein $w \in L(G)$ gibt es zwei verschiedene Strukturbäume.

 $\mathrm{gd}\mathrm{w}$ keine zwei verschiedene Linksableitungen.

Es gibt kontextfreie Sprachen, die nicht von eindeutiger kontextfreier Grammatik erzeugt werden können.

z. B.
$$\{b^mc^md^l: m, l \geq 1\} \cup \{b^lc^nd^n: l, n \geq 1\}$$

Alle Wörter der Form $b^i c^i d^i$ $i \geq 1$ sind mehrdeutig.

Beispiel: Pumping Eigenschaft

7.36 Beispiel
$$G=(\{Z,A\},\{a,b\},\Pi,Z)$$
 mit $\Pi:Z\to aAZ\mid a \qquad A\to ZbA\mid ZZ\mid ba$

- $Z \vdash aAZ \vdash aZbAZ \vdash aabAZ \vdash aabbaZ \vdash aabbaa$
- Strukturbaum für aabbaa

"Aufpumpen" von Teilwörter bei Wiederholung nichtterminaler Buchstaben.

 $Z \vdash_{G} aabbaZ \vdash_{G} (aabba)^{n}Z \vdash (aabba)^{n}a$

Pumping Lemma für k.f. Sprachen

7.37 Lemma $G = (N, T, \Pi, Z)$ kontext-freie Grammatik.

Sei $p = \max\{|\beta_i| : \alpha_i \to \beta_i \in \Pi\}$. Ist \mathcal{B} Strukturbaum für $\alpha \in (N \cup T)^*$ der Tiefe h, so gilt $|\alpha| \leq p^h$. (Da Anzahl der Blätter $\leq p^h$).

7.38 Satz uvwxy-**Theorem** (Bar-Hillel, Perles, Shamir).

Sei L eine kontext-freie Sprache. Dann gibt es ein $n \in \mathbb{N}$, so dass für jedes Wort $z \in L(G)$ mit $|z| \geq n$ gilt:

Es gibt eine Zerlegung von z in uvwxy mit 0<|vx| und $|vwx|\leq n$ und für jedes $i\in\mathbb{N}$ ist auch $uv^iwx^iy\in L(G)$.

• (Beachte: Insbesondere ist auch $uwy \in L(G)$).

Beweis-Idee: o.B.d.A. sei L erzeugt von kontext-freier Grammatik G ohne ε -Regeln (bis auf $Z \to \varepsilon$).

Sei $p=\max\{|\beta|:A\to\beta\in\Pi_G\}$. Betrachte $p^{|N|}$ und $z\in L(G)$ mit $|z|>p^{|N|}$. Ist $\mathcal B$ Strukturbaum für z, so ist die Tiefe von $\mathcal B$ mindestens |N|+1. Sei $\mathcal B$ gewählt von minimaler Tiefe h.

Behauptung: Es gibt $A \in N$ mit

$$\begin{split} Z & \vdash_G uAy \vdash_G uvAxy \vdash_G uvwxy = z \text{, wobei} \\ u, v, w, x, y & \in \Sigma^* \text{, } vx \neq \varepsilon \text{, } |vwx| \leq p^{|N|}. \\ \text{Dann } A & \vdash_G vAx \text{, } A \vdash_G w \text{, wähle } n = p^{|N|} + 1. \end{split}$$

Beweisargument

Beachte: Analoges Argument führt zu Beweis des Pumping-Lemmas für RL-Grammatiken.

Z

 $h \ge |N| + 1$

 \boldsymbol{A}

Z kommt auf keiner rechten Seite vor.

keine ε -Regeln.

$$h' \le |N|$$
 A

 $u \quad v \quad w \quad x \quad y$

- Innere Knoten sind mit Nichtterminalsymbolen (NT) markiert.
- ullet Da $h \geq |N|+1$, gibt es eine Weg zu Blatt der Länge $\geq |N|+1$
- ullet NT-Symbol (verschieden von Z) wiederholt sich.
- \bullet Wähle NT A maximaler Tiefe, d.h. Teilbaum unter A hat Tiefe $\leq |N|$ und $|vwx| \leq p^{|N|}.$
- Dann $vx \neq \varepsilon$, da ${\mathcal B}$ minimaler Tiefe.

→ Behauptung.

Anwendungen

7.39 Folgerung und Anwendungen

- a) Die Sprache $L=\{a^mb^mc^m\mid m>0\}$ ist **nicht kontextfrei**. Angenommen L ist kontextfrei, n die Konstante vom uvwxy-Theorem. Wähle m>n/3.
 - $z=a^mb^mc^m=uvwxy$, vx
 eq arepsilon, $|vwx|\leq n$

Enthält v oder x mindestens zwei Buchstaben aus $\{a,b,c\}$, so $uv^2wx^2y\not\in L$, da falsche Reihenfolge der Buchstaben.

Falls v und x nur aus a's, b's oder c's, so falsche Anzahl, da nur zwei gekoppelt.

- b) $L=\{a^n:n \text{ Primzahl }\}\subseteq a^* \text{ ist } \textbf{nicht kontextfrei}.$ Angenommen ja. Dann ist L RL-Sprache (warum?). Sei n Konstante des Pumping-Lemmas für RL-Sprachen $a^p\in L$ mit p>n. Dann ist $a^p=a^ia^ja^k$, j>0, $a^{i+l\cdot j+k}\in L$, $l\geq 0$. D. h. $i+l\cdot j+k$ ist Primzahl für alle l, insbesondere für l=i+k
- c) Kontextfreie-Sprachen (Typ-2 Sprachen) sind nicht abgeschlossen gegen ∩ und ¬.

