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Introduction

Generalities

Course of Studies „Informatics“, „Applied Informatics“ and
„Master-Inf.“ WS08/09
Prof. Dr. Madlener
TU- Kaiserslautern

Lecture:
Di 08.15–09.45 13/222 Fr 08.15–09.45 42/110
Exercises:??
Fr. 11.45–13.15 11/201 Mo 11.45–13.15 13/370

I Information http://www-madlener.informatik.uni-kl.de/
teaching/ws2008-2009/fsvt/fsvt.html

I Evaluation method:
Exercises (efficiency statement) + Final Exam (Credits)

I First final exam: (Written or Oral)
I Exercises (Dates and Registration): See WWW-Site
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Goals

Goals - Contents
General Goals:

Formal foundations of Methods
for Specification, Verification and Implementation

Summary
I The Role of formal Specifications
I Abstract State Machines: ASM-Specification methods
I Algebraic Specification, Equational Systems
I Reduction systems, Term Rewriting Systems
I Equational - Calculus and - Programming
I Related Calculi: λ-Calculus, Combinator- Calculus
I Implementation, Reduction Strategies, Graph Rewriting
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Abstract State Machines (ASMs)

Abstract State Machines: ASM- Specification’s method
Fundamentals
Sequential algorithms
ASM-Specifications

Distributed ASM: Concurrency, reactivity, time
Fundamentals: Orders, CPO’s, proof techniques
Induction
DASM
Reactive and time-depending systems

Refinement
Lecture Börger’s ASM-Buch
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Algebraic Specification

Algebraic Specification - Equational Calculus
Fundamentals
Introduction
Algebrae
Algebraic Fundamentals
Signature - Terms
Strictness - Positions- Subterms
Interpretations: sig-algebras
Canonical homomorphisms
Equational specifications
Substitution
Loose semantics
Connection between |=,=E ,`E
Birkhoff’s Theorem
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Initial semantics
Basic properties
Correctness and implementation
Structuring mechanisms
Signature morphisms - Parameter passing
Semantics parameter passing
Specification morphisms
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Algebraic Specification: operationalization
Reduction Systems

Abstract Reduction Systems
Principle of the Noetherian Induction
Important relations
Sufficient conditions for confluence
Equivalence relations and reduction relations
Transformation with the inference system
Construction of the proof ordering

Term Rewriting Systems .
Principles
Critical pairs, unification
Local confluence
Confluence without Termination
Knuth-Bendix Completion
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Computability and Implementation

Equational calculus and Computability
Implementations
Primitive Recursive Functions
Recursive and partially recursive functions
Partial recursive functions and register machines
Computable algebrae

Reduction strategies .
Generalities
Orthogonal systems
Strategies and length of derivations
Sequential Orthogonal TES: Call by Need

Summary .
Summary
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Role of formal Specifications .

Motivation

Role of formal Specifications

I Software and hardware systems must accomplish well defined tasks
(requirements).

I Software Engineering has as goal
I Definition of criteria for the evaluation of SW-Systems
I Methods and techniques for the development of SW-Systems, that

accomplish such criteria
I Characterization of SW-Systems
I Development processes for SW-Systems
I Measures and Supporting Tools

I Simplified view of a SD-Process:
Definition of a sequence of actions and descriptions for the
SW-System to be developed. Process and Product Models

Goal: The group of documents that includes an executable program.
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Role of formal Specifications .

Motivation

Models for SW-Development

I Waterfall model, Spiral model,. . .
Phases ≡ Activities + Product Parts (partial descriptions)
In each stage of the DP

Description: a SW specification, that is, a stipulation of what must
be achieved, but not always how it is done.
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Motivation

Installation

Verification

Generation

last formal Specification

Verification of
the program
correctness

(Test)

Final System
Programs

Specification

formal Specification

Temporary specification

Temporary specification

Verification

Validationinformal
actual needs
Specifications

(Test)
Validation

Verification
(Test)

Maintenance

Coding

Refinement
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Role of formal Specifications .

Motivation

Comment

I First Specification: Global Specification
Fundament for the Development
“Contract or Agreement” between Developers and Client

I Intermediate (partial) specifications:
Base of the Communication between Developers.

I Programs: Final products.
Development paradigms

I Structured Programming
I Design + Program
I Transformation Methods
I . . .
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Role of formal Specifications .

Properties of Specifications

Properties of Specifications

Consistency Completeness
I Validation of the global specification regarding the requirements.
I Verification of intermediate specifications regarding the previous one.
I Verification of the programs regarding the specification.
I Verification of the integrated final system with respect to the global

specification.
I Activities: Validation, Verification, Testing

Consistency- and Completeness-Check
I Tool support needed!
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Role of formal Specifications .

Properties of Specifications

Requirements

Functional - - non functional
what time aspects
... robustness
how stability

security
adaptability
ergonomics

maintainability
Properties
Correctness: Does the implemented System fulfill the Requirements?

Test Validate Verify
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Role of formal Specifications .

Properties of Specifications

Validation - Verification
From Wikipedia, the free encyclopedia
In common usage, validation is the process of checking if something
satisfies a certain criterion. Examples would include checking if a
statement is true (validity), if an appliance works as intended, if a
computer system is secure, or if computer data are compliant with an
open standard. Validation implies one is able to document that a solution
or process is correct or is suited for its intended use.
In engineering or as part of a quality management system, validation
confirms that the needs of an external customer or user of a product,
service, or system are met. Verification is usually an internal quality
process of determining compliance with a regulation, standard, or
specification. An easy way of recalling the difference between validation
and verification is that
validation is ensuring “you built the right product” and
verification is ensuring “you built the product right.”
Validation is testing to confirm that it satisfies user’s needs.
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Role of formal Specifications .

Properties of Specifications

Requirements
I The global specification describes, as exact as possible, what must

be done.
I Abstraction of the how

Advantages
I apriori: Reference document, compact and legible.
I aposteriori: Possibility to follow and document design decisions  

traceability, reusability, maintenance.

I Problem: Size and complexity of the systems.
Principles to be supported

I Refinement principle: Abstraction levels
I Structuring mechanisms

Decomposition and modularization principles
I Object orientation
I Verification and validation concepts
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Role of formal Specifications .

Properties of Specifications

Requirements Description  Specification Language

I Choice of the specification technique depends on the System.
Frequently more than a single specification technique is needed.
(What – How).

I Type of Systems:
Pure function oriented (I/O), reactive- embedded- real time-
systems.

I Problem : Universal Specification Technique (UST)
difficult to understand, ambiguities, tools, size . . .
e.g. UML

I Desired: Compact, legible and exact specifications

Here: formal specification techniques
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Role of formal Specifications .

Formal Specifications

Formal Specifications

I A specification in a formal specification language defines all the
possible behaviors of the specified system.

I 3 Aspects: Syntax, Semantics, Inference System
I Syntax: What’s allowed to write: Text with structure, Properties

often described by formulas from a logic.
I Semantics: Which models are associated with the specification,  

specification models.
I Inference System: Consequences (Derivation) of properties of the

system.  Notion of consequence.
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Role of formal Specifications .

Formal Specifications

Formal Specifications

I Two main classes:
Model oriented - - Property oriented
(constructive) (declarative)
e.g.VDM, Z, ASM signature (functions, predicates)
Construction of a Properties
non-ambiguous model (formulas, axioms)
from available
data structures and models
construction rules algebraic specification
Concept of correctness AFFIRM, OBJ, ASF,. . .

I Operational specifications:
Petri nets, process algebras, automata based (SDL).
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Role of formal Specifications .

Formal Specifications

Specifications: What for?
I The concept of program correctness is not well defined without a

formal specification.
I A verification is not possible without a formal specification.
I Other concepts, like the concept of refinement, simulation become

well defined.
Wish List

I Small gap between specification and program:
Generators, Transformators.

I Not too many different formalisms/notations.
I Tool support.
I Rapid prototyping.
I Rules for “constructing” specifications, that guarantee certain

properties (e.g. consistency + completeness).
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Role of formal Specifications .

Formal Specifications

Formal Specifications

I Advantages:
I The concepts of correctness, equivalence, completeness, consistency,

refinement, composition, etc. are treated in a mathematical way
(based on the logic)

I Tool support is possible and often available
I The application and interconnection of different tools are possible.

I Disadvantages:
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Role of formal Specifications .

Formal Specifications

Refinements

Abstraction mechanisms
I Data abstraction (representation)
I Control abstraction (Sequence)
I Procedural abstraction (only I/O description)

Refinement mechanisms
I Choose a data representation (sets by lists)
I Choose a sequence of computation steps
I Develop algorithm (Sorting algorithm)

Concept: Correctness of the implementation
I Observable equivalences
I Behavioral equivalences
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Role of formal Specifications .

Formal Specifications

Structuring

Problems: Structuring mechanisms
I Horizontal:

Decomposition/Aggregation/Combination/Extension/
Parameterization/Instantiation
(Components)

Goal: Reduction of complexity, Completeness
I Vertical:

Realization of Behavior
Information Hiding/Refinement

Goal: Efficiency and Correctness
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Role of formal Specifications .

Formal Specifications

Tool support

I Syntactic support (grammars, parser,...)
I Verification: theorem proving (proof obligations)
I Prototyping (executable specifications)
I Code generation (out of the specifications generate C code)
I Testing (from the specification generate test cases for the program)

Desired:
To generate the tools out of the syntax and semantics of the specification
language
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Role of formal Specifications .

Examples

Example: declarative

Example 2.1. Restricted logic: e.g. equational logic
I Axioms: ∀X t1 = t2 t1, t2 terms.
I Rules: Equals are replaced with equals. (directed).
I Terms ≈ names for objects (identifier), structuring, construction of

the object.
I Abstraction: Terms as elements of an algebra, term algebra.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 31

Role of formal Specifications .

Examples

Example: declarative

Foundations for the algebraic specification method:
I Axioms induce a congruence on a term algebra
I Independent subtasks

I Description of properties with equality axioms
I Representation of the terms

I Operationalization
I spec, t term give out the „value“ of t, i.e.

t ′ ∈ Value(spec) with spec |= t = t ′.
I  Functional programming: LISP, CAML,. . .

F (t1, . . . , tn) eval( ) value.
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Role of formal Specifications .

Examples

Example: Model-based constructive: VDM
Unambiguous (Unique model), standard (notations),
Independent of the implementation, formally manipulable, abstract,
structured, expressive, consistency by construction
Example 2.2. Model (state)-based specification technique VDM

I Based on naive set theory, PL 1, preconditions and postconditions.
Primitive types: B Boolean {true, false}

N natural {0, 1, 2, 3, . . . } , Z,R
I Sets: B-Set: Sets of B-’s.
I Operations on sets: ∈: Element, Element-Set → B, ∪,∩, \
I Sequences: Z∗: Sequences of integer numbers.
I Sequence operations: _: Sequences, Sequences → Sequences.

„Concatenation“
e.g. [ ] _ [true, false, true] = [true, false, true]
len: sequences → N, hd: sequences  elem (partial).
tl: sequences  sequences, elem: sequences → Elem-Set.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 33

Role of formal Specifications .

Examples

Operations in VDM

See e.g.: http://www.vdmportal.org/twiki/bin/view
VDM-SL: System State, Specification of operations

Format:

Operation-Identifier (Input parameters) Output parameters
Pre-Condition
Post-Condition

e.g.
Int_SQR(x : N)z : N
pre x ≥ 1
post (z2 ≤ x) ∧ (x < (z + 1)2)
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Role of formal Specifications .

Examples

Example VDM: Bounded stack

Example 2.3. I Operations: · Init · Push · Pop · Empty ·
Full

23
45
78
29
56
78

45
78
29
56
78

45
78
29
56
78Push (23)

Newstack

Pop

output:23

Contents = N∗ Max_ Stack_ Size = N
I STATESTACKOF

s : Contents
n : Max_Stack_ Size
inv : mk-STACK(s, n) , len s ≤ n

END
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Role of formal Specifications .

Examples

Bounded stack

Init(size : N) Full( )b : B
ext wr s : Contents ext rd s : Contents

wr n : Max _Stack _Size rd n : Max _Stack _Size
pre true pre true
post s = [ ] ∧ n = size post b ⇔ (len s = n)

Push(c : N) Pop( )c : N
ext wr s : Contens ext wr s : Contens

rd n : Max _Stack _Size pre len s > 0
pre len s < n post ←−s = [c] _ s
post s = [c] _←−s

 Proof-Obligations
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Role of formal Specifications .

Examples

General format for VDM-operations

output parameter
value

and/or
output state 

with

Satisfy
postcondition

Input

Value

false

Operation can’t

true

Operation is
not satisfiable

O
ut

pu
t

pa
ra

m
et

er
O

ut
pu

t
st

at
eState

Input
parameters

Precondition

Evaluation

be executed
for this Input

va
lu

e
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Role of formal Specifications .

Examples

General form VDM-operations

Proof obligations:
For each acceptable input there’s (at least) one acceptable output.

∀si , i · (pre-op(i , si)⇒ ∃so , o · post-op(i , si , o, so))

When there are state-invariants at hand:

∀si , i · (inv(si) ∧ pre-op(i , si)⇒ ∃so , o · (inv(so) ∧ post-op(i , si , o, so)))

alternatively

∀si , i , so , o · (inv(si) ∧ pre-op(i , si) ∧ post-op(i , si , o, so)⇒ inv(so))

See e.g. Turner, McCluskey The Construction of Formal Specifications
or Jones C.B. Systematic SW Development using VDM Prentice Hall.
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Role of formal Specifications .

Examples

Stack: algebraic specification

Example 2.4. Elements of an algebraic specification: Signature (sorts,
operation names with the arity), Axioms (often only equations)
SPEC STACK
USING NATURAL, BOOLEAN “Names of known SPECs”
SORT stack “Principal type”
OPS init : → stack “Constant of the type stack, empty stack”

push : stack nat → stack
pop : stack → stack
top : stack → nat

is_empty? : stack → bool
stack_error : → stack
nat_error : → nat

(Signature fixed)
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Role of formal Specifications .

Examples

Axioms for Stack

FORALL s : stack n : nat
AXIOMS

is_empty? (init) = true
is_empty? (push (s, n)) = false
pop (init) = stack_error
pop (push (s, n)) = s
top (init) = nat_error
top (push (s,n)) = n

Terms or expressions:
top (push (push (init, 2), 3)) “means” 3
How is the “bounded stack” specified algebraically?
Semantics? Operationalization?
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Role of formal Specifications .