Beweis:

 $L_1=\{a^nb^nc^m:n,m\geq 1\},\ L_2=\{a^mb^nc^n:n,m\geq 1\}$ sind kontextfrei, aber $L_1\cap L_2=\{a^nb^nc^n:n\geq 1\}$ ist nicht kontextfrei, wegen $L_1\cap L_2=\Sigma^*-((\Sigma^*-L_1)\cup(\Sigma^*-L_2))$ folgt Behauptung.

Anwendungen (Forts.)

d) Sei $G=(N,T,\Pi,Z)$ kontextfreie Grammatik $p=\max\{|\beta|:A\to\beta\in\Pi\},\ n=p^{|N|}.\ L(G)$ ist unendlich gdw es gibt $z\in L(G):n<|z|\leq n\cdot(p+1).$

Beweis:

"←" Pumping-Lemma.

"⇒" $z\in L(G)$ minimale Länge mit |z|>n. Angenommen $|z|>n\cdot(p+1)$, dann $z=uvwxy\in L(G)$, $0<|vx|\leq|vwx|\leq n$ und $uwy\in L(G)$ nach Pumping-Lemma. Dann ist n<|uwy|<|z| $\not\in$

Insbesondere ist es entscheidbar, ob ${\cal L}(G)$ unendliche Sprache für G Typ-2 Grammatik.

e) Beachte: Pumping-Lemma liefern notwendige, jedoch nicht hinreichende Bedingungen für L Typ-2 (3) Sprache: $\{a^pb^n:p$ -Primzahl, $n\geq p\}$ ist nicht kontextfrei, dies kann aber nicht mit Pumping-Lemma bewiesen werden.

LL-Automat für G ($\{\#\}$, N, T, $\Pi_{LL}(G)$, Z#, $\{\#\}$) kann als Kellerautomat aufgefasst werden. Nur ein Zustand #.

Kontextfreie Sprachen und Kellerautomaten

7.40 Definition

Ein Kellerautomat $K=(Q,N,T,\Pi,iq_0,F)$ mit Q Zustandsmenge, T Eingabealphabet, N Kelleralphabet, $i\in N,q_0\in Q$, $F\subset Q$. Anfangskonfiguration: Für $x\in T^*$ $i(x)=iq_0x$,

Π Produktionen der Form

$$aqb \rightarrow xq'$$
 (Lesen eines Zeichens) $aq \rightarrow xq'$ (Spontanübergang)

mit $x \in N^*$, $a \in N$, $q, q' \in Q$ und $b \in T$. Die von K akzeptierte Sprache ist die Menge

$$L(K) = \{ x \in T^* : iq_0 x \vdash_{\Pi} f \text{ für ein } f \in F \}$$

Lesen eines Zeichens und Spontanübergänge erzeugen in Abhängigkeit eines gewissen Buchstabens im Keller ein neues Wort.

Beispiele

Deterministische Kellerautomaten:

Für $(a,q) \in N \times Q$ gibt es entweder genau eine Produktion der Form $aq \to xq'$ oder für jedes $b \in T$ genau eine Produktion der Form $aqb \to xq'$. \leadsto Deterministische kontextfreie Sprachen.

7.41 Beispiel

1.
$$L = \{w \not\in w^{mi} : w \in \{a,b\}^*\}$$
k.f. Grammatik für $L: Z \to aZa \mid bZb \mid \not\in$
 $K = (\{q_0,q_1\},\{Z,a,b\},\{a,b,\not\in\},\Pi,Zq_0,F=\{q_1\})$
 $\Pi:: zq_0a \mapsto zaq_0 \quad zq_0b \to zbq_0 \quad z \in \{Z,a,b\}$
 $zq_0 \not\in \to zq_1 \quad z \in \{Z,a,b\}$
 $aq_1a \to q_1 \quad bq_1b \to q_1$
 $Zq_1 \to q_1$

K ist deterministischer Kellerautomat L(K)=L. Also ist L eine deterministische k.f. Sprache.

2.
$$G=(N,T,\Pi,Z)$$
, $I=\{a,b\}$, $\Pi:Z\to aZa\mid bZb\mid \varepsilon$ Dann gilt $L(G)=\{ww^{mi}:w\in T^*\}$. Sei K mit $Q=\{q\}$, $N=\{Z,a,b\}$, $q_0=q$, $i=Z$, und Π_K :
$$aqa\to q,\,bqb\to q$$

$$Zq\to aZaq\mid bZbq\mid q$$
 (nicht deterministische Produktionen).

Beispiele (Fort.)

```
Behauptung: L(K) = L(G) "\supseteq" klar. "\subseteq" Zqw \vdash q \leadsto Z muss vom Keller gelöscht werden., d. h. Zqw \vdash uZqv \vdash uqv \vdash q uqv \vdash q, wobei Z in u nicht enthalten ist. \leadsto nur Vergleiche, also |u| = |v| \land u^{mi} = v (Ind. |u|). v ist Endwort von w, d. h. w = xv = xu^{mi} und Zq_0w \vdash uZu^{mi}qxu^{mi} \vdash uZqu^{mi}, d. h. 2|u| Schritte und w = uu^{mi} Induktion nach |u|.
```

Charakterisierungssatz

7.42 Satz

Die kontextfreien Sprachen sind genau diejenigen, die durch einen Kellerautomaten akzeptiert werden.

Beweis: "

" LL-Automat.

" \curvearrowleft " Sei K ein Kellerautomat. o.B.d.A. Finalzustand nur ein Zustand $f \in Q$.

Definiere eine kontextfreie Grammatik G mit nichtterminalen

$$N_G = \{ [xq, q'] : x \in \Gamma, q, q' \in Q \},$$

Startzustand $Z = [iq_0, f]$,

Terminalsymbolen Σ und Produktionen

$$[xq, q'] \rightarrow a[x_m q_m, q_{m-1}][x_{m-1} q_{m-1}, q_{m-2}] \cdots [x_2 q_2, q_1][x_1 q, q']$$

Für jeden Befehl $xqa \to x_1 \cdots x_m q_m$, $a \in \Sigma \cup \{\varepsilon\}$ und alle $q_1, \ldots, q_{m-1}, q' \in Q$.

Es gilt für $x \in \Gamma, q, q' \in Q$ und $w \in \Sigma^*$

$$(*) xqw \vdash_K q' \text{ gdw } [xq, q'] \vdash_G w$$

Insbesondere erzeugt also G, die von K akzeptierte Sprache.

Beweis von (*):

Es gelte $[xq, q'] \vdash_G w$. Durch Induktion über die Länge einer Ableitung in G zeige im Kellerautomaten gilt $xqw \vdash_K q'$.

Charakterisierungssatz (Forts.)

Erster Ableitungsschritt

$$[xq, q'] \stackrel{1}{\vdash}_{G} a[x_{m}q_{m}, q_{m-1}][x_{m-1}q_{m-1}, q_{m-2}] \cdots \\ [x_{2}q_{2}, q_{1}][x_{1}q_{1}, q'] \stackrel{\vdash}{\vdash}_{G} w$$

mit $a \in \Sigma \cup \{\varepsilon\}$. Somit ist w zerlegbar in Teilwörter $aw_m \dots w_1$ mit der Eigenschaft $[x_iq_i, q_{i-1}] \vdash_G w_i$.

Für
$$1 < i \leq m$$
 und $[x_1q_1, q'] \vdash_G w_1$.

Nach Induktion vor folgt $x_iq_iw_i \vdash_K q_{i-1}$ für $1 < i \leq m$ und $x_1q_1w_1 \vdash_K q'$.

Da es die Regel $xqa \rightarrow x_1 \cdots x_m q_m$ im Kellerautomaten gibt, erhält man die Ableitung:

$$xqw = xqaw_m \dots w_1 \quad \begin{array}{c} \vdash_K x_1 \cdots x_{m-1} x_m q_m w_m w_{m-1} \cdots w_1 \\ \vdash_K x_1 \cdots x_{m-1} q_{m-1} w_{m-1} \cdots w_1 \\ \vdash_K x_1 \cdots q_{m-2} \cdots w_1 \\ \vdots \\ \vdash_K x_1 q_1 w_1 \\ \vdash_K q' \end{array}$$

Charakterisierungssatz (Forts.)

Es gelte umgekehrt $xqw \vdash_K q'$. Induktiv über die Länge einer Ableitung im Kellerautomaten zeigt man nun $[xq, q'] \vdash_G w$.

Betrachte ersten Schritt:

$$xqw \stackrel{1}{\vdash}_K x_1 \cdots x_m q_m v \vdash_K q'$$

mit w=av, $a\in\Sigma\cup\{\varepsilon\}$. Zerlege die Ableitung von $x_1\cdots x_mq_mv$ nach q' in m-Phasen, die dadurch definiert sind, dass nach der i-ten Phase im Keller nur noch die Zeichen $x_1\cdots x_{m-i}$ verbleiben. (Da Keller leer gemacht werden muss). Die Ableitung hat somit die Form

$$xqw \quad \stackrel{1}{\underset{K}{\vdash}} x_1 \cdots x_m q_m v = x_1 \cdots x_m q_m w_m \cdots w_1$$

$$\vdash x_1 \cdots x_{m-1} q_{m-1} w_{m-1} \cdots w_1$$

$$\vdash x_1 \cdots q_{m-2} \cdots w_1$$

$$\cdots$$

$$\vdash x_1 q_1 w_1$$

$$\vdash q'$$

und es gilt $x_iq_iw_i
vert_K q_{i-1}$ für $1 < i \le m$, $x_1q_1w_1
vert_K q'$. Ind.vor $\leadsto [x_iq_i,q_{i-1}]
vert_G w_i$, $K_i \le m$ und $[x_1q_1,q']
vert_G w_1$, also $[xq,q']
vert_G a[x_mq_m,q_{m-1}]
vert_G [x_1q_1,q']
vert_G aw_m
vert_M = av = w$.

Abschlusseigenschaften

7.43 Lemma

Der Durchschnitt einer kontextfreien Sprache mit einer rechts-linearen Sprache ist eine kontextfreie Sprache.

Beweis: Idee: Lasse gleichzeitig Kellerautomat und endlicher Automat ablaufen.

Sei K mit Produktionen der Form

$$xq_Ka
ightarrow x'q_K'$$
 bzw. $yq_K
ightarrow y'q_K'$

und A DEA mit Produktionen

$$q_A a \to q'_A (:= \delta(q_A, a))$$

Bilde Produktautomat [K,A], d. h. $Q=[Q_K,Q_A]\ni [q_K,q_A]$ als Kellerautomat mit Produktionen

$$x[q_K,q_A]a
ightarrow x'[q_K',\delta(q_A,a)]$$

$$y[q_K,q_A] \rightarrow y'[q_K',q_A]$$

Startzustand $[i_K,i_A]$, d. h. $i(x)=i[q_{0_K},q_{0_A}]x$ für x Eingabewort.

Finalzustände $[f_K, f_A]$ $f_K \in$ Finalzustand von K, $f_A \in$ Finalzustand von A.

Abschlusseigenschaften (Forts.)