Examples

Variant: Z and B- Methods:
Specification-Development-Programs.

I Covering: Technical specification (what), development through
refinement, architecture (layers’ architecture), generation of
executable code.

I Proofs: Program construction ≡ Proof construction.
Abstraction, instantiation, decomposition.

I Abstract machines: Encapsulation of information (Modules, Classes,
ADT).

I Data and operations: SWS is composed of abstract machines.
Abstract machines „get “ data and „offer“ operations.
Data can only be accessed through operations.
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Role of formal Specifications .

Examples

Z- and B- Methods: Specification-Development-Programs.

I Data specification: Sets, relations, functions, sequences, trees. Rules
(static) with help of invariants.

I Operator specification: not executable „pseudocode“.
Without loops:
Precondition + atomic action
PL1 generalized substitution

I Refinement ( implementation).
I Refinement (as specification technique).
I Refinement techniques:

Elimination of not executable parts, introduction of control
structures (cycles).
Transformation of abstract mathematical structures.
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Role of formal Specifications .

Examples

Z- and B- Methods: Specification-Development-Programs.

I Refinement steps: Refinement is done in several steps.
Abstract machines are newly constructed. Operations for users
remain the same, only internal changes.
In-between steps: Mix code.

I Nested architecture:
Rule: not too many refinement steps, better apply decomposition.

I Library: Predefined abstract machines, encapsulation of classical DS.
I Reusability
I Code generation: Last abstract machine can be easily translated into

a program in an imperative Language.
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Role of formal Specifications .

Examples

Z- and B- Methods: Specification-Development-Programs.

Important here:
I Notation: Theory of sets + PL1, standard set operations, Cartesian

product, power sets, set restrictions {x | x ∈ s ∧ P}, P predicate.
I Schemata (Schemes) in Z Models for declaration and constraint
{state descriptions}.

I Types.
I Natural Language: Connection Math objects → objects of the

modeled world.
I See Abrial: The B-Book,

Potter, Sinclair, Till: An Introduction to Formal Specification and Z,
Woodcock, Davis: Using Z Specification, Refinement, and Proof  
Literature

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 44



Abstract State Machines: ASM- Specification’s method

Fundamentals

Introduction to ASM: Fundamentals
Adaptable and flexible specification’s technique

Modeling in the correct abstraction level

Natural and easy understandable semantics.

Material: See http://www.di.unipi.it/AsmBook/
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Abstract State Machines: ASM- Specification’s method

Fundamentals

Theoretical fundaments: ASM Theses
Abstract state machines as computation models

Turing Machines (RAM, part.rec. Fct,..) serve as computation model,
e.g. fixing the notion of computable functions. In principle is possible to
simulate every algorithmic solution with an appropriate TM.

Problem: Simulation is not easy, because there are different abstraction
levels of the manipulated objects and different granularity of the steps.

Question: Is it possible to generalize the TM in such a way that every
algorithm, independent from it’s abstraction level, can be naturally and
faithfully simulated with such generalized machine?
How would the states and instructions of such a machine look like?

Easy: If Condition Then Action
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Abstract State Machines: ASM- Specification’s method

Fundamentals

ASM Thesis
ASM Thesis The concept of abstract state machine provides a universal
computation model with the ability to simulate arbitrary algorithms on
their natural levels of abstraction. Yuri Gurevich

Deterministic ASM

Sequential ASM

Parallel ASM

Real Time ASM

Synchronous calculations

Distributed ASM

Basic Model

Asynchronous calculations
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Abstract State Machines: ASM- Specification’s method

Sequential algorithms

Sequential ASM Thesis

I The model of the sequential ASM’s is universal for all the sequential
algorithms.

I Each sequential algorithm, independent from his abstraction level,
can be simulated step by step by a sequential ASM.

To confirm this thesis we need definitions for sequential algorithms and
for sequential ASM‘s.

 Postulates for sequentiality
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Abstract State Machines: ASM- Specification’s method

Sequential algorithms

Sequentiality Postulates

I Sequential time:
Computations are linearly arranged.

I Abstract states:
Each kind of static mathematical reality can be represented by a
structure of the first order logic (PL 1). (Tarski)

I Bounded exploration:
Each computation step depends only on a finite (depending only on
the algorithm) bounded state information.

Y. Gurevich:: Sequential Abstract State Machines Capture
Sequential Algorithms, ACM Transactions on Computational Logic,
1, 2000, 77-111.
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Abstract State Machines: ASM- Specification’s method

Sequential algorithms

The postulates in detail: Sequential time

Let A be a sequential algorithm. To A belongs:
I A set (Set of states) S(A) of States of A.
I A subset I(A) of S(A) which elements are called initial states of A.
I A mapping τA : S(A)→ S(A), the one-step-function of A.

An run (or a computation) of A is a finite or infinite sequence of states of
A

X0,X1,X2, . . .

in which X0 is an initial state and τA(Xi) = Xi+1 holds for each i .

Logical time and not physical time.
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Abstract State Machines: ASM- Specification’s method

Sequential algorithms

Abstract States

Definition 3.1 (Equivalent algorithms). Algorithms A and B are
equivalent if S(A) = S(B), I(A) = I(B) and τA = τB .
In particular equivalent algorithms have the same runs.

Let A be a sequential algorithm:
I States of A are first order (PL1) structures.
I All the states of A have the same vocabulary (signature).
I The one-step-function doesn’t change the base set (universe) B(X )

of a state.
I S(A) and I(A) are closed under isomorphisms and each isomorphism

from state X to state Y is also an isomorphism of state τA(X ) to
τA(Y ).
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Abstract State Machines: ASM- Specification’s method

Sequential algorithms

Exercises
States: Signatures, interpretations, universe, terms, ground terms, value
...
Signatures (vocabulary): function- and relation-names, arity (n ≥ 0)
Assumption: true, false, undef (constants), Boole (monadic) and = are
contained in every signature.
The interpretation of true is different from the one for false, undef .
Relations are considered as functions with the value of true, false in the
interpretations.
Monadic relations are seen as subsets of the base set of the interpretations.
Let Val(t,X ) be the value in state X for a ground term t that is in the
vocabulary.
Functions are divided in dynamic and static, according whether they can
change or not, when a state transition occurs.
Exercise: Model the states of a TM as an abstract state.

Model the states of the standard Euclidean algorithm.
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Abstract State Machines: ASM- Specification’s method

Sequential algorithms

Bounded exploration
I Unbounded-Parallelism: Consider the following graph-reachability

algorithm that iterates the following step. ( It is assumed that at the
beginning only one node satisfies the unary relation R.)

do for all x , y with Edge(x , y) ∧ R(x) ∧ ¬R(y) R(y) := true

In each computation step an unbounded number of local changes is
made on a global state.

I Unbounded-Step-Information:
Test for isolated nodes in a graph:

if ∀x∃y Edge(x , y) then Output := false else Output := true

In one step only bounded local changes are made, though an
unbounded part of the state is considered in one step.
How can these properties be formalized? Atomic actions
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Update sets
Consider the structure X as memory:

If f is a function name of arity j and a a j-tuple of base elements from X ,
then the pair (f , a) is called a location and ContentX (f , a) is the value of
the interpretation of f for a in X .

Is (f , a) a location of X and b an element of X , then (f , a, b) is called an
update of X . The update is trivial when b = ContentX (f , a).

To make (fire) an update, the actual content of the location is replaced
by b.

A set of updates of X is consistent when in the set there is no pair of
updates with the same location and different values.
A set ∆ of updates is executed by making all updates in the set
simultaneously (in case the set is consistent, in other case nothing is
done).
The result is denoted by X + ∆.
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Update sets of algorithms, Reachable elements
Lemma 3.2. If X ,Y are structures over the same signature and with the
same base set, then there is a unique consistent set ∆ of non-trivial
updates of X with Y = X + ∆. Let ∆� Y − X.

Definition 3.3. Let X be a state of algorithm A. According to the
definition, X and τA(X ) have the same signature and base set. Set:

∆(A,X ) � τA(X )− X i.e. τA(X ) = X + ∆(A,X )

How can we bring up the elements of the base set in the description
of the algorithm at all?  Using the ground terms of the signature.

Definition 3.4 (Reachable element). An element a of a structure X is
reachable when a = Val(t,X ) for a ground term t in the vocabulary of X.
A location (f , a) of X is reachable when each element in the tuple a is
reachable.
An update (f , a, b) of X is reachable when (f , a) and b are reachable.
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Bounded exploration postulate

Two structures X and Y with the same vocabulary Sig coincide on a set
T of Sig- terms, when Val(t,X ) = Val(t,Y ) for all t ∈ T . The
vocabulary (signature) of an algorithm is the vocabulary of his states.

Let A be a sequential algorithm.
I There exist a finite set T of terms in the vocabulary of A, so that:

∆(A,X ) = ∆(A,Y ), for all states X ,Y of A, that coincide on T .
Intuition: Algorithm A examines only the part of a state that is reachable
with the set of terms T . If two states coincide on this term-set, then the
update-sets of the algorithm for both states should be the same.

The set T is a bounded-exploration witness for A.
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Example

Example 3.5. Consider algorithm A:

if P(f) then f := S(f)

States with interpretations with base set N, P subset of the natural
numbers, for S the successor function and f a constant.

Evidently A fulfills the postulates of sequential time and abstract states.

One could believe that
T0 = {f ,P(f ),S(f )} is a bounded-exploration witness for A.
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Example: Continued

Let X be the canonical state of A with f = 0 and P(0) holding.

Set a� Val(true,X ) and b � Val(false,X ), so that

Val(P(0),X ) = Val(true,X ) = a.

Let Y be the state that is obtained out of X through reinterpretation of
true as b and false as a, i.e. Val(true,Y ) = b and Val(false,Y ) = a.
The values of f and P(0) are left unchanged:

Val(P(0),Y ) = a, thus P(0) is not valid in Y .

Consequently X ,Y coincide on T0 but ∆(A,X ) 6= ∅ = ∆(A,Y ).

The set T = T0 ∪ {true} is a bounded-exploration witness for A.
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Sequential algorithms

Definition 3.6 (Sequential algorithm). A sequential algorithm is an
object A, which fulfills the three postulates.
In particular A has a vocabulary and a bounded-exploration witness T .
Without loss of generality (w.l.o.g.) T is subterm-closed and contains
true, false, undef . The terms of T are called critical and their
interpretations in a state X are called critical values in X.

Lemma 3.7. If (f , a1, ..., aj , a0) is an update in ∆(A,X ), then all the
elements a0, a1, ..., aj are critical values in X.

Proof: exercise (Proof by contradiction).
The set of the critical terms does not depend of X , thus there is a fixed
upper bound for the size of ∆(A,X ) and A changes in every step a
bounded number of locations. Each one of the updates in ∆(A,X ) is an
atomic action of A. I.e. ∆(A,X ) is a bounded set of atomic actions of A.
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Sequential ASM-programs: Update rules
Definition 3.8 (Update rule). An update rule over the signature Sig has
the form

f (t1, ..., tj) := t0

in which f is a function and ti are (ground) terms in Sig. To fire the rule
in the Sig-structure X, compute the values ai = Val(ti ,X ) and execute
update ((f , a1, ..., aj), a0) over X.
Parallel update rule over Sig: Let Ri be update rules over Sig, then
par

R1
R2
. Notation: Block (when empty skip)
.
.
Rk

endpar fires through simultaneously firing of Ri .
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Sequential ASM-programs
Definition 3.9 (Semantics of update rules). If R is an update rule
f (t1, ..., tj) := t0 and ai = Val(ti ,X ) then set

∆(R,X )� {(f , (a1, ..., aj), a0)}
If R is a par-update rule with components R1, ...Rk then set

∆(R,X )� ∆(R1,X ) ∪ · · · ∪∆(Rk,X ).

Consequence 3.10. There exists in particular for each state X a rule
RX that uses only critical terms with ∆(RX ,X ) = ∆(A,X ).

Notice: If X ,Y coincide on the critical terms, then ∆(RX ,Y ) = ∆(A,Y )
holds. If X ,Y are states and ∆(RX ,Z ) = ∆(A,Z ) for a state Z , that is
isomorphic to Y , then also ∆(RX ,Y ) = ∆(A,Y ) holds.
Consider the equivalence relation EX (t1, t2)� Val(t1,X ) = Val(t2,X )
on T .
X ,Y are T -similar, when EX = EY  ∆(RX ,Y ) = ∆(A,Y ). Exercise
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Sequential ASM-programs
Definition 3.11. Let ϕ be a boolean term over Sig (i.e. containing
ground equations, not, and, or) and R1,R2 rules over Sig, then
if ϕ then R1
else R2
endif is a rule
Semantic:: To fire the rule in state X evaluate ϕ in X. If the result is
true, then ∆(R,X ) = ∆(R1,X ), if not ∆(R,X ) = ∆(R2,X ).

Definition 3.12 (Sequential ASM program). A
sequential ASM program Π over the signature Sig is a rule over Sig.
According to this ∆(Π,X ) is well defined for each Sig-structure X. Let
τΠ(X )� X + ∆(Π,X ).

Lemma 3.13. Basic result: For each sequential algorithm A over Sig
there’s a sequential ASM-programm Π over Sig with ∆(Π,X ) = ∆(A,X )
for all the states X of A.
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Sequential ASM-machines

Definition 3.14 (A sequential abstract-state-machine (seq-ASM)). A
seq-ASM B over the signature Σ is given through:

I A sequential ASM-programm Π over Σ.
I A set S(B) of interpretations of Σ that is closed under isomorphisms

and under the mapping τΠ .
I A subset I(B) ⊂ S(B), that is closed under isomorphisms.

Theorem 3.15. For each sequential algorithm A there is an equivalent
sequential ASM.
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Example
Example 3.16. Maximal interval-sum.[Gries 1990]. Let A be a function
from {0, 1, ..., n − 1} → R and i , j , k ∈ {0, 1, ..., n}.
For i ≤ j : S(i , j)


∑
i≤k<j A(k). In particular S(i , i) = 0.

Problem: Compute S 
 maxi≤jS(i , j).

Define y(k)
 maxi≤j≤kS(i , j). Then y(0) = 0, y(n) = S and

y(k+1) = max{maxi≤j≤kS(i , j),maxi≤k+1S(i , k+1)} = max{y(k), x(k+1)}

where x(k)
 maxi≤kS(i , k), thus x(0) = 0 and

x(k + 1) = max{maxi≤kS(i , k + 1),S(k + 1, k + 1)}
= max{maxi≤k(S(i , k) + A(k)), 0}
= max{(maxi≤kS(i , k)) + A(k), 0}

= max{x(k) + A(k), 0}
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Continuation of the example
Due to y(k) ≥ 0, we have

y(k + 1) = max{y(k), x(k + 1)} = max{y(k), x(k) + A(k)}

Assumption: The 0-ary dynamic functions k, x , y are 0 in the initial
state. The required algorithm is then

if k 6= n then
par

x := max{x + A(k), 0}
y := max{y , x + A(k)}
k := k + 1

else S := y

Exercise 3.17. Simulation
Define an ASM, that implements Markov’s Normal-algorithms.
e.g. for ab → A, ba→ B, c → C
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Detailed definition of ASMs

Part 1: Abstract states and update sets

Part 2: Mathematical Logic

Part 3: Transition rules and runs of ASMs

Part 4: The reserve of ASMs
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Part 1

Abstract states and update sets

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 2
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Signatures

Definition. A signature Σ is a finite collection of function names.

Each function name f has an arity , a non-negative integer.

Nullary function names are called constants.

Function names can be static or dynamic .

Every ASM signature contains the static constants
undef , true, false.

Signatures are also called vocabularies.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 3
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Classification of functions

controlled out

derived

(monitored)
in

(interaction)

static

shared

dynamic

basic

function/relation/location
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States

Definition. A state A for the signature Σ is a non-empty
set X , the superuniverse of A, together with an interpre-
tation f A of each function name f of Σ.

If f is an n-ary function name of Σ, then f A: Xn → X .

If c is a constant of Σ, then cA ∈ X .

The superuniverse X of the state A is denoted by |A|.

The superuniverse is also called the base set of the state.

The elements of a state are the elements of the superuniverse.
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States (continued)

The interpretations of undef , true, false are pairwise different.

The constant undef represents an undetermined object.

The domain of an n-ary function name f in A is the set of all n-tuples
(a1, . . . , an) ∈ |A|n such that f A(a1, . . . , an) �= undef A.

A relation is a function that has the values true, false or undef .

We write a ∈ R as an abbreviation for R(a) = true.

The superuniverse can be divided into subuniverses represented by
unary relations.
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Locations

Definition. A location of A is a pair

(f , (a1, . . . , an))

where f is an n-ary function name and a1, . . . , an are elements
of A.

The value f A(a1, . . . , an) is the content of the location in A.

The elements of the location are the elements of the set
{a1, . . . , an}.
We write A(l) for the content of the location l in A.

Notation. If l = (f , (a1, . . . , an)) is a location of A and α is a function
defined on |A|, then α(l) = (f , (α(a1), . . . , α(an))).
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Updates and update sets

Definition. An update for A is a pair (l , v ), where l is a location
of A and v is an element of A.

The update is trivial , if v = A(l).

An update set is a set of updates.

Definition. An update set U is consistent, if it has no clashing
updates, i.e., if for any location l and all elements v ,w ,
if (l , v ) ∈ U and (l ,w ) ∈ U , then v = w .
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Firing of updates

Definition. The result of firing a consistent update set U in a
state A is a new state A + U with the same superuniverse as A
such that for every location l of A:

(A + U )(l) =

{
v , if (l , v ) ∈ U ;
A(l), if there is no v with (l , v ) ∈ U .

The state A + U is called the sequel of A with respect to U .
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Homomorphisms and isomorphisms

Let A and B be two states over the same signature.

Definition. A homomorphism from A to B is a function α
from |A| into |B| such that α(A(l)) = B(α(l)) for each loca-
tion l of A.

Definition. An isomorphism from A to B is a homomorphism
from A to B which is a ono-to-one function from |A| onto |B|.

Lemma (Isomorphism). Let α be an isomorphism from A to B.
If U is a consistent update set for A, then α(U ) is a consistent
update set for B and α is an isomorphism from A+U to B+α(U ).
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Composition of update sets

U ⊕ V = V ∪ {(l , v ) ∈ U | there is no w with (l ,w ) ∈ V }

Lemma. Let U ,V ,W be update sets.

(U ⊕ V ) ⊕ W = U ⊕ (V ⊕ W )

If U and V are consistent, then U ⊕ V is consistent.

If U and V are consistent, then A + (U ⊕V ) = (A +U ) +V .
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Part 2

Mathematical Logic
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Terms

Let Σ be a signature.

Definition. The terms of Σ are syntactic expressions generated
as follows:

Variables x , y , z , . . . are terms.

Constants c of Σ are terms.

If f is an n-ary function name of Σ, n > 0, and t1, . . . , tn are
terms, then f (t1, . . . , tn) is a term.

A term which does not contain variables is called a ground term.

A term is called static , if it contains static function names only.

By t s
x we denote the result of replacing the variable x in term t

everywhere by the term s (substitution of s for x in t).
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Variable assignments

Let A be a state.

Definition. A variable assignment for A is a finite function ζ
which assigns elements of |A| to a finite number of variables.

We write ζ [x �→ a] for the variable assignment which coincides with ζ
except that it assigns the element a to the variable x :

ζ [x �→ a](y) =

{
a, if y = x ;
ζ(y), otherwise.

Variable assignments are also called environments.
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Evaluation of terms

Definition. Let A be a state of Σ.
Let ζ be a variable assignment for A.
Let t be a term of Σ such that all variables of t are defined in ζ.
The value [[t ]]Aζ is defined as follows:

[[x ]]Aζ = ζ(x )

[[c]]Aζ = cA

[[f (t1, . . . , tn)]]Aζ = f A([[t1]]
A
ζ , . . . , [[tn ]]Aζ )
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Evaluation of terms (continued)

Lemma (Coincidence). If ζ and η are two variable
assignments for t such that ζ(x ) = η(x ) for all
variables x of t , then [[t ]]Aζ = [[t ]]Aη .

Lemma (Homomorphism). If α is a homomorphism
from A to B, then α([[t ]]Aζ ) = [[t ]]Bα◦ζ for each term t .

Lemma (Substitution). Let a = [[s ]]Aζ .

Then [[t s
x ]]Aζ = [[t ]]A

ζ [x �→a]
.
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Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 81

Abstract State Machines: ASM- Specification’s method

ASM-Specifications

Formulas

Let Σ be a signature.

Definition. The formulas of Σ are generated as follows:

If s and t are terms of Σ, then s = t is a formula.

If ϕ is a formula, then ¬ϕ is a formula.

If ϕ and ψ are formulas, then (ϕ ∧ ψ), (ϕ ∨ ψ) and (ϕ → ψ)
are formulas.

If ϕ is a formula and x a variable, then (∀x ϕ) and (∃x ϕ) are
formulas.

A formula s = t is called an equation.

The expression s �= t is an abbreviation for ¬(s = t).
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Formulas (continued)

symbol name meaning

¬ negation not

∧ conjunction and

∨ disjunction or (inclusive)

→ implication if-then

∀ universal quantification for all

∃ existential quantification there is
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Formulas (continued)

ϕ ∧ ψ ∧ χ stands for ((ϕ ∧ ψ) ∧ χ),

ϕ ∨ ψ ∨ χ stands for ((ϕ ∨ ψ) ∨ χ),

ϕ ∧ ψ → χ stands for ((ϕ ∧ ψ) → χ), etc.

The variable x is bound by the quantifier ∀ (∃) in ∀x ϕ (∃x ϕ).

The scope of x in ∀x ϕ (∃x ϕ) is the formula ϕ.

A variable x occurs free in a formula, if it is not in the scope of a
quantifier ∀x or ∃x .

By ϕ t
x we denote the result of replacing all free occurrences of the

variable x in ϕ by the term t . (Bound variables are renamed.)
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Semantics of formulas

[[s = t ]]Aζ =

{
true, if [[s ]]Aζ = [[t ]]Aζ ;

false, otherwise.

[[¬ϕ]]Aζ =

{
true, if [[ϕ]]Aζ = false;

false, otherwise.

[[ϕ ∧ ψ]]Aζ =

{
true, if [[ϕ]]Aζ = true and [[ψ]]Aζ = true;

false, otherwise.

[[ϕ ∨ ψ]]Aζ =

{
true, if [[ϕ]]Aζ = true or [[ψ]]Aζ = true;

false, otherwise.

[[ϕ→ ψ]]Aζ =

{
true, if [[ϕ]]Aζ = false or [[ψ]]Aζ = true;

false, otherwise.

[[∀x ϕ]]Aζ =

{
true, if [[ϕ]]Aζ[x �→a] = true for every a ∈ |A|;
false, otherwise.

[[∃x ϕ]]Aζ =

{
true, if there exists an a ∈ |A| with [[ϕ]]Aζ[x �→a] = true;

false, otherwise.
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Coincidence, Substitution, Isomorphism

Lemma (Coincidence). If ζ and η are two variable
assignments for ϕ such that ζ(x ) = η(x ) for all free
variables x of ϕ, then [[ϕ]]Aζ = [[ϕ]]Aη .

Lemma (Substitution). Let t be a term and a = [[t ]]Aζ .

Then [[ϕ t
x ]]Aζ = [[ϕ]]A

ζ [x �→a]
.

Lemma (Isomorphism). Let α be an isomorphism
from A to B. Then [[ϕ]]Aζ = [[ϕ]]Bα◦ζ .
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Models

Definition. A state A is a model of ϕ (written A |= ϕ),
if [[ϕ]]Aζ = true for all variable assignments ζ for ϕ.
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Part 3

Transition rules and runs of ASMs
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Transition rules

Skip Rule: skip

Meaning: Do nothing

Update Rule: f (s1, . . . , sn) := t

Meaning: Update the value of f at (s1, . . . , sn) to t .

Block Rule: P par Q

Meaning: P and Q are executed in parallel.

Conditional Rule: if ϕ then P else Q

Meaning: If ϕ is true, then execute P , otherwise execute Q .

Let Rule: let x = t in P

Meaning: Assign the value of t to x and then execute P .
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Transition rules (continued)

Forall Rule: forall x with ϕ do P

Meaning: Execute P in parallel for each x satisfying ϕ.

Choose Rule: choose x with ϕ do P

Meaning: Choose an x satisfying ϕ and then execute P .

Sequence Rule: P seq Q

Meaning: P and Q are executed sequentially, first P and then Q .

Call Rule: r (t1, . . . , tn)

Meaning: Call transition rule r with parameters t1, . . . , tn .
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Variations of the syntax

if ϕ then
P

else
Q

endif

if ϕ then P else Q

[do in-parallel]
P1
...
Pn

[enddo]

P1 par . . . par Pn

{P1, . . . ,Pn} P1 par . . . par Pn
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Variations of the syntax (continued)

do forall x : ϕ
P

enddo

forall x with ϕ do P

choose x : ϕ
P

endchoose

choose x with ϕ do P

step
P

step
Q

P seq Q
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Example

Example 3.18. Sorting of linear data structures in-place,
one-swap-a-time.
Let a : Index → Value

choose x , y ∈ Index : x < y ∧ a(x) > a(y)
do in − parallel

a(x) := a(y)
a(y) := a(x)

Two kinds of non-determinisms:
“Don‘t-care” non-determinism: random choice
choose x ∈ {x1, x2, ..., xn} with ϕ(x) do

R(x)
“Don‘t-know” indeterminism

Extern controlled actions and events (e.g. input actions)
monitored f : X → Y
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Free and bound variables

Definition. An occurrence of a variable x is free in a transition
rule, if it is not in the scope of a let x , forall x or choose x .

let x = t in P︸︷︷︸
scope of x

forall x with ϕ do P︸ ︷︷ ︸
scope of x

choose x with ϕ do P︸ ︷︷ ︸
scope of x
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Rule declarations

Definition. A rule declaration for a rule
name r of arity n is an expression

r (x1, . . . , xn) = P

where

P is a transition rule and

the free variables of P are contained in the
list x1, . . . , xn .

Remark: Recursive rule declarations are allowed.
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Abstract State Machines

Definition. An abstract state machine M consists of

a signature Σ,

a set of initial states for Σ,

a set of rule declarations,

a distinguished rule name of arity zero called the
main rule name of the machine.
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Semantics of transition rules

The semantics of transition rules is defined in a calculus by rules:

Premise1 · · · Premisen
Conclusion

Condition

The predicate

yields(P , A, ζ,U )

means:

The transition rule P yields the update set U in
state A under the variable assignment ζ.
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Semantics of transition rules (continued)

yields(skip, A, ζ, ∅)

yields(f (s1, . . . , sn) := t , A, ζ, {(l , v )})
where l = (f , ([[s1]]

A
ζ , . . . , [[sn ]]Aζ ))

and v = [[t ]]Aζ

yields(P , A, ζ,U ) yields(Q , A, ζ,V )

yields(P par Q , A, ζ,U ∪ V )

yields(P , A, ζ,U )

yields(if ϕ then P else Q , A, ζ,U )
if [[ϕ]]Aζ = true

yields(Q , A, ζ,V )

yields(if ϕ then P else Q , A, ζ,V )
if [[ϕ]]Aζ = false

yields(P , A, ζ[x �→ a],U )

yields(let x = t in P , A, ζ,U )
where a = [[t ]]Aζ

yields(P , A, ζ[x �→ a],Ua) for each a ∈ I

yields(forall x with ϕ do P , A, ζ,
⋃

a∈I Ua)
where I = range(x , ϕ, A, ζ)
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Semantics of transition rules (continued)

yields(P , A, ζ[x �→ a],U )

yields(choose x with ϕ do P , A, ζ,U )
if a ∈ range(x , ϕ, A, ζ)

yields(choose x with ϕ do P , A, ζ, ∅) if range(x , ϕ, A, ζ) = ∅

yields(P , A, ζ,U ) yields(Q , A + U , ζ,V )

yields(P seq Q , A, ζ,U ⊕ V )
if U is consistent

yields(P , A, ζ,U )

yields(P seq Q , A, ζ,U )
if U is inconsistent

yields(P t1···tn
x1···xn , A, ζ,U )

yields(r (t1, . . . , tn), A, ζ,U )

where r (x1, . . . , xn) = P is a
rule declaration of M

range(x , ϕ, A, ζ) = {a ∈ |A| : [[ϕ]]Aζ[x �→a] = true}
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Coincidence, Substitution, Isomorphisms

Lemma (Coincidence). If ζ(x ) = η(x ) for all free variables x of
a transition rule P and P yields U in A under ζ, then P yields U
in A under η.

Lemma (Substitution). Let t be a static term and a = [[t ]]Aζ .

Then the rule P t
x yields the update set U in state A under ζ iff

P yields U in A under ζ [x �→ a].