Es gilt

$$w \in L(K) \cap L(A) \text{ gdw } \exists f_K \in F_K \ i_K q_{0_K} w \underset{K}{\vdash} f_K \land$$

$$\exists f_A \in F_A \ q_{0_A} w \underset{A}{\vdash} f_A$$

$$\text{gdw } \exists [f_K, f_A] \in F_K \times F_A :$$

$$i_K [q_{0_K}, q_{0_A}] w \underset{[K, A]}{\vdash} [f_K, f_A]$$

$$\text{gdw } w \in L([K, A])$$

7.44 Beispiel

 $L = \{ww: w \in \{a,b\}^*\}$ ist keine kontextfreie Sprache.

Sei $R = a^+b^+a^+b^+$ rechts-lineare Sprache (warum?)

 $L\cap R=\{a^ib^ja^ib^j:i\geq 1, j\geq 1\}$ ist keine kontextfreie Sprache.

Angenommen JA: Pumping-Lemma für kontextfreie Sprachen: Sei $n \in \mathbb{N}$ die Konstante für die kontextfreie Sprache $L \cap R$.

Wähle
$$i=j=n$$
 $a^nb^na^nb^n\in L\cap R.$

$$uvwxy$$
 Zerlegung: $\lim_{|vwx| \le n} a^n b^n a^n b^n = uvwxy$

(Frage: Ist L kontext-sensitive Sprache?)

Bemerkung zu Pumping Lemmata

Beachte Quantoren bei Pumping Lemmata.

Es gibt schärfere Versionen dieser Lemmata. z. B. $|uv| \leq n$ oder $|vw| \leq n$ für rechts-lineare Sprachen. Odgen's Lemma für kontextfreie Sprachen (Man darf sogar gewisse Buchstaben markieren).

Wortproblem für kontextfreie Grammatiken

G kontextfreie Grammatik. $w \in \Sigma^*$ $w \in L(G)$? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!)

Kellerautomat der L(G) akzeptiert | Ist dieser effizient?

Problem:

- keine Endeutigkeit (mehrere Strukturbäume)
- Kellerautomat ist nicht-deterministisch.
- Falls deterministischer Kellerautomat möglich, so effizienter.

Beachte Beispiele:

- Boolesche Formeln über Signatur (PL-Formeln)
- Terme über Signatur
- Formeln über Signatur
- While Programme über Signatur

Mehrere Regeln mit gleicher linken Seite!

Verallgemeinerung der deterministischen Kellerautomaten

Mit Vorausschau $n \in \mathbb{N}$, falls in Abhängigkeit vom Kellerinhalt und den n-nächsten Eingabezeichen eindeutig die Möglichkeit besteht, die einzig richtige, als nächstes anzuwendende Produktion zu finden.

1-Vorausschau
$$\{a^nb^n: n \geq 1\}$$

Schlagwort LR(k)-LL(k) Analyse.

7.45 Definition Normalformen für kontext-freie Grammatiken

Sei G eine kontext-freie Grammatik, G ist in

Chomsky-Normalform: Produktionen der Form

$$A \to BC$$
 oder $A \to a$ $A, B, C \in N, a \in T$

• Greibach-Normalform: Produktionen der Form

$$A \to a\alpha$$
 $A \in N, a \in T, \alpha \in N^*$

7.46 Satz

Zu jeder kontextfreien Grammatik G mit $\varepsilon \not\in L(G)$ gibt es eine kontextfreie Grammatik G' in Chomsky-Normalform, mit L(G) = L(G').

Die Transformation $G \rightsquigarrow G'$ ist effektiv.

Beweisidee

Beweisidee: $G = (N, T, \Pi, Z)$ kontextfrei.

- **1. Schritt:** ε -frei: Da $\varepsilon \not\in L(G)$, gibt es eine äquivalente Grammatik G', die keine Produktionen der Form $A \to \varepsilon$ enthält.
- **2. Schritt: Normierte Terminierung**: Zu $G=(N,T,\Pi,Z)$ gibt es eine äquivalente Grammatik $G'=(\tilde{N},T,\Pi',Z)$, die nur Produktionen $A\to a$ mit $a\in T$ und $A\to \alpha$ mit $\alpha\in \tilde{N}^*$ enthält.

Sei $\tilde{N}=N\cup\{A_a:a\in T\}$. Π' entsteht aus Π indem jedes $a\in T$ in Π durch A_a ersetzt wird, vereinigt mit $\{A_a\to a:a\in T\}$ Platzhalter.

3. Schritt: Keine Kettenproduktionen: Zu einer Grammatik

 $G=(N,T,\Pi,Z)$ gibt es eine äquivalente Grammatik $G'=(N,T,\Pi',Z)$, die keine Produktionen der Form $A\to B$ mit $A,B\in N$ enthält (siehe NEA).

Sei $M = \{(A, B) \in \mathbb{N}^2 : A \vdash_G B\}$

(lässt sich berechnen: Entferne Zyklen $(A,B),(B,A)\in M$. Beginne mit (A,A).)

 $\Pi' = \Pi \backslash \{A \to B : A, B \in N\}$ vereinigt mit Produktionen $A \to r', |r'| > 1$, die aus Produktionen $A \to r \in \Pi$ durch Ersetzen mancher B in r durch C mit $(B,C) \in M$ entstehen, vereinigt mit $A \to a$ für alle $(A,A_a) \in M$.

Beweisidee (Forts.)

4. Schritt: Chomsky-Normalform: Produktionen der Form

 $A oup B_1 \dots B_n$, n>2 ersetzen: Dazu $A oup B_1 H_1, H_1 oup B_2 H_2, \cdots, H_{n-3} oup B_{n-2} H_{n-2}, H_{n-2} oup B_{n-1} B_n$ mit neuen Nichterminalsymbolen H_1, \dots, H_{n-2} .

Falls $\varepsilon \in L(G)$, so ist $(N \cup \{Z'\}, T, \Pi \cup \{Z' \to Z, Z' \to \varepsilon\}, Z')$, wobei (N, T, Π, Z) in Chomsky-Normalform.