Lemma (Isomorphism). If α is an isomorphism from A to B
and P yields U in A under ζ, then P yields α(U ) in B under
α ◦ ζ.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 34
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Move of an ASM

Definition. A machine M can make a move from state A

to B (written A
M

=⇒ B), if the main rule of M yields a
consistent update set U in state A and B = A + U .

The updates in U are called internal updates.

B is called the next internal state.

If α is an isomorphism from A to A′, the following diagram commutes:

A
M

=⇒ B

α ↓ ↓ α

A′ M
=⇒ B′
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Run of an ASM

Let M be an ASM with signature Σ.

A run of M is a finite or infinite sequence A0, A1, . . . of states
for Σ such that

A0 is an initial state of M

for each n,

– either M can make a move from An into the next internal
state A′

n and the environment produces a consistent set of
external or shared updates U such that An+1 = A′

n + U ,

– or M cannot make a move in state An and An is the last state
in the run.

In internal runs, the environment makes no moves.

In interactive runs, the environment produces updates.
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Example

Example 3.19. Minimal spanning tree:: Prim’s algorithm
Two separated phases: initial, run

Signature: Weighted graph (connected, without loops) given by sets
NODE, EDGE, . . . functions
weight : EDGE → REAL, frontier : EDGE → Bool , tree : EDGE → Bool

if mode = initial then
choose p : NODE

Selected(p) := true
forall e : EDGE : p ∈ endpoints(e)
frontier(e) := true

mode := run
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Example: Prim’s algorithm (Cont.)

if mode = run then
choose e : EDGE : frontier(e)∧

((∀f ∈ EDGE ) : frontier(f )⇒ weight(f ) ≥ weight(e))
tree(e) := true
choose p : NODE : p ∈ endpoints(e) ∧ ¬Selected(p)
Selected(p) := true
forall f : EDGE : p ∈ endpoints(f )

frontier(f ) := ¬frontier(f )
ifnone mode := done

How can we prove the correctness, termination?

Exercise 3.20. Construct an ASM-Machine that implements Kruskal’s
algorithm.
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Part 4

The reserve of ASMs
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Importing new elements from the reserve

Import rule: import x do P

Meaning: Choose an element x from the reserve, delete it from the
reserve and execute P .

let x = new (X ) in P abbreviates
import x do

X (x ) := true
P
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The reserve of a state

New dynamic relation Reserve.

Reserve is updated by the system, not by rules.

Res(A) = {a ∈ |A| : ReserveA(a) = true}
The reserve elements of a state are not allowed to be in the domain
and range of any basic function of the state.

Definition. A state A satisfies the reserve condition with respect
to an environment ζ, if the following two conditions hold for each
element a ∈ Res(A) \ ran(ζ):

The element a is not the content of a location of A.

If a is an element of a location l of A which is not a location for
Reserve, then the content of l in A is undef .
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Semantics of ASMs with a reserve

yields(P , A, ζ[x �→ a],U )

yields(import x do P , A, ζ,V )

if a ∈ Res(A) \ ran(ζ) and
V = U ∪ {((Reserve, a), false)}

yields(P , A, ζ,U ) yields(Q , A, ζ,V )

yields(P par Q , A, ζ,U ∪ V )
if Res(A) ∩ El(U ) ∩ El(V ) ⊆ ran(ζ)

yields(P , A, ζ[x �→ a],Ua) for each a ∈ I

yields(forall x with ϕ do P , A, ζ,
⋃
a∈I

Ua)

if I = range(x , ϕ, A, ζ) and for a �= b
Res(A) ∩ El(Ua) ∩ El(Ub) ⊆ ran(ζ)

El(U ) is the set of elements that occur in the updates of U .

The elements of an update (l , v ) are the value v and the elements of
the location l .
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Problem

Problem 1: New elements that are imported in parallel must be different.

import x do parent(x ) = root

import y do parent(y) = root

Problem 2: Hiding of bound variables.

import x do

f (x ) := 0

let x = 1 in

import y do f (y) := x

Syntactic constraint. In the scope of a bound variable the same
variable should not be used again as a bound variable (let, forall,
choose, import).
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Preservation of the reserve condition

Lemma (Preservation of the reserve condition).
If a state A satisfies the reserve condition wrt. ζ and P yields a
consistent update set U in A under ζ, then

the sequel A + U satisfies the reserve condition wrt. ζ,

Res(A + U ) \ ran(ζ) is contained in Res(A) \ El(U ).
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Permutation of the reserve

Lemma (Permutation of the reserve). Let A be a state that
satisfies the reserve condition wrt. ζ. If α is a function from |A|
to |A| that permutes the elements in Res(A) \ ran(ζ) and is the
identity on non-reserve elements of A and on elements in the range
of ζ, then α is an isomorphism from A to A.
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Independence of the choice of reserve elements

Lemma (Independence).
Let P be a rule of an ASM without choose. If

A satisfies the reserve condition wrt. ζ,

the bound variables of P are not in the domain of ζ,

P yields U in A under ζ,

P yields U ′ in A under ζ,

then there exists a permutation α of Res(A) \ ran(ζ) such that
α(U ) = U ′.
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Example: Abstract Data Types (ADT)

Example 3.21. Double-linked lists

See ASM-Buch.

Exercise 3.22. Give an ASM-Specification for the data structure
bounded stack.
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Distributed ASM: Concurrency, reactivity, time

Distributed ASM (DASM)

I Computation model:
I Asynchronous computations
I Autonomous operating agents

I A finite set of autonomous ASM-agents, each with a program of his
own.

I Agents interact through reading and writing common locations of
global machine states.

I Potential conflicts are solved through the underlying semantic
model, according to the definition of (partial-ordered) runs.
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Foundations: Orders, CPO’s, Proof techniques

Properties of binary relations
I X set
I ρ ⊆ X × X binary relation
I Properties

(P1) x ρ x (reflexive)
(P2) (x ρ y ∧ y ρ x)→ x = y (antisymmetric)
(P3) (x ρ y ∧ y ρ z)→ x ρ z (transitive)
(P4) (x ρ y ∨ y ρ x) (linear)
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Quasi-Orders

I .⊆ X × X Quasi-order iff . reflexive and transitive.
I Kernel:

≈ = . ∩ .−1
I Strict part: < = . \ ≈
I Y ⊆ X left-closed (in respect of .) iff

(∀y ∈ Y : (∀x ∈ X : x . y → x ∈ Y ))

I Notation: Quasi-order (X ,.)
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Partial-Orders

I ≤⊆ X × X partial-order iff ≤ reflexive, antisymmetric and transitive.
I Kernel: Following holds

idX =≤ ∩ ≤−1

I Strict part: < = ≤ \ idX
I Often: < Partial-order iff < irreflexive, transitive.
I Notation: Partial-order (X ,≤)
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Well-founded Orderings

I Partial-order ≤⊆ X × X well-founded iff

(∀Y ⊆ X : Y 6= ∅ → (∃y ∈ Y : y minimal in Y in respect of ≤))

I Quasi-order . well-founded iff strict part of . is well-founded.
I Initial segment: Y ⊆ X , left-closed
I Initial section of x : sec(x) = {y : y < x}
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Supremum

I Let (X ,≤) be a partial-order and Y ⊆ X
I S ⊆ X is a chain iff elements of S are linearly ordered through ≤.
I y is an upper bound of Y iff

∀y ′ ∈ Y : y ′ ≤ y

I Supremum: y is a supremum of Y iff y is an upper bound of Y and

∀y ′ ∈ X : ((y ′ upper bound of Y )→ y ≤ y ′)

I Analog: lower bound, Infimum inf(Y )
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CPO

I A Partial-order (D,v) is a complete partial ordering (CPO) iff
I ∃ the smallest element ⊥ of D (with respect of v)
I Each chain S has a supremum sup(S).
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Example

Example 4.1. I (P(X ),⊆) is CPO.
I (D,v) is CPO with

I D = X 9 Y : set of all the partial functions f with dom(f ) ⊆ X and
cod(f ) ⊆ Y .

I Let f , g ∈ X 9 Y .

f v g iff dom(f ) ⊆ dom(g) ∧ (∀x ∈ dom(f ) : f (x) = g(x))
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Monotonous, continuous

I (D,v), (E ,v′) CPOs
I f : D → E monotonous iff

(∀d , d ′ ∈ D : d v d ′ → f (d) v′ f (d ′))
I f : D → E continuous iff f monotonous and

(∀S ⊆ D : S chain → f (sup(S)) = sup(f (S)))

I X ⊆ D is admissible iff

(∀S ⊆ X : S chain → sup(S) ∈ X )
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Fixpoint

I (D,v) CPO, f : D → D
I d ∈ D fixpoint of f iff

f (d) = d
I d ∈ D smallest fixpoint of f iff d fixpoint of f and

(∀d ′ ∈ D : d ′ fixpoint → d v d ′)
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Fixpoint-Theorem

Theorem 4.2 (Fixpoint-Theorem:). (D,v) CPO, f : D → D continuous,
then f has a smallest fixpoint µf and

µf = sup{f i(⊥) : i ∈ N}

Proof: (Sketch)
I sup{f i(⊥) : i ∈ N} fixpoint:

f (sup{f i(⊥) : i ∈ N}) = sup{f i+1(⊥) : i ∈ N}
(continuous)

= sup{sup{f i+1(⊥) : i ∈ N},⊥}
= sup{f i(⊥) : i ∈ N}
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Fixpoint-Theorem (Cont.)

Fixpoint-Theorem: (D,v) CPO, f : D → D continuous, then f has a
smallest fixpoint µf and

µf = sup{f i(⊥) : i ∈ N}

Proof: (Continuation)
I sup{f i(⊥) : i ∈ N} smallest fixpoint:

1. d ′ fixpoint of f
2. ⊥v d ′
3. f monotonous, d ′ FP: f (⊥) v f (d ′) = d ′
4. Induction: ∀i ∈ N : f i(⊥) v f i(d ′) = d ′
5. sup{f i(⊥) : i ∈ N} v d ′
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Induction over N

Induction’s principle:

(∀X ⊆ N : ((0 ∈ X ∧ (∀x ∈ X : x ∈ X → x + 1 ∈ X )))→ X = N)

Correctness:
1. Let’s assume no, so ∃X ⊆ N : N \ X 6= ∅
2. Let y be minimum in N \ X (with respect to <).
3. y 6= 0
4. y − 1 ∈ X ∧ y 6∈ X
5. Contradiction
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Induction over N (Alternative)

Induction’s principle:

(∀X ⊆ N : (∀x ∈ N : sec(x) ⊆ X → x ∈ X )→ X = N)

Correctness:
1. Let’s assume no, so ∃X ⊆ N : N \ X 6= ∅
2. Let y be minimum in N \ X (with respect to <).
3. sec(y) ⊆ X , y 6∈ X
4. Contradiction
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Well-founded induction

Induction’s principle: Let (Z ,≤) be a well-founded partial order.

(∀X ⊆ Z : (∀x ∈ Z : sec(x) ⊆ X → x ∈ X )→ X = Z )

Correctness:
1. Let’s assume no, so Z \ X 6= ∅
2. Let z be minimum in Z \ X (in respect of ≤).
3. sec(z) ⊆ X , z 6∈ X
4. Contradiction
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FP-Induction: Proving properties of fixpoints

Induction’s principle: Let (D,v) CPO, f : D → D continuous.

(∀X ⊆ D admissible : (⊥∈ X ∧ (∀y : y ∈ X → f (y) ∈ X ))→ µf ∈ X )

Correctness: Let X ⊆ D admissible.

µf ∈ X ⇔ sup{f i(⊥) : i ∈ N} ∈ X (FP-theorem)
⇐ ∀i ∈ N : f i(⊥) ∈ X (X admissible )
⇐ ⊥∈ X ∧ (∀n ∈ N : f n(⊥) ∈ X → f (f n(⊥)) ∈ X )

(Induction N)
⇐ ⊥∈ X ∧ (∀y ∈ X → f (y) ∈ X ) (Ass.)
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Problem

Exercise 4.3. Let (D,v) CPO with
I X = Y = N
I D = X 9 Y : set all partial functions f with dom(f ) ⊆ X and

cod(f ) ⊆ Y .
I Let f , g ∈ X 9 Y .

f v g iff dom(f ) ⊆ dom(g) ∧ (∀x ∈ dom(f ) : f (x) = g(x))

Consider

F : D → P(N× N)

g 7→
{
{(0, 1)} g = ∅
{(x , x · g(x − 1)) : x − 1 ∈ dom(g)} ∪ {(0, 1)} otherwise
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Prove:
1. ∀g ∈ D : F (g) ∈ D, i.e. F : D → D
2. F : D → D continuous
3. ∀n ∈ N : µF (n) = n!

Note:
I µF can be understood as the semantics of a function’s definition

function Fac(n : N⊥) : N⊥ =def
if n = 0 then 1
else n · Fac(n − 1)

I Keyword: ’derived functions’ in ASM
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Induction

Problem

Exercise 4.4. Prove: Let G = (V ,E ) be an infinite directed graph with
I G has finitely many roots (nodes without incoming edges).
I Each node has finite out-degree.
I Each node is reachable from a root.

There exists an infinite path that begins on a root.
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Distributed ASM

Definition 4.5. A DASM A over a signature (vocabulary) Σ is given
through:

I A distributed programm ΠA over Σ.
I A non-empty set IA of initial states

An initial state defines a possible interpretation of Σ over a potential
infinite base set X.

A contains in the signature a dynamic relation’s symbol AGENT, that is
interpreted as a finite set of autonomous operating agents.

I The behaviour of an agent a in state S of A is defined through
programS(a).

I An agent can be ended through the definition of
programS(a) := undef (representation of an invalid programm).
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Partially ordered runs
A run of a distributed ASM A is given through a triple %
 (M, λ, σ)
with the following properties:
1. M is a partial ordered set of “moves”, in which each move has only

a finite number of predecessors.
2. λ is a function on M, that assigns an agent to each move, so that

the moves of a particular agent are always linearly ordered.
3. σ asociates a state of A with each finite initial segment Y of M.

Intended meaning:: σ(Y ) is the “result of the execution of all moves
in Y ”. σ(Y ) is an initial state when Y is empty.

4. The coherence condition is satisfied:
If max is a set of maximal elements in a finite initial segment X of
M and Y = X \max , then for x ∈ max :: λ(x) is an agent in σ(Y )
and we get σ(X ) from σ(Y ) by firing {λ(x) : x ∈ max} (their
programs ) in σ(Y ).
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Comment, example

The agents of A modell the concurrent control-threads in the execution
of ΠA.
A run can be seen as the common part of the history of the same
computation from the point of view of multiple observers.

The role of λ:

m1 m3

m2 m4 m6

m7

m8

m9m5
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Comment, example (cont.)
The role of σ: Snap-shots of the computation are the initial segments of
the partial ordered set M. To each initial segment a state of A is assigned
(interpretation of Σ), that reflects the execution of the programs of the
agents that appear in the segment.
 “Result of the execution of all the moves” in the segment.

m1 m3

m2 m4 m6 m8

m9

Kein Segment

m7m5
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DASM

Coherence condition, example
If max is a set of maximal elements in a finite initial segment X of M and
Y = X \max , then for x ∈ max :: λ(x) is an agent in σ(Y ) and we get
σ(X ) from σ(Y ) by firing {λ(x) : x ∈ max} (their programs ) in σ(Y ).

m1 m3

m4 m6

m7

m8

m9

S1
S2

S3

S4

S5 S6

S2 S1

S4
S3

S5

S6

m2

Initialer Zustand

m5
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Consequences of the coherence condition

Lemma 4.6. All the linearizations of an initial segment (i.e. respecting
the partial ordering) of a run % lead to the same “final” state.

Lemma 4.7. A property P is valid in all the reachable states of a run %,
iff it is valid in each of the reachable states of the linearizations of %.
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Simple example

Example 4.8. Let {door ,window} be propositional-logic constants in
the signature with natural meaning:
door = true means “ door open ” and analog for window.

The program has two agents, a door-manager d and a window-manager
w with the following programs:

programd = door := true // move x
programw = window := true // move y

In the initial state S0 let the door and window be closed, let d and w be
in the agent set.

Which are the possible runs?
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DASM

Simple example (Cont.)

Let %1 = (({x , y}, x < y), id , σ), %2 = (({x , y}, y < x), id , σ),
%3 = (({x , y}, <>), id , σ) (coarsest partial order)

Sx Sy Sx Sy

Sxy Sxy Sxy

So So So
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Variants of simple example
The program consists of two agents, a door-Manager d and a
window-manager w with the following programs:
programd = if ¬window then door := true // move x
programw = if ¬door then window := true // move y
In the initial state S0 let the door and window be closed, let d and w be
in the agent set. How do the runs look like? Same %’s as before.

Sx Sy Sx Sy

Sxy

So So So

Sx Sy
not equal

not equal

Not a run, since
coherence violated
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More variations

Exercise 4.9. Consider the following pair of agents
x , y ∈ N (x = 2, y = 1 in the initial state)
1. a = x := x + 1 and b = x := x + 1
2. a = x := x + 1 and b = x := x − 1
3. a = x := y and b = y := x

Which runs are possible with partial-ordered sets containing two
elements?

Try to characterize all the runs.
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More variations

Consider the following agents with the conventional interpretation:
1. Programd = if ¬window then door := true //move x
2. Programw = if ¬door then window := true //move y
3. Programl = if ¬light ∧ (¬door ∨ ¬window) then //move z

light := true
door := false
window := false

Which end states are possible, when in the initial state the three
constants are false?
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Further exercises

Consumer-producer problem: Assume a single producer agent and two or
more consumer agents operating concurrently on a global shared
structure. This data structure is linearly organized and the producer adds
items at the one end side while the consumers can remove items at the
opposite end of the data structure. For manipulating the data structure,
assume operations insert and remove as introduced below.

insert : Item × ItemList → ItemList
remove : ItemList → (Item × ItemList)

(1) Which kind of potential conflicts do you see?
(2) How does the semantic model of partially ordered runs resolve such
conflicts?
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Environment
Reactive systems are characterized by their interaction with the
environment. This can be modeled with the help of an
environment-agent. The runs can then contain this agent (with λ), λ
must define in this case the update-set of the environment in the
corresponding move.
The coherence condition must also be valid for such runs.

For externally controlled functions this surely doesn’t lead to
inconsistencies in the update-set, the behaviour of the internal agents can
of course be influenced. Inconsistent update-sets can arise in shared
functions when there’s a simultaneous execution of moves by an internal
agent and the environment agent.

Often certain assumptions or restrictions (suppositions) concerning the
environment are done.
In this aspect there are a lot of possibilities: the environment will be only
observed or the environment meets stipulated integrity conditions.
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Time
The description of real-time behaviour must consider explicitly time
aspects. This can be done successfully with help of timers (see SDL),
global system time or local system time.

I The reactions can be instantaneous (the firing of the rules by the
agents don’t need time)

I Actions need time
Concerning the global time consideration, we assume, that there is on
hand a linear ordered domain TIME , for instance with the following
declarations:

domain (TIME ,≤), (TIME ,≤) ⊂ (R,≤)

In these cases the time will be measured with a discrete system watch:
e.g.

monitored now :→ TIME
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ATM (Automatic Teller Machine)

Exercise 4.10. Abstract modeling of a cash terminal:
Three agents are in the model: ct-manager, authentication-manager,
account-manager. To withdraw an amount from an account, the
following logical operations must be executed:
1. Input the card (number) and the PIN.
2. Check the validity of the card and the PIN (AU-manager).
3. Input the amount.
4. Check if the amount can be withdrawn from the account

(ACC-manager).
5. If OK, update the account’s stand and give out the amount.
6. If it is not OK, show the corresponding message.

Implement an asynchronous communication model in which timeouts can
cancel transactions .
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Distributed Termination Detection

Example 4.11. Implement the following termination detection protocol:

A passive machine
becomes active, iff it
receives a message from
another machine.

Only active machines can
send messages. Token

Message

Active / Passive
Machine 0

Machine n−1

Machine n−2

Machine n−3

Machine 1

Edsger W. Dĳkstra, W. H. J. Feĳen, and A.J.M. van Gasteren. Derivation
of a Termination Detection Algorithm for Distributed Computations. IPL
16 (1983).
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Assumptions for distributed termination detection
Rules for a probe

Rule 0 When active, Machinei+1 keeps the token; when passive, it hands
over the token to Machinei .

Rule 1 A machine sending a message makes itself red.
Rule 2 When Machinei+1 propagates the probe, it hands over a red token

to Machinei when it is red itself, whereas while being white it leaves
the color of the token unchanged.

Rule 3 After the completion of an unsuccessful probe, Machine 0 initiates a
next probe.

Rule 4 Machine 0 initiates a probe by making itself white and sending to
Machinen−1 a white token.

Rule 5 Upon transmission of the token to Machinei , Machinei+1becomes
white. (Notice that the original color of Machinei+1 may have
affected the color of the token).
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Distributed Termination Detection: Procedure

Signature:

static
COLOR = {red ,white} TOKEN = {redToken,whiteToken}
MACHINE = {0, 1, 2, . . . , n − 1}
next : MACHINE → MACHINE
e.g. with next(0) = n − 1, next(n − 1) = n − 2, . . . , next(1) = 0

controlled
color : MACHINE → COLOR token : MACHINE → TOKEN
RedTokenEvent,WhiteTokenEvent : MACHINE → BOOL

monitored Active : MACHINE → BOOL
SendMessageEvent : MACHINE → BOOL
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Distributed Termination Detection: Procedure
Macros: (Rule definitions)

I ReactOnEvents(m : MACHINE ) =
if RedTokenEvent(m) then

token(m) := redToken
RedTokenEvent(m) := undef

if WhiteTokenEvent(m) then
token(m) := whiteToken
WhiteTokenEvent(m) := undef

if SendMessageEvent(m) then color(m) := red Rule 1

I Forward(m : MACHINE , t : TOKEN) =
if t = whiteToken then

WhiteTokenEvent(next(m)) := true
else

RedTokenEvent(next(m)) := true
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Distributed Termination Detection: Procedure
Programs

I RegularMachineProgram =

ReactOnEvents(me)
if ¬ Active(me) ∧ token(me) 6= undef then Rule 0

InitializeMachine(me) Rule 5
if color(me) = red then

Forward(me, redToken) Rule 2
else

Forward(me, token(me)) Rule 2
I With InitializeMachine(m : MACHINE ) =

token(m) := undef
color(m) := white
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Distributed Termination Detection: Procedure

Programs
I SupervisorMachineProgram =

ReactOnEvents(me)
if ¬ Active(me) ∧ token(me) 6= undef then

if color(me) = white ∧ token(me) = whiteToken then
ReportGlobalTermination

else Rule 3
InitializeMachine(me) Rule 4
Forward(me,whiteToken) Rule 4
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Distributed Termination Detection
Initial states

∃m0 ∈ MACHINE
(program(m0) = SupervisorMachineProgram ∧
token(m0) = redToken ∧
(∀m ∈ MACHINE )(m 6= m0 ⇒

(program(m) = RegularMachineProgram ∧ token(m) = undef )))

Environment constraints For all the executions and all linearizations
holds:

G (∀m ∈ MACHINE )
(SendMessageEvent(m) = true ⇒ (P(Active(m)) ∧ Active(m)))

∧ ((Active(m) = true ∧ P(¬Active(m))⇒
(∃m′ ∈ MACHINE ) (m′ 6= m ∧ SendMessageEvent(m′))))

Nextconstraints
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Distributed Termination Detection
Correctness of the abstract version: Dĳkstra
Suppositions: The machines constitute a closed system, i.e. messages can
only be dispatched among each other (no outside messages). The system
in the initial state can have any color and several machines can be active.
The token is located in the 0’th. machine. The given rules describe the
transfer of the token and the coloration of the machines upon certain
activities.
The task is to determine a state in which all the machines are passive
(not active). This is a stable state of the system, because only active
machines can dispatch messages and passive machines can only become
active by receiving a message.
The invariant: Let t be the position on which the token is, then following
invariant holds
(∀i : t < i < n Machinei is passive) ∨ (∃j : 0 ≤ j ≤ t Machinej is red)∨
(Token is red)
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Distributed Termination Detection

(∀i : t < i < n Machinei is passive) ∨ (∃j : 0 ≤ j ≤ t Machinej is red)∨
(Token is red)
Correctness argument
When the token reaches Machineo , t = 0 and the invariant holds.
If
(Machineo is passive) ∧ (Machineo is white) ∧ (Token is white)
then
(∀i : 0 < i < n Machinei is passive) must hold, i.e. termination.
Proof of the invariant Induction over t:
The case t = n - 1 is easy.
Assume the invariant is valid for 0 < t < n, prove it is valid for t − 1.
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Distributed Termination Detection
Is the invariant valid in all the states of all the linearizations of the runs
of the DASM ? No

I Problem 1 The red coloration of an active machine (that forwards a
message) occurs in a later state. It should occur in the same state in
which the message-receiving machine turns active. (Instantaneous
message passing)
Solution color is a shared function. Instead of using
SendMessageEvent(m) to set the color, it will be set by the
environment: color(m) = red .

I Problem 2 There are states in which none of the machines has the
token:: The machine that has the token, initializes itself and sets an
event, that leads to a state in which none of the machines has the
token.
Solution Instead of using FarbTokenEvent to reset, it is directly
properly set: token(next(m)).

I Result More abstract machine. The environment controls the
activity of the machines, message passing and coloration.
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Lecture Börger’s ASM-Buch

Refinement’s concepts for ASM’s

Question: Is in the termination detection example the given DASM a
refinement of the abstracter DASM?  

General refinement concepts for ASM’s
I Refinements are normally defined for BASM, i.e. the executions are

linear ordered runs, this makes the definition of refinements easier.
I Refinements allow abstractions, realization of data and procedures.
I ASM refinements are usually problem-oriented: Depending on the

application a flexible notion of refinement should be used.
I Proof tasks become structured and easier with help of correct and

complete refinements.
See ASM-Buch.
Example Shortest Path
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Fundamentals

Algebraic Specification - Equational Logic

Specification techniques’ requirements:
I Abstraction (refinement)
I Structuring mechanisms

Partition-aggregation, combination, extension-instantiation
I Clear (explicit and plausible) semantics
I Support of the „verify while develop“-principle
I Expressiveness (all the partial recursive functions representable)
I Readability (adequacy) (suitability)

...
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Introduction

Algebraic Specification - Algebras

Specification of data types

Syntax Equations Programs{
signature
axiom

} {
t1 = t2

if ϕ then t1 = t2

} {
data operations

directed application

}

Algebras

heterogeneous order-sorted homogeneous
(Many-Sorted) (Many-Sorted) (Single-Sorted)
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Algebrae

Single-Sorted Algebras

Example 6.1. a) Groups
SORT:: g
SIG:: · : g , g → g 1 :→ g −1 : g → g
EQN:: x · 1 = x x · x−1 = 1 (x · y) · z = x · (y · z)
All-quantified equations

Models are groups

Question: Which equations are valid in all groups,
i.e. EQN |= t1 = t2

1 · x = x x−1 · x = 1 (x−1)−1 = x
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Algebrae

Single-Sorted Algebras

Equational Logic: Replace „equals“ with „equals“
Problem: cycles, non-termination
Solution: Directed equations  Term rewriting systems

Find R „convergent“ with =
EQN

= ∗⇐⇒
R

x · 1→ x 1 · x → x
x · x−1 → 1 x−1 · x → 1
1−1 → 1 (x−1)−1 → x
(x · y)−1 → y−1 · x−1 (x · y) · z → x · (y · z)
x−1 · (x · y)→ y x · (x−1 · y)→ y
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Algebrae

Many-Sorted Algebras

b) Lists over nat-numbers
SIG: BOOL, NAT, LIST Sorts

true, false: → BOOL
0→ NAT
suc: NAT → NAT
+: NAT, NAT → NAT
eq: NAT, NAT → BOOL
nil: → LIST
. : NAT, LIST → LIST
app: LIST, LIST → LIST
rev: LIST → LIST
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Algebrae

Many-Sorted Algebras

Axioms are all-quantified equations, i.e.
∀x1, ..., xn, y1, ..., ym : t1(x1, ..., xn) = t2(y1, ..., ym) where
t1(x1, ..., xn), t2(y1, ..., ym) Terms of the same sort over the signature.