7.47 Beispiel Sei $G=(\{Z,A,B\},\{a,b\},\Pi,Z)$

 $\Pi: \quad Z \to bA \qquad Z \to aB$ $A \to a \qquad B \to b$ $A \to aZ \qquad B \to bZ$ $A \to bAA \qquad B \to aBB$

- **1. Schritt:** ε -frei: ok.
- 2. Schritt: $Z \to A_b A \mid A_a B$ $A \to a, B \to b, A_a \to a, A_b \to b$ $A \to A_a Z \quad B \to A_b Z$ $A \to A_b A A \quad B \to A_a B B$
- 3. Schritt: Keine Kettenproduktionen: ok.

Wortproblemalgorithmen für k.f. Sprachen

4. Schritt: Letzte Zeile oben:

$$A \rightarrow A_b C_1, C_1 \rightarrow AA$$

 $B \rightarrow A_a D_1, D_1 \rightarrow BB$

Auswirkungen auf Strukturbaum? (binär)

 \leadsto Pumping Lemma Konstante: $2^{|N|}+1$.

 $x \in L(G) \leadsto x$ ist in höchstens 2|x|+1 Schritten in G ableitbar (exponentieller Aufwand für Entscheidung $x \in L(G)$).

7.5 Algorithmus von Cocke-Kasami-Younger 7.48 Satz

Sei G in Chomsky-Normalform. Dann gibt es einen Algorithmus der das Wortproblem für G mit Laufzeit $O(n^3)$ entscheidet.

$$w \in L(G)$$
 $|w| = n$ Laufzeit $O(n^3)$

Beweis: Sei $w = a_1 \dots a_n$,

$$L_{ij}(w) = \{ A \in N : A \vdash_G a_i \dots a_j \} \qquad (i \le j)$$

Es gilt $w \in L(G)$ gdw $Z \in L_{1n}(w)$.

Wie berechnet man aus w die L_{ij} . Dynamisches Programmieren. Induktiv über j-i Berechnung von L_{ij} :

•
$$j-i=0:L_{jj}=\{A:A\to a_j\in\Pi\}$$
 (da Chomsky-Normalform)

Algorithmus von Cocke-Kasami-Younger

• j-i>0: Berechne L_{ij} aus L_{ik-1} und L_{kj} für ein k mit $i< k \leq j$, wobei $A \in L_{ij}$, falls $A \to BC \in \Pi$, $B \in L_{ik-1}$, $C \in L_{kj}$.

In jedem Schritt müssen maximal 2n Mengen betrachtet werden und es gibt weniger als n^2 Mengen L_{ij} , daher kann die Laufzeit durch cn^3 beschränkt werden, wobei c eine Konstante ist, die von der Grammatik G abhängt.

Verwaltung mithilfe einer Erkennungs-Matrix

j-i	i	1	2		n
0		{}	{}		{}
1		{}		{}	
2		:			
:		:			
n - 1		{}			

Beispiel:

$$Z \rightarrow CB \mid FA \mid FB$$

$$A \rightarrow CZ \mid FD \mid a$$

$$B \rightarrow FZ \mid CE \mid b$$

$$D \rightarrow AA, E \rightarrow BB, C \rightarrow a, F \rightarrow b$$

$$w = aababb, |w| = 6$$

	Teilw. Länge	j-i	i = 1	2	3	4	5	6	
•	1	0	A, C	A, C	B, F	A, C	B, F	B, F	$(n \; Einträge)$
	2	1	D	Z	Z	Z	E, Z		$(n-1 \; {\sf Eintr.})$ Kosten 1
	3	2	A	A	В	A, B			$(n \; {\sf Einträge})$ $(n-1 \; {\sf Eintr.})$
	4	3	D	Z	Z, E				:
	5	4	A	A, B	,				:
	6	5	D, Z						1-Eintrag
									Kosten $n-1$
					$n + \sum_{i=1}^{n}$	$\sum_{i=1}^{n} (n-i)^{i}$	+1)(i	- 1) =	$\frac{n^3+5}{6}$

Auf Mehrband TM mit Zeit n^3 realisierbar. Siehe z. B. Hopcroft/Ullman Automaten + formale Sprachen.

Viele Verbesserungen: Mit Einschränkungen oft O(n) möglich! (Vorausschau 1 Det.).

7.6 Unentscheidbare Probleme für kontextfreie Grammatiken

Unentscheidbare Probleme für allgemeine Grammatiken

- Wortproblem
- $L(G) = \emptyset$
- $L(G) = \Sigma^*$
- ullet L(G) endlich
- $L(G_1) = L(G_2)$
- $\varepsilon \in L(G)$?

Für rechts-lineare-Grammatiken alle entscheidbar.

Für kontexfreie Grammatiken? Wortproblem, L(G) endlich?, $L(G)=\varnothing?, \varepsilon\in L(G)$? entscheidbar.

7.49 Satz

Sind G_1, G_2 kontextfreie Grammatiken.

Es ist unentscheidbar, ob die zugehörigen Sprachen disjunkt sind.

Folgendes Problem ist nicht rekursiv entscheidbar:

Eingabe: kontextfreie Grammatiken G_1, G_2 .

Frage: $L(G_1) \cap L(G_2) \neq \emptyset$?

Unentscheidbare Probleme für kontextfreie Grammatiken (Forts.)

Beweis: Reduktion des PCP auf dieses Problem.