EQN : n + 0 = n n + suc(m) = suc(n + m)

eq(0, 0) = true eq(0, suc(n)) = false
eq(suc(n), 0) = false
eq(suc(n), suc(m)) = eq(n,m)

app(nil, l) = l app(n.l1, l2) = n. app(l1, l2)

rev(nil) = nil rev(n.l) = app(rev(l), n.nil)
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Algebrae

Many-Sorted Algebras
Terms of type BOOL, NAT, LIST as identifiers for elements.
(standard definition!)
Which algebra is specified? How can we compute in this algebra?
Direct the equations  term-rewriting system R. Evidently e.g.:

s i(0) + s j(0) ∗−→
R

s i+j(0)

app(3.1.nil, app(5.nil, 1.2.3.nil)) ∗−→
R

3.1.5.1.2.3.nil

rev(3.1.nil) → app(rev(1.nil), 3.nil)
→ app(app(rev(nil), 1.nil), 3.nil)
→ app(app(nil, 1.nil), 3.nil)
→ app(1.nil, 3.nil) ∗−→ 1.3.nil

Question: Is app(x .y .nil, z .nil) =E app(x .nil, y .z .nil) true?
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Algebrae

Many-Sorted Algebras
Some equations are not valid in all the models of EQN= E .
e.g.

x + y 6=E y + x
app(x , app(y , z)) 6=E app(app(x , y), z)

rev(rev(x)) 6=E x

The pairs of terms cannot be joined via rewriting.

Distinction:

- Equations that are valid in all the models of E .
- Equations that are valid in data models of E .

x + y = y + x :: s i0 + s j0 = s j0 + s i0 all i , j
rev(rev(x)) = x for x ≡ s i10.s i20. . . . s in0.nil
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Algebraic Fundamentals

Thesis: Data types are Algebras

ADT: Abstract data types. Independent of the data representation.

Specification of abstract data types:
Concepts from Logic/universal Algebra
Objective: common language for specification and implementation.

Methods for proving correctness:
Syntax, L formulae (P-Logic,Hoare,. . . )
Cl : Consequence closure (e.g. |=,Th(A), . . . )
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Algebraic Fundamentals

Consequence closure

Cl : P(L)→ P(L) (subsets of L) with

a) A ⊂ L A ⊂ Cl(A)
b) A,B ⊂ L,A ⊆ B  Cl(A) ⊆ Cl(B) (Monotonicity)
c) Cl(A) = Cl(Cl(A)) (Maximality)

Important concepts:

Consistency: A ( L A is consistent if Cl(A) ( L
Implementation: A (over L′) implements B (over L) (Refinement)

L ⊂ L′,Cl(B) ⊆ Cl(A)

Related to implication.
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Signature - Terms

Definition 6.2. a) Signature is a triple sig = (S,F , τ) (abbreviated: Σ)
I S finite set of sorts
I F set of operators (function symbols)
I τ : F → S+ arity function, i.e.
τ(f ) = s1 · · · sn s, n ≥ 0, si argument’s sorts, s target sort.

Write: f : s1, . . . , sn → s

(Notice that n = 0) is possible, constants of sort S.
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Signature - Terms

Signature - Terms

b) Term(F): Set of ground terms over sig and their tree presentation.

Term(F ) :=
·⋃

s∈S
Terms(F )

recursive definition:
I f :→ s, so f ∈ Terms(F ) representation: ·f
I f : s1, . . . , sn → s, ti ∈ Termsi (F ) with rep. Ti so

f (t1, . . . , tn) ∈ Terms(F ) with rep.

Consider the representation by ordered trees T
1

T
n

f

...
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Signature - Terms

Signature - Terms

c) V =
·⋃

s∈S
Vs system of variables V ∩ F = ∅.

Each x ∈ Vs has arity x :→ s

Set: Term(F ,V ) := Term(F ∪ V ).

Quotation: terms over sig in the variables V .
(F and τ extended with the set of variables and their sorts).

Intention: for variables it is allowed to use any object of the same sort,
i.e. terms of this sort. “Placeholder” for an arbitrary object of this sort.
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Strictness - Positions- Subterms

Definition 6.3. a) s ∈ S strict, if Terms(F ) 6= ∅
If for each sort s ∈ S there is a constant of sort S or a function
f : s1, . . . , sn → s, so that the si are strict. If all the sorts of the signature
are strict. strict signatures (general assumption)
b) Subterms (t) = {tp | p location (position) in p, tp subterm in p}
The positions are represented by sequences over N
(elements of N∗, e the empty sequence).
O(t) Set of positions in t,
For p ∈ O(t) tp (or t|p) subterm of t in position p

I t constant or variable: O(t) = {e} te ≡ t
I t ≡ f (t1, . . . , tn) so

O(t) = {ip | 1 ≤ i ≤ n, p ∈ O(ti)} ∪ {e}
tip ≡ ti |p and te ≡ t.
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Strictness - Positions- Subterms

Term replacement
c) Term replacement: t, r ∈ Term(F ,V )
p ∈ O(t) : with r , tp ∈ Terms(F ,V ) for a sort s.
Then
t[r ]p, t[p ← r ] respectively t r

p is the term, that is obtained from t by
replacing subterm tp by r .
So t[p ← r ]q = tq for q | p and

t[p ← r ]p = r
t t[p<−r]

p
p

r

q q
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Strictness - Positions- Subterms

Signatures - terms
Example 6.4. S = (BOOL,NAT, LIST), F = {true, false, . . . },
τ : F → S∗ :: true :→ BOOL, eq : NAT,NAT→ BOOL, . . .
V = VBOOL ∪ VNAT ∪ VLIST

“ “ “
{bi : i ∈ N} {xi : i ∈ N} {li : i ∈ N}

Ground terms:
true, false, eq(0, suc(0)) ∈ TermBOOL(S)
0, suc(0), suc(0) + (suc(suc(0)) + 0) ∈ TermNAT(S)
app(nil, suc(0).(suc(suc(0)).nil) ∈ TermLIST(S)
0. suc(0), eq(true, false), rev(0) no terms.
General terms:
eq(x1, x2) ∈ TermBOOLE(F ,V ), suc(x1) + (x2 + suc(0)) ∈ TermNAT(F ,V )
app(l1, x1.l0) ∈ TermLIST(F ,V )
rev(x1.l) ∈ TermLIST(F ,V )
app(x1, l2) no term.
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Strictness - Positions- Subterms

Signatures
Representation of signatures (graphical or standardized)

bool

true

false NAT0
suc

Elem.bool stack

false

true empty
nil

pop

2

top

1

Notations:
sig . . .
sorts . . .
ops . . .
op: W → S
op1, . . . , opi : W → S
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Interpretations: sig-algebras

Interpretations: sig-Algebras

Definition 6.5. sig = (S,F , τ) signature. A sig-Algebra A is composed of
1) Set of support A =

⋃
s∈S As ,As 6= ∅ set of support of sort s.

2) Function system FA = {fA : f ∈ F} with
fA : As1 × · · · × Asn → As function and τ(f ) = s1 · · · sns.

Notice: The fA are total functions.
The precondition As 6= ∅ is not mandatory.
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Interpretations: sig-algebras

Interpretations: sig-Algebras

Example 6.6. a) sig ≡ BOOL-algebras, true, false :→ BOOL
A1 {0, 1} trueA1 = 0 falseA1 = 1
A2 {0, 1} trueA2 = 0 falseA2 = 0
A3 N trueA3 = 4 falseA3 = 5
A4 {true, false} trueA4 = true falseA4 = false

 bool-Alg.

b) sig ≡ NAT, 0, suc
AiNAT N Z N {true, false} {0, suci(0)}
0Ai 0 0 1 true 0
sucAi sucN predZ idN suc(true) = false suc(0) = suc(0)

suc(false) = true suc(suci(0)) = suci+1(0)
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Interpretations: sig-algebras

Free sig-algebra generated by V

Definition 6.7. I A = (A,FA) with: A =
⋃

s∈S As As = Terms(F ,V ),
i.e. A = Term(F ,V )
F 3 f : s1, . . . , sn → s, fA(t1, . . . , tn) = f (t1, . . . , tn)

A is sig-Algebra:: Tsig(V )
the free termalgebra in the variables V generated by V

I V = ∅: As = Terms(F ) set of ground terms
(As 6= ∅, because sig is strict).

A ground termalgebra:: Tsig
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Interpretations: sig-algebras

Homomorphisms

Definition 6.8 (sig-homomorphism). A,A′ sig-algebras
h : A→ A′ family of functions
h = {hs : As → A′s : s ∈ S} is sig-homomorphism
when

hs(fA(a1, . . . , an)) = fA′(hs1(a1), . . . , hsn(an))

As always: injective, surjective, bĳective, isomorphism

· fA - · AlgebraA

·

h

? fA′ - ·

h

?
AlgebraA′

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 179

Algebraic Specification - Equational Calculus

Canonical homomorphisms

Canonical homomorphisms

Lemma 6.9. A sig-Algebra, Tsig ground term algebra
a) The family of canonical interpretation functions

hs : Terms(F )→ As defined through

hs(f (t1, . . . , tn)) = fA(hs1(t1), . . . , hsn(tn))

with hs(c) = cA is a sig-homomorphism.
b) There is no other sig-homomorphism from Tsig to A. Uniqueness!

Proof: Just try!!
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Canonical homomorphisms

Initial algebras

Definition 6.10 (Initial algebras). A sig-Algebra A is called
initial in a class C of sig-algebras, if for each sig-Algebra A′ ∈ C exists
exactly one sig-homomorphism h : A→ A′.
Notice: Tsig is initial in the class of all sig-algebras (Lemma 6.9).
Fact: Initial algebras are isomorphic.

Tsig Init

C

Isomorphism class for the
Init −Algebrae

The final algebras can be defined analogously.
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Canonical homomorphisms

Canonical homomorphisms
A sig-Algebra, h : Tsig → A interpretation homomorphism.
A sig-generated (term-generated) iff
∀s ∈ S hs : Terms(F )→ As surjective
The ground termalgebra is sig-generated.

ADT requirements:
I Independent of the representation (isomorphism class)
I Generated by the operations (sig-generated)

Often: constructor subset
Thesis: An ADT is the isomorphism class of an initial algebra.

Ground termalgebras as initial algebras are ADT.

Notice by the properties of free termalgebras : functions from V in A can
be extended to unique homomorphisms from Tsig (V ) in A.
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Equational specifications

Equational specifications

For Specification’s formalisms:

Classes of algebras that have initial algebras.

 Horn-Logic (See bibliography)

sig INT sorts int
ops 0 :→ int

suc : int→ int
pred : int→ int
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Equational specifications

Equational specifications

Definition 6.11. sig = (S,F , τ) signature, V system of variables.
a) Equation: (u, v) ∈ Terms(F ,V )× Terms(F ,V )

Write: u = v
Equational system E over sig ,V : Set of equations E

b) (Equational)-specification: spec = (sig,E )

where E is an equational system over F ∪ V .
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Equational specifications

Notation

Keyword eqns
spec INT
sorts int implicit
ops 0 :→ int All-Quantification

suc, pred: int → int often also a declaration
eqns suc(pred(x)) = x of the sorts

pred(suc(x)) = x of the variables

Semantics::
I loose all models (PL1)
I tight (special model initial, final)
I operational (equational calculus + induction principle)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 185

Algebraic Specification - Equational Calculus

Equational specifications

Models of spec = (sig,E )

Definition 6.12. A sig-Algebra, V (S)- system of variables
a) Assignment function ϕ for A: ϕs : Vs → As induces a

valuation ϕ : Term(F ,V )→ A through
ϕ(f ) = fA, f constant, ϕ(x) := ϕs(x), x ∈ Vs
ϕ(f (t1, . . . , tn)) = fA(ϕ(t1), . . . , ϕ(tn))

Vs
ϕs−→ As

Terms(F ,V ) ϕs−→ As
Term(F ,V ) ϕ−→ A homomorphism

(Proof!)
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Equational specifications

Models of spec = (sig,E )

b) s = t equation over sig,V
A |=

ϕ
s = t: A satisfies s = t with assignment ϕ iff ϕ(s) = ϕ(t),

equality in A.
c) A satisfies s = t or s = t holds in A

A |= s = t: for each assigment ϕ
A |=

ϕ
s = t

d) A is model of spec = (sig,E )
iff A satisfies each equation of E
A |= E ALG(spec) class of the models of spec.
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Equational specifications

Examples

Example 6.13. 1)

spec NAT
sorts nat
ops 0 :→ nat

s : nat→ nat
_ + _ : nat, nat→ nat

eqns x + 0 = x
x + s(y) = s(x + y)
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Equational specifications

Examples

sig-algebras
a) A = (N, 0̂, +̂, ŝ)

0̂ = 0 ŝ(n) = n + 1 n+̂m = n + m
b) B = (Z, 0̂, +̂, ŝ)

0̂ = 1 ŝ(i) = i · 5 i+̂j = i · j
c) C = ({true, false}, 0̂, +̂, ŝ)

0̂ = false ŝ(true) = false ŝ(false) = true
i+̂j = i ∨ j
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Equational specifications

Examples

A,B,C are models of spec NAT
e.g. B : ϕ(x) = a ϕ(y) = b a, b ∈ Z

ϕ(x + 0) = a+̂0̂ = a · 1 = a = ϕ(x)
ϕ(x + s(y)) = a+̂ŝ(b) = a · (b · 5)

= (a · b) · 5 = ŝ(a+̂b)
= ϕ(s(x + y))
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Equational specifications

Examples

2)
spec LIST(NAT)
use NAT
sorts nat, list
ops nil :→ list

_._ : nat, list→ list
app : list, list→ list

eqns app(nil, q2) = q2
app(x .q1, q2) = x . app(q1, q2)
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Equational specifications

Examples

spec-Algebra

A N,N∗
0̂ = 0 +̂ = + ŝ = +1
n̂il = e (emptyword)
.̂ (i , z) = i z
âpp(z1, z2) = z1z2 (concatenation)
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Equational specifications

Examples

3) spec INT suc(pred(x)) = x pred(suc(x)) = x

1 2 3
Aint Z N {true, false}

0Ai 0 0 true

sucAi sucZ sucN

{
true→ false
false→ true

}

predAi predZ

{
n + 1→ n
0→ 0

} {
true→ false
false→ true

}
+ − +
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Equational specifications

Examples
4 5 6

Aint {a, b}∗ ∪ Z {1}+ ∪ {0}+ ∪ {z} !