Sei
$$\mathcal{L}=(u_1\sim v_1,\ldots,u_k\sim v_k),\ u_i,v_i\in\Gamma^+,\ k\geq 1.$$

Sei $J=\{1,\ldots,k\},\ J\cap\Gamma=\varnothing.$
Definiere Grammatiken $G_j=(N_j,T,\Pi_j,Z_j),\ j=1,2.$
 $T=\Gamma\cup J,\ N_j=\{Z_j\}$
 $\Pi_1=\{Z_1\to u_iZ_1i\mid u_ii:i=1,\ldots,k\}\ 2k\text{-Regeln}$
 $\Pi_2=\{Z_2\to v_iZ_2i\mid v_ii:i=1,\ldots,k\}\ 2k\text{-Regeln}$
 $L(G_1)\cap L(G_2)\neq\varnothing\quad\text{gdw}\ \exists x\in\Sigma^*\ x\in L(G_1)\cap L(G_2)$
 $\text{gdw}\ \exists t_1,t_2\in J^*$
 $x=U(t_1)t_1^{mi}=V(t_2)t_2^{mi}$
 $\text{gdw}\ \exists t\in J^+\ x=U(t)t^{mi}=V(t)t^{mi}$
 $\text{gdw}\ \exists t\in J^+\ U(t)=V(t)$

Beachte:

Die Konstruktion liefert "einfache" k.f. Grammatiken G_1 und G_2 : Sie sind **linear** $(A \to uBv \text{ Regeln})$ und **eindeutig**: nur eine Linksableitung möglich!

Folgerungen

- Es gibt kein effektives Verfahren, um für zwei kontextfreie Grammatiken G_1, G_2 eine kontextfreie Grammatik G zu bestimmen mit $L(G) = L(G_1) \cap L(G_2)$. (Begründung: $L(G) \neq \emptyset$ ist für kontextfreie Grammatiken entscheidbar).
- Man kann jedoch eine kontextsensitive Grammatik berechnen mit $L(G) = L(G_1) \cap L(G_2)$, d. h. $L(G) \neq \emptyset$ ist nicht entscheidbar für kontextsensitive Grammatiken.
- **7.50 Satz** Das Mehrdeutigkeitsproblem für kontextfreie Grammatiken ist unentscheidbar.

Eingabe: G kontextfreie Grammatik.

Frage: Ist G mehrdeutig?

Beweis:

PCP auf Mehrdeutigkeitsproblem reduzieren: Seien G_1 und G_2 die kontextfreien Grammatiken wie oben zu PCP \mathcal{L} konstruiert.

$$G_{\mathcal{L}} := (\{Z, Z_1, Z_2\}, \Gamma \cup J, \Pi_1 \cup \Pi_2 \cup \{Z \to Z_1, Z \to Z_2\}, Z)$$

$$\mathcal{L} \leadsto G_{\mathcal{L}}$$
 effektiv. $L(G_{\mathcal{L}}) = L(G_1) \cup L(G_2)$

 G_1, G_2 sind eindeutig.

$$G_{\mathcal{L}}$$
 ist mehrdeutig $\operatorname{gdw} L(G_1) \cap L(G_2) \neq \emptyset$ $\operatorname{gdw} PCP(\mathcal{L})$

Weitere unentscheidbare Probleme für kontextfreie Grammatiken

7.51 Satz

Folgende Probleme für kontextfreie Grammatiken sind nicht entscheidbar.

- 1) $P_1(G)$ $\operatorname{gdw} L(G) = \Sigma^* (G \text{ über } \Sigma = T)$ 2) $P_2(G)$ $\operatorname{gdw} L(G)$ ist rechts-linear
- 3) $P_3(G)$ gdw $\neg L(G)$ ist kontextfrei (rechts-linear, unendlich)
- 4) $P_4(G)$ $gdw L(G_1) = L(G_2)$ (beide über T)
- 5) $P_5(G)$ $\operatorname{gdw} L(G_1) \subseteq L(G_2)$ 6) $P_6(G_1, G_2)$ $\operatorname{gdw} L(G_1) \cap L(G_2)$ ist kontextfrei
- 7) $P_7(G_1, G_2)$ gdw $L(G_1) \cap L(G_2)$ unendlich
- 8) $P_8(G_1, G_2)$ gdw $L(G_1) \cap L(G_2)$ RL-Sprache

 $\mathcal{L}_{\text{endl}} \subsetneq \mathcal{L}_{3} \subsetneq \mathcal{L}_{\text{det-kf}} \subsetneq \mathcal{L}_{2} \subsetneq \mathcal{L}_{1} \subsetneq \mathcal{L}_{\text{prim-rek}} \subsetneq \mathcal{L}_{\text{entsch.}} \subsetneq \mathcal{L}_{0} =$ $\mathcal{L}_{\mathsf{rek-aufzb.}}$

Kontextsensitive Grammatiken und Sprachen

Erinnerung: Die Sprache $\{a^nb^nc^n:n\in\mathbb{N}\}$ ist eine Typ-1 Sprache: Grammatik $(\{Z,A,B,H,C\},\{a,b,c\},\Pi,Z)$ mit Produktionen $\Pi=\{Z\to\varepsilon\mid Ac,A\to ab\mid aACB,CB\to CH,CH\to BH,BH\to BC,B\to b,Cc\to cc\}.$ Sie ist nicht kontexfrei.

Das Wortproblem für k.s. Grammatiken ist entscheidbar. Man muss nur Ableitungen bis zur Länge $(|N|+|T|+1)^{|x|}+1$ durchsuchen (ansonsten enthält die Ableitung zwei identische Wörter mit Länge $\leq |x|$).

Ein **linear beschränkter Automat (LBA)** ist eine (nichtdeterministische) Turing-Maschine, deren Lese-/Schreibkopf den Bereich, auf dem beim Start die Eingabe steht, nicht verlassen darf.