0Ai 0 z !

sucAi sucZ


1n → 1n+1

z → 1
0n+1 → 0n

0→ z

 id

predAi predZ


1n+1 → 1n

1→ z
z → 0

0n → 0n+1

 id

− + +
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Substitution

Substitution

Definition 6.14 (sig, Term(F ,V )). σ:: σs : Vs → Terms(F ,V ),
σs(x) ∈ Terms(F ,V ), x ∈ Vs
σ(x) = x for almost every x ∈ V
D(σ)= {x | σ(x) 6= x} finite:: domain of σ
Write σ = {x1 ← t1, . . . , xn ← tn}
Extension to homomorphism σ : Term(F ,V )→ Term(F ,V )

σ(f (t1, . . . , tn)) = f (σ(t1), . . . , σ(tn))

Ground substitution: ti ∈ TermS(F ) xi ∈ D(σ)S
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Loose semantics

Lose semantics

Definition 6.15. spec = (sig,E )
ALG(spec) = {A | sig-Algebra, A |= E} sometimes alternatively
ALGTG(spec) = {A | term-generated sig-Algebra, A |= E}
Find: Characterizations of equations that are valid in ALG(spec) or
ALGTG(spec).
a) Semantical equality: E |= s = t
b) Operational equality: t1 àE t2 iff

There is p ∈ 0(t1), s = t ∈ E, substitution σ with
t1|p ≡ σ(s), t2 ≡ t1[σ(t)]p(t1[p ← σ(t)])
or t1|p ≡ σ(t), t2 ≡ t1[σ(s)]p
t1 =E t2 iff t1

∗
à
E
t2

Formalization of replace equals ↔ equals
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Loose semantics

Equality calculus

c) Equality calculus: Inference rules (deductive)
Reflexivity t = t

Symmetry t = t ′
t ′ = t

Transitivity t = t ′, t ′ = t ′′
t = t ′′

Replacement t ′ = t ′′
s[t ′]p = s[t ′′]p p ∈ 0(s)

(frequently also with substitution σ)
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Loose semantics

Equality calculus

E ` s = t iff there is a proof P for s = t out of E , i.e.
P = sequence of equations that ends with s = t, such that for
t1 = t2 ∈ P.
i) t1 = t2 ∈ σ(E ) for a Substitution σ:
ii) t1 = t2 . . . out of precedent equations in P by application

of one of the inference rules.
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Loose semantics

Properties and examples

Consequence 6.16 (Properties and Examples). a) If either E |= s = t
or s =E t or E ` s = t holds, then
i) If σ is a substitution, then also

E |= σ(s) = σ(t) / σ(s) =E σ(t) / E |= σ(s) = σ(t)
i.e. the induced equivalence relations on Term(F ,V ) are
stable w.r. to substitutions

ii) r ∈ Term(F ,V ), p ∈ 0(r), r |p , s, t ∈ Terms′(F ,V ) then

E |= r [s]p = r [t]p / r [s]p =E r [t]p / E ` r [s]p = r [t]p
replacement property (monotonicity)

 Congruence on Term(F ,V ) which is stable.
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Loose semantics

Congruences / Quotient algebras

b) A = (A,FA) sig-Algebra. ∼ bin. relation on A is congruence relation
over A, iff
i) a ∼ b  ∃s ∈ S : a, b ∈ As (sort compatible)
ii) ∼ is equivalence relation
iii) ai ∼ bi (i = 1, . . . , n), fA(a1, . . . , an) defined
 fA(a1, . . . , an) ∼ fA(b1, . . . , bn) (monotonic)

A/ ∼ quotient algebra:
A/ ∼=

⋃
s∈S(As/ ∼)s with (As/ ∼)s = {[a]∼ : a ∈ As} and fA/∼

with fA/∼([a1], . . . , [an]) = [fA(a1, . . . , an)]

well defined, i.e. A/ ∼ is sig-Algebra. Abbreviated A∼

ϕ : A→ A∼ with ϕs(a) = [a]∼ is a surjective homomorphism, the
canonical homomorphism.
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Connection between |=,=E ,`E

Connections between |=,=E ,`E

c) A,A′ sig-algebras ϕ : A→ A′ surjective homomorphism.
Then

A |= s = t  A′ |= s = t
d) spec = (sig,E ):

s =E t iff E ` s = t
e) A sig-Algebra, R a sort compatible bin. relation over A.

Then there is a smallest congruence ≡R over A that contains R, i.e.
R ⊆≡R

≡R the congruence generated by R

Proofs: Don’t give up...
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Connection between |=,=E ,`E

Connections between |=,=E ,`E

f) A sig-Algebra, E equational system over (sig,V ).
E induces a relation ∼

E ,A
on A where

a ∼
E ,A,s

a′ (a, a′ ∈ As) iff there is t = t ′ ∈ E and an assignment
ϕ : V → A with ϕ(t) = a, ϕ(t ′) = a′
This relation is sort compatible.
Fact: Let ≡ be a congruence over A that contains ∼

E ,A
, then A/ ≡ is

a spec = (sig,E )-Algebra, i.e. model of E .
g) Existence: A = Tsig the (ground) term algebra, then =E is on Tsig

the smallest congruence that contains ∼
E ,A

.
In particular Tsig/ =E is a term-generated model of E .
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Connection between |=,=E ,`E

example

spec :: INT with pred(suc(x)) = x , suc(pred(x)) = x

(TINT/ =E )int = {[0] = {0, pred(suc(0)), suc(pred(0)), . . .
[suc(0)] = {suc(0), pred(suc(suc(0))), . . .
[suc(suc(0))] = {· · ·
[pred(0)] = {pred(0), suc(pred(pred(0))) . . .

sucTINT/=E ([pred(suc(0))]) = [suc(pred(suc(0)))]
= [suc(0)]
= sucTINT/=E ([0])

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 203

Algebraic Specification - Equational Calculus

Birkhoff’s Theorem

Birkhoff’s Theorem

Theorem 6.17 (Birkhoff). For each specification spec = (sig,E ) the
following holds

E |= s = t iff E ` s = t (i. e. s =E t)

Definition 6.18. Initial semantics
Let spec = (sig,E ), sig strict.
The algebra Tsig/ =E ( Quotient term algebra)
(=E the smallest congruence relation on Tsig generated by E)
is defined as initial algebra semantics of spec = (sig,E ).

It is term-generated and initial in ALG(spec)!
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Initial semantics

Basic properties

Initial Algebra semantics

Initial Algebra semantics assigns to each equational specification spec the
isomorphism class of the (initial) quotient term algebra Tsig/ =E .
Write: Tspec or I(E )

Tspec

TE

ALG(spec)

ALG(Sigma)

SigmaT

sig = Σ, spec = (Σ,E )
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Initial semantics

Basic properties

Quotient term algebras

Quotient term algebras are ADT.

Example 7.1. (Continuation) spec = INT
Ai
int Z {true, false} {1}+ ∪ {0}+ ∪ {z}

0Ai 0 true z
sucAi sucZ not . . .
predAi predZ not . . .

TINT/ =E [0] 7→ true [suc2n(0)] 7→ true
[suc2n+1(0)] 7→ false [pred2n+1(0)] 7→ false
[pred2n(0)] 7→ true
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Basic properties

Initial algebra

spec = (sig,E ) Initial algebra Tspec (I(E ))

Questions:
I Is Tspec computable?
I Is the word problem (Tsig,=E ) solvable?
I Is there an “operationalization” of Tspec?
I Which (PL1-) properties are valid in Tspec ?
I How can we prove these properties? Are there general methods?
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Initial semantics

Basic properties

Equational theory / Inductive (equational-) theory

Definition 7.2. Properties of equations
a) TH(E )= {s = t : E |= s = t} Equational theory

Equations that are valid in all spec-algebras.

b) ITH(E )= {s = t : Tspec |= s = t} inductive (=)-theory
Equations that are valid in all term generated spec-algebras.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 208



Initial semantics

Basic properties

Equational theory / Inductive (equational-) theory

Consequence 7.3. Basic properties
a) TH(E ) ⊆ ITH(E ), since Tspec is a model of E .
b) Generally TH(E ) ( ITH(E )

= HenceE is ω-complete
 proofs by consistency inductionless induction
E recursively enumerable (r.e.), so TH(E ) r.e., but ITH(E )
generally not r.e.

c) Tspec |= s = t iff σ(s) =E σ(t) for each ground substitution of the
Var. in s, t.  inductive proof methods, coverset induction

d) E : x + 0 = x x + s(y) = s(x + y)
 x + y = y + x ∈ ITH(E )− TH(E )
(x + y) + z = x + (y + z) Proof !
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Basic properties

Examples

Example 7.4. Basic examples

a) spec BOOL
sorts bool
ops true, false :→ bool

not : bool→ bool
and, or, impl, eqv : bool, bool→ bool
if _ then_ else_ : bool, bool, bool→ bool
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Initial semantics

Basic properties

Example (Cont.)

eqns not(true) = false
not(false) = true
and(true, b) = b
and(false, b) = false
or(b, b′) = not(and(not(b), not(b′)))
impl(b, b′) = or(not(b), b′)
eqv(b, b′) = and(impl(b, b′), impl(b′, b))
if true b′ else b′′ = b′
if false b′ else b′′ = b′′

(TBOOL)bool = {[true], [false]} (Proof!)
 Defined- and constructor-functions.
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Initial semantics

Basic properties

Example (Cont.)

b) spec SET-OF-CHARACTERS
sorts char, set
ops a, b, c, · · · :→ char

∅ :→ set
insert : char, set→ set

eqns insert(x , insert(x , s)) = insert(x , s)
insert(x , insert(y , s)) = insert(y , insert(x , s))

(Tsoc)char = {a, b, c, . . . }
(Tsoc)set = {[∅], [insert(a,∅)], . . .

“ “
{∅}{insert(a, insert(a, ..., insert(a,∅)}
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Initial semantics

Basic properties

Example (Cont.)

c)
spec NAT
sorts nat
ops 0 :→ nat

suc : nat→ nat
_ + _,_ ∗ _ : nat, nat→ nat

eqns x + 0 = x
x + suc y = suc(x + y)
x ∗ 0 = 0
x ∗ suc(y) = (x ∗ y) + x

(TNAT)nat = { [0, 0 + 0, 0 ∗ 0, . . .
[suc 0, 0 + suc 0, . . .
[suc(suc(0)), . . .
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Initial semantics

Basic properties

Example (Cont.)

d) Binary tree
spec BIN-TREE
sorts nat, tree
ops 0 :→ nat

suc : nat→ nat
max : nat, nat→ nat
leaf :→ tree
left : tree→ tree
right : tree→ tree
both : tree, tree→ tree
height : tree→ nat
dleft : tree→ tree
dright : tree→ tree
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Initial semantics

Basic properties

example

Continuation of d) binary tree.
eqns max(0, n) = n

max(n, 0) = n
max(suc(m), suc(n)) = suc(max(m, n))
height(leaf) = 0
height(both(t, t ′)) = suc(max(height(t), height(t ′)))
height(left(t)) = suc(height(t))
height(right(t)) = suc(height(t))
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Initial semantics

Correctness and implementation

Correctness

Definition 7.5. A specification spec = (sig,E ) is
sig-correct for a sig-Algebra A iff Tspec ∼= A
(i.e. the unique homomorphism is a bĳection).

Example 7.6. Application:
INT correct for Z, BOOL correct for B

Note: The concept is restricted to initial semantics!
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Initial semantics

Correctness and implementation

Restrictions/Forgetful functors

Definition 7.7. Restrictions/Forget-images
a) sig = (S,F , τ), sig′ = (S ′,F ′, τ ′) signatures with sig ⊆ sig′,

i.e. (S ⊆ S ′,F ⊆ F ′, τ ⊆ τ ′).
For each sig′-algebra A let the sig-part A|sig of A be the sig-Algebra
with

i) (A|sig)s = As for s ∈ S
ii) fA|sig = fA for f ∈ F

Note: A|sig is sig - algebra. The restriction of A to the signature sig.
A|sig is also called forget-image of A (with respect to sig).
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Initial semantics

Correctness and implementation

Restrictions/Forgetful functors
A|sig forget-image of A (w.r. to sig). The forget image induces
consequently a mapping (functor) between classes of algebras in the
following way:

sig ⊆
incl.

sig′

ALG(sig)
?

�
|sig

ALG(sig′)
?

∈ ∈

A|sig �forgetfulfunctor
A
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Initial semantics

Correctness and implementation

Restrictions/Forgetful functor
b) A specification spec = (sig′,E ) with sig ⊆ sig′ is

correct for a sig-algebra A iff

(Tspec)|sig ∼= A

c) A specification spec′ = (sig′,E ′) implements a specification
spec = (sig,E ) iff

sig ⊆ sig′ and (Tspec′)|sig ∼= Tspec

Note:
I A consistency-concept is not necessary for =-specification. ((initial)

models always exist !).
I The general implementation concept (Cl(spec) ⊆ Cl(spec′)) reduces

here to = of the valid equations in the smaller language.
„complete“ theories.
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Initial semantics

Correctness and implementation

Problems

Verification of s = t ∈ Th(E ) or ∈ ITH(E ).
For Th(E ) find =E an equivalent, convergent term rewriting system (see
group example).
For ITH(E ) induction’s methods:
s, t induce functions to Tspec. If x1, . . . , xn are the variables in s and t,
types s1, . . . , sn.
s : (Tspec)s1 × · · · × (Tspec)sn → (Tspec)s
s = t ∈ ITh(E ) iff s and t induce the same functions  prove this by
induction on the construction of the ground terms.
NAT 0, suc,+ x + y = y + x

0 + x = x
∈ ITH
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Initial semantics

Correctness and implementation

Problems

I 0 + 0 = 0 Ass. : 0 + a = a
0 + Sa =E S(0 + a) =I S(a)

I x + 0 = 0 + x Ass. : x + a = a + x
x + Sa =E S(x + a) =I S(a + x) =E a + Sx ?= Sa + x

I x + Sy = Sx + y
x + S0 =E S(x + 0) =E Sx =E Sx + 0
x + SSa =E S(x + Sa) =I S(Sx + a) =E Sx + Sa

spec(sig,E ) Pspec(sig,E ,Prop)
Equations only often Properties that should hold!
do not suffice  Verification tasks
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Initial semantics

Structuring mechanisms

Structuring mechanisms

Horizontal: - Decomposition, - Combination,
- Extension, - Instantiation

Vertical: - Realisation, - Information hiding,
- Vertical composition

Here:
Combination, Enrichment, Extension, Modularisation, Parametrisation
 Reusability.
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Initial semantics

Structuring mechanisms

Structuring mechanisms

BIN-TREE
1) spec NAT 2) spec NAT1

sorts nat use NAT
ops 0 :→ nat ops max : nat, nat→ nat

suc : nat→ nat eqns max(0, n) = n
max(n, 0) = n
max(s(m), s(n)) = s(max(m, n))
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Initial semantics

Structuring mechanisms

Structuring mechanisms

BIN-TREE (Cont.)