• Die Typ-1-Sprachen sind genau die Sprachen, die sich mit einem LBA akzeptieren lassen.

Solche Automaten lassen sich auch durch Produktionen Charakterisieren. Sie haben die Gestalt:

$$qa \rightarrow q'a'$$
 $q, q' \in Q, a, a' \in N \cup T$
 $qa \rightarrow aq'$ $q, q' \in Q, a, a' \in N \cup T$
 $bqa \rightarrow q'ba$ $q, q' \in Q, a, a' \in N \cup T$

letztere für alle $b \in N \cup T$ falls keine andere diese linke Seite hat.

Kontextsensitive Grammatiken und Sprachen (Fort.)

Es gibt weitere Charakterisierungen der k.s. Sprachen durch spezielle Grammatiken. Eine Grammatik $G=(N,T,\Pi,Z)$ heißt **erweiternd**, falls Π nur Produktionen der Form $l\to r$ mit $l\neq \varepsilon$ und $|r|\geq |l|$ enthält. Es gilt: Zu jeder erweiternden Grammatik gibt eine äquivalente k.s. Grammatik.

8 Grundlagen der Programmierung Zusammenfassung

Zusammenfassung Ausblick

Grundlagen für die Entwicklung von Software-Systemen

Aktivitäten: Spezifikation - Entwurf - Implementierung

Benötigt: Formale Beschreibungstechniken

Syntax

Semantik

Spezifikation: Was soll ein SW-System leisten?

Funktionalität: Beschreibung funktionaler Eigenschaften.

Natürliche Sprache, Logik (Vor- Nachbedingungen).

Hier nur Aussagen- und Prädikatenlogik.

Abstrakte Datentypen \equiv Algebren über Signatur.

Was: Axiome. Oft genügen "="-Axiome, d. h. Gleichheitslogik. Bedingte Gleichungen sind standard.

```
Beispiel: Keller(X) X Parameter =_X definiert empty: \rightarrow stack; is_empty: stack \rightarrow bool; push: elem, stack \rightarrow stack; pop: stack \rightarrow elem;
```

Formale Spezifikationstechniken (Forts.)

Axioms:

All-Quantif.:
$$pop(push(x, y)) = x$$

 $is_empty(empty) = true$
 $is_empty(push(x, y)) = false$

→ Formale Spezifikationstechniken

Benötigt: Logik, Modelltheorie

Nicht funktionale Eigenschaften:

z. B. Zeitverhalten, Platzverhalten, ... "Komplexität"

→ Klassifikation der berechenbaren Funktionen/Prädikate (Relationen).

Hier: Nicht jede Funktion ist berechenbar. Komplexitätsmaße.

Präzisierung der Berechenbarkeit

- While-berechenbare Funktionen
- μ -rekursive Funktionen

 $\mathcal{R}_p(\Sigma)$

• RM-berechenbare Funktionen

Techniken

Turing-berechenbare Funktionen

Simulation

Formale Spezifikationstechniken (Forts.)

Komplexitätsmaß für ein Berechnungskonzept φ ist eine Abbildung $\Phi:\mathbb{N}^2\to\mathbb{N}$ mit den Eigenschaften

$$\Phi(i,n) \downarrow \operatorname{gdw} \varphi_i(n) \downarrow$$

 $\{(i,n,m)\in\mathbb{N}^3:\Phi(i,n)\leq m\}$ ist entscheidbar.

z. B. While Programme: Laufzeit eines While-Programms

$$\Phi(p, x) = \mu t. first(i^t(inp(p, x))) = 0$$

wobei i Interpreterfunktion.

• **Zeitkomplexität** der *i*-ten TM bei Eingabe *n*

$$\Phi(i,n) \downarrow \operatorname{gdw} \varphi_i(n) \downarrow$$

 $\Phi(i,n) = \max_R \{t : \text{Es gibt eine Berechnung } R \text{ der Länge } t \text{ der } i\text{-ten TM auf Eingabe } n\}$

- Platzkomplexität bei TM
 - $\Phi(i,n)$ Anzahl der verschiedenen Bandstellen, die die i-te TM auf Eingabe n höchstens besucht.

$$\{\Phi(i,n)\leq m\}$$
 ist entscheidbar.

Laufzeit muss $\leq m \cdot |Q| |\Gamma|^m + 1$ (Anzahl der Konfigurationen der Länge $\leq m$).

- Bedarf an **Speicherplatz** in einem Goto-Programm.
 - z.B. Anzahl der Register (Einheitskostenmaß)

oder Anzahl der Register und Größe der Zahlen (log-Kostenmaß)

Wichtige Begriffe

Beachte:

Ist Φ ein Komplexitätsmaß und $B:\mathbb{N}\to\mathbb{N}$ eine totale berechenbare Funktion. Dann gibt es eine totale, berechenbare Funktion $f:\mathbb{N}\to\{0,1\}$, so dass jedes Programm i, das f berechnet, für fast alle Werte n eine Komplexität $\Phi(n)\geq B(n)$ hat.

Es gibt beliebig komplexe Funktionen (Diagonalisierung!)

→ - Komplexitätstheorie, Komplexitätsklassen

$$\begin{aligned} & \mathsf{DTime}(s(n)), \mathsf{NTime}(s(n)), \mathsf{DSpace}(s(n)), \mathsf{NSpace}(s(n)) \\ & P = \bigcup_{pol} \mathsf{DTime}(pol), \qquad NP = \bigcup_{pol} \mathsf{NTime}(pol) \end{aligned}$$

• Reduzierbarkeit: $P \leq_m Q$

Verfeinerungen: One-one Reduzierbarkeit: Injektion pm: Pol-Zeit berechenbare Reduktionen. Wichtig für die Klassen P, NP.

• Vollständigkeitsbegriff: z. B.

$$K = \{a \mid \varphi_a(a) \downarrow\}, K_0 = \{(a, x) : \varphi_a(x) \downarrow\}$$

Sind vollständig in der Klasse der rekursiv aufzählbaren Relationen.

• **Rekursionstheorie**: Universelle Funktionen $\varphi_p^{(n)}(x_1,\ldots,x_n)$ SMN-Theorem: Stelligkeiten der universellen Funktionen.

Wichtige Begriffe (Forts.)

Ergebnisse sind richtig für jede **zulässige Aufzählung** der berechenbaren Funktionen. D.h. beschränkte Berechenbarkeit muss entscheidbar sein und SMN-Satz muss gelten.

→ Charakterisierung der r.a. Relationen, Rekursionssatz, Fixpunktsatz sowie die Sätze von RICE über **Indexmengen**

$$S \subset \mathcal{R}_p(\mathbb{N}) \qquad Ind(S) = \{p : \varphi_p \in S\}$$

• Existenz berechenbarer Funktionen mit bestimmten Eigenschaften.

Verwende Churchsche These, SMN-, Rekursionssatz oder FPS.

- Nicht Entscheidbarkeit oder nicht rekursiv aufzählbar. Verwende Reduktion von K oder K_0 auf Relationen oder Rice Sätze, falls Indexmengen.
- Weitere Klassen: superrekursiv subrekursiv

Formale Beschreibungstechniken

Welcher Aspekt eines Systems soll beschrieben werden?

Wie soll beschrieben werden?

Nur das was oder was und wie.

• Funktionale Aspekte

- Verhaltensaspekt (Temporale Logik, Statecharts, SDL,...)
- Entwurfsaspekt (logischer Entwurf, Systemstruktur, "Architektur")
- Implementierungsaspekt (Programmiersprache, abstrakte Maschine, Compiler,...)

Zielsetzung: Übergänge zwischen Beschreibungen sollten "natürlich"-sein, Werkzeug-unterstützt.

- → Verifikation, Validierung, Testen sollten ermöglicht werden.
- Ableitung partieller Korrektheitsaussagen
- Verifikationsbedingungen
- Testgeneratoren
- Dokumenterstellung

Programmiersprachen

Deklarativ, Funktional (μ -rekursiver Ausdruck), Prozedural (While-Programm), Maschinennahe TM-, RM-Programme.

→ Syntax, Semantik

Syntax Programmiersprachen (allg. Beschreibungstechniken)

Grammatiken

i. Allg. kontextfrei (Teile kontext sensitiv: Prozedurdeklarationen, \rightsquigarrow attributierten Grammatiken).

Grundlage: Kalküle

- Syntaktische Definition von Objektmengen Regeln, Ableitungen
- Müssen nicht immer Zeichenreihen sein
- Können auch graphische Objekte sein
- Oft beides zusammen

Beispiel: Terme, Formeln, Programme, gültige Formeln, gültige partielle Korrektheitsaussagen, Diagramme, UML,...

Speziell für Zeichenreihen: Wortersetzungssysteme.

Grundlage für: Grammatiken (RL, KF, KS . . .)

Automaten (EA, NDEA, KA, TM ...)

Algebraische Strukturen: Monoide, Gruppen, Algebren

Z.B.: Prozessalgebren: $(a, b; ba \rightarrow ab)$ kommutatives Monoid.

Termersetzungssysteme: Signatur (S, Σ)

Listen: nil : $\to L$, cons : $X, L \to L$ append : $L, L \to L$

 $append(nil, l) \Rightarrow l$

 $append(cons(x, l), l') \Rightarrow cons(x, append(l, l'))$

Kalküle (Fort.)

Funktionale Programmiersprachen: Applikative Programme.

(Bedingte Gleichungen ...) \rightsquigarrow Programmieren mit Gleichungen

Beweiskalküle:

Aussagenlogik: Axiome (Schemata)

- \bullet $A \rightarrow (B \rightarrow A)$
- $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$
- $(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

Regeln: MP Modus Ponens oder Abtrennungsregel (cut Regel)

$$\frac{\alpha, \alpha \to \beta}{\beta}$$

 $Ax \vdash \alpha$, so α Tautologie.

Beweis: $\alpha_1, \ldots, \alpha_n$ $\alpha_n = \alpha$ $\alpha_i \in Ax$ oder $\alpha_j, \alpha_k = \alpha_j \rightarrow \alpha_i, j, k < i$

Kompaktheitssatz: $\Sigma \vdash \alpha$, so gibt es eine endliche Teilmenge $\Sigma_0 \subset \Sigma : \Sigma_0 \vdash \alpha$.

Verallgemeinerungen: - Prädikatenlogik.

- Andere Logiken. ~> Logik Vorlesung.

Logik, Prozessbeschreibungssprachen

Grundlage automatischer Beweiser

Beachte: $Nat=(\mathbb{N},0,1,+,\cdot,<)$ Theorie von Nat (d. h. gültige Formeln in Nat) nicht rekursiv aufzählbar!

Grundlage für Prozess-BT: Endliche Automaten

- Endliche Automaten
- Petri-Netze (Verallgemeinerungen)
- Statecharts, SDL · · ·
- •

Semantik von Beschreibungstechniken

- Operational (Zustandsübergänge)
- Denotional (Programme "bezeichnen" Funktionen)
- Transformation (Übersetzen in Konstrukte mit wohldefinierter Semantik)

Interpreterfunktionen, Compiler, abstrakte Maschinen, Termersetzung,...

Wichtige Eigenschaften von BT:

Modularisierung, Parametrisierung, Kompositionsmöglichkeiten, Verfeinerung (Abstraktionsmöglichkeiten).