3) spec BINTREE1 4) spec BINTREE2
sorts bintree use NAT1,BINTREE1
ops leaf :→ bintree ops height : bintree→ nat

left, right : bintree eqns
...

→ bintree
both : bintree, bintree

→ bintree
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Initial semantics

Structuring mechanisms

Combination

Definition 7.8 (Combination). Let spec1 = (sig1,E1), with
sig1 = (S1,F1, τ1) be a signature and sig2 = [S2,F2, τ2] a triple, E2 set of
equations.

comb = spec1 + (sig2,E2) is called combination
iff
spec = ((S1 ∪ S2), (F1 ∪ F2), (τ1 ∪ τ2)),E1 ∪ E2) is a specification.

In particular ((S1 ∪ S2), (F1 ∪ F2), (τ1 ∪ τ2)) is a signature and E2
contains „syntactically correct“ equations.

The semantics of comb: Tcomb := Tspec
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Initial semantics

Structuring mechanisms

The semantics of comb

Tcomb := Tspec

Typical cases:
S2 = ∅, F2 new function symbols with arities τ2 (in old sorts).
S2 new sorts, F2 new function symbols.
τ2 arities in new + old sorts.
E2 only „new“ equations.
Notations: use, include (protected)
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Initial semantics

Structuring mechanisms

Example

Example 7.9. a) Step-by-step design of integer numbers
semantics

spec INT1
sorts int TINT1 ∼= (N, 0, sucN)
ops 0 :→ int

suc : int→ int

∩ ∩

spec INT2
use INT1 TINT2 ∼= (Z, 0, sucZ, predZ)
ops pred : int→ int
eqns pred(suc(x)) = x

suc(pred(x)) = x
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Initial semantics

Structuring mechanisms

Example (Cont.)

Question: Is the INT1-part of TINT2 equal to TINT1??
Does INT2 implement INT1?

(TINT2)|INT1 ∼= TINT1

(Z, 0, sucZ, predZ)|INT1
q

(Z, 0, sucZ) 6∼= (N, 0, sucN)

Caution: Not always the proper data is specified!
Here new data objects of sort int were introduced.
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Initial semantics

Structuring mechanisms

Example (Cont.)

b) spec NAT2
use NAT
eqns suc(suc(x)) = x

(TNAT2)|NAT = (N mod 2)|NAT = N mod 2 6∼= N = TNAT

Problem: Adding new or identifying old elements.
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Initial semantics

Structuring mechanisms

Problems with the combination

Let
comb = spec1 + (sig,E )

(Tcomb)|spec1 is spec1 Algebra
Tspec1 is initial spec1 algebra

}
 

∃! homomorphism h : Tspec1 → (Tcomb)|spec1
Properties of

h: not injective / not surjective / bĳective.

e.g. (TBINTREE2)|NAT ∼= TNAT.
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Initial semantics

Structuring mechanisms

Extension and enrichment

Definition 7.10. a) A combination comb = spec1 + (sig,E ) is an
extension iff

(Tcomb)|spec1
∼= Tspec1

b) An extension is called enrichment when sig does not include
new sorts, i.e. sig = [∅,F2, τ2]

I Find sufficient conditions (syntactical or semantical) that guarantee
that a combination is an extension
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Initial semantics

Structuring mechanisms

Parameterisation

Definition 7.11 (Parameterised Specifications). A
parameterised specification Parameter=(Formal, Body) consist of two
specifications: formal and body with formal ⊆ body.
i.e. Formal=(sigF ,EF ), Body=(sigB ,EB), where
sigF ⊆ sigB EF ⊆ EB .
Notation: Body[Formal]
Syntactically: Body = Formal+(sig′,E ′) is a combination.

Note: In general it is not required that Formal or Body[Formal] have an
initial semantics.
It is not necessary that there exist ground terms for all the sorts in Formal.
Only until a concrete specification is “substituted”, this requirement will
be fulfilled.
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Initial semantics

Structuring mechanisms

Example

Example 7.12. spec ELEM
sorts elem
ops next : elem→ elem

(Tspec)elem = ∅

spec STRING[ELEM]
use ELEM
sorts string
ops empty :→ string

unit : elem→ string
concat : string, string→ string
ladd : elem, string→ string
radd : string, elem→ string

(Tspec)string = {[empty]}
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Initial semantics

Structuring mechanisms

Example (Cont.)

eqns concat(s, empty) = s
concat(empty, s) = s
concat(concat(s1, s2), s3) = concat(s1, concat(s2, s3))
ladd(e, s) = concat(unit(e), s)
radd(s, e) = concat(s, unit(e))

Parameter passing: ELEM→ NAT

STRING[ELEM]→ STRING[NAT]

Assignment: formal parameter → current parameter

SF → SA
Op → OpA

Mapping of the sorts and functions, semantics?
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Initial semantics

Signature morphisms - Parameter passing

Signature morphisms - Parameter passing

Definition 7.13. a) Let sigi = (Si ,Fi , τi) i = 1, 2 be signatures. A pair
of functions σ = (g , h) with g : S1 → S2, h : F1 → F2 is a
signature morphism, in case that for every f ∈ F1

τ2(hf ) = g(τ1f )

(g extended to g : S∗1 → S∗2 ).
In the example g :: elem→ nat h :: next→ suc
Also σ : sigBOOL → sigNAT with

g :: bool→ nat
h :: true→ 0 not→ suc and→ plus

false→ 0 or→ times
is a signature morphism.
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Initial semantics

Signature morphisms - Parameter passing

Signature morphisms - Parameter passing
b) spec = Body[Formal] parameterised specification and Actual a

standard specification (i.e. with an initial semantics).
A parameter passing is a signature morphism
σ : sig(Formal)→ sig(Actual) in which Actual is called the current
parameter specification.
(Actual, σ) defines a specification VALUE through the following
syntactical changes to Body:
1) Replace Formal with Actual: Body[Actual].
2) Replace in the arities of op : s1 . . . sn → s0 ∈ Body, which are not in

Formal, si ∈ Formal with σ(si).
3) Replace in each not-formal equation L = R of Body each

oP ∈ Formal with σ(oP).
4) Interprete each variable of a type s with s ∈ Formal as variable of

type σ(s).
5) Avoid name conflicts between actual and Body/Formal by renaming

properly.
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Initial semantics

Signature morphisms - Parameter passing

Parameter passing

Notation:
Value = Body[Actual, σ]

Consequently for σ : sig(Formal)→ sig(Actual) we get a a signature
morphism
σ′ : sig(Body[Formal])→ sig(Body[Actual, σ] with

Formal ⊂ - Body

Actual

σ

?
⊂ - Value

σ

?

′ σ′(x) =
{
σ(x) x ∈ Formal
x ′ x 6∈ Formal

Where x ′ is a renaming, if there are naming conflicts.
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Initial semantics

Signature morphisms - Parameter passing

Signature morphisms (Cont.)

Definition 7.14. Let σ : sig′ → sig be a signature morphism.

Then for each sig-Algebra A define A|σ a sig′-Algebra, in which for
sig′ = (S ′,F ′, τ ′)

(A|σ)s = Aσ(s) s ∈ S ′ and fA|σ = σ(f )A f ∈ F ′.

A|σ is called forget-image of A along σ

Hence |σ is a “mapping” from sig-Algebras into sig′-Algebras.

(Special case: sig′ ⊆ sig :↪→) |sig′

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 238

Initial semantics

Signature morphisms - Parameter passing

Example

Example 7.15. A = TNAT (with 0, suc, plus, times)
sig′ = sig(BOOL) sig = sig(NAT)
σ : sig′ → sig the one considered previously.

((TNAT)|σ)bool = (TNAT)σ(bool) = (TNAT)nat
= {[0], [suc(0)], . . . }

true(TNAT)|σ = σ(true)TNAT = [0]
false(TNAT)|σ = σ(false)TNAT = [0]
not(TNAT)|σ = σ(not)TNAT = sucTNAT

and(TNAT)|σ = σ(and)TNAT = plusTNAT
or(TNAT)|σ = σ(or)TNAT = timesTNAT
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Initial semantics

Signature morphisms - Parameter passing

Forget images of homomorphisms

Definition 7.16. Let σ : sig′ → sig a signature morphism, A,B
sig-algebras and h : A→ B a sig-homomorphism, then

h|σ := {hσ(s) | s ∈ S ′} ( with sig′ = (S ′,F ′, τ ′)) is a sig′-homomorphism
from A|σ → B|σ by setting
(h|σ)s = hσ(s) : Aσ(s) → Bσ(s)

q q
(A|σ)s → (B|σ)s

h|σ is called the forget image of h along σ
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Initial semantics

Signature morphisms - Parameter passing

Forgetful functors

A|σ � |σ A

B|σ

h|σ
?
� |σ B

h

?
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Initial semantics

Signature morphisms - Parameter passing

Forgetful functors
Properties of h|σ (forget image of h along σ)

sig′ σ - sig σ′ - sig′′

ALG(sig′) �|σ ALG(sig) �|σ′ ALG(sig′′)

∈ ∈ ∈ ∈

A|σ h|σ→ B|σ A
h→ B

Compatible with identity, composition and homomorphisms.
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Initial semantics

Signature morphisms - Parameter passing

Forgetful functors

Let σ : sig′ → sig, A,B, sig-algebras, h : A→ B, sig-homomorphism.
h|σ = {hσ(s) | s ∈ S ′}, sig′ = (S ′,F ′, τ ′), with
h|σ : A|σ → B|σ forget image of h along σ.

σ′ ◦ σ
-

sig′ σ- sig σ′- sig′′

Alg(sig′) |σ←− Alg(sig) |σ′←−Alg(sig′′)

�
|(σ′◦σ)
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Initial semantics

Signature morphisms - Parameter passing

Parameter Specification Body [Formal ]

ALG(Formal) � |incl ALG(Body)
Formal ⊂

incl
- Body

Actual

σ

?
⊂
incl’
- Value

σ′

?

ALG(Actual)

|σ

6

�
|incl’

ALG(Value)

|σ′

6
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Initial semantics

Semantics parameter passing

Semantics of parameter passing (only signature)
Definition 7.17. Let Body[Formal] be a parameterized specification.
σ : Formal→ Actual signature morphism.
Semantics of the the “instantiation” i.e. parameter passing [Actual, σ].

σ : Formal→ Actual
↓

initial semantics of value. i. e.
TBody[Actual,σ]

Can be seen as a mapping : S ::(TActual, σ) 7→ TBody[Actual,σ]

This mapping between initial algebras can be interpreted as
correspondence between formal algebras → body-algebras.

(TActual)|σ 7→ (TBody[Actual,σ])|σ′
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Initial semantics

Semantics parameter passing

Semantics parameter passing
(TActual)|σ 7→ (TBody[Actual,σ])|σ′

Actual ⊂ - Body[Actual, σ]

TBody[Actual,σ]

init-Sem.

?

(TBody[Actual,σ])|incl

forget-image

?

q

hinit : TActual

init-Sem.

?
- (TBody[Actual,σ])|Actual
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Initial semantics

Semantics parameter passing

Mapping between initial algebras

((TValue)|σ′ )|Formal
� |incl (TValue)|σ′

↖
(hinit)|σ

(TActual)|σ ? ∈ Alg(Formal)

Formal ⊂
incl
- Body

Actual

σ

?
⊂
incl’
- Value

σ′

?

↙
hinit

TActual

|σ

6

(TValue)|Actual

|σ
6

�
|incl’

TValue

|σ′
6
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Initial semantics

Semantics parameter passing

Properties of the signature morphism

Formal
sorts elem
ops a, b :→ elem
eqns a = b

∣∣∣∣∣∣∣∣
σ−→

elem→ nat
a→ 0
b → 1

∣∣∣∣∣∣∣∣
Actual
sorts nat
ops 0, 1 :→ nat
eqns

A = TActual Anat = {0, 1}
A|σ ∈ Alg(sig Formal) (A|σ)elem = {0, 1}
a|A|σ = 0 6= 1 = b|A|σ
Equation from Formal is not fulfilled! i.e. A|σ 6∈ Alg(Formal).
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Initial semantics

Semantics parameter passing

Parameter passing (Actual, σ)

Body[Formal]

σ : sig(Formal)→ sig(Actual)
signature morphism

Formal ⊂
incl

- Body

Actual

σ

?
⊂
incl’
- Value = Body[Actual, σ]

σ′(with renaming)

?

Precondition: sig(Actual) and sig(Value) strict.
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Initial semantics

Semantics parameter passing

Parameter passing (Actual, σ)

Forgetful functor: |σ : Alg(sig)→ Alg(sig′)

A|σ for σ : sig′ → sig
h : A→ B sig-homomorphism

h|σ : A|σ → B|σ
sig′-homomorphism
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Initial semantics

Semantics parameter passing

Parameter passing (Actual, σ)

((TValue)|σ′ )|Formal
� |incl (TValue)|σ′

↖
(hinit)|σ

(TActual)|σ ∈ Alg(Formal)

↙
hinit

TActual

|σ 6

(TValue)|Actual

|σ
6

�
|incl’

TValue

|σ′
6

Problems: 1) (TActual)|σ 6∈ Alg(Formal), 2) hinit is not a bĳection.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 251

Initial semantics

Specification morphisms

Specification morphisms

Definition 7.18. Let spec′ = (sig′,E ′), spec = (sig,E ) (general)
specifications.
A signature morphism σ : sig′ → sig is called a specification morphism, if
σ(s) = σ(t) ∈ Th(E ) for every s = t ∈ E ′ holds.

Write: σ : spec′ → spec

Fact: If A ∈ Alg(spec) then A|σ ∈ Alg(spec′)
i.e. |σ : Alg(spec)→ Alg(spec′)!

Often „only“the weaker condition σ(s) = σ(t) ∈ ITh(E ) is demanded in
above definition. More spec morphisms!
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Initial semantics

Specification morphisms

Semantically correct parameter passing

Definition 7.19. A parameter passing for Body[Formal] is a pair
(Actual, σ): Actual an equational specification and σ : Formal→ Actual a
specification morphism.

Hence:: (TActual)|σ ∈ Alg(Formal)

- Demand also hinit bĳection. Proof tasks become easier.

There are syntactical restrictions that guarantee this.

Algebraic Specification languages
CLEAR, Act-one, -Cip-C, Affirm, ASL, Aspik, OBJ, ASF,  

+
newer

languages: - Spectrum, - Troll.
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Initial semantics

Specification morphisms

Example

Example 7.20.

Formal ::



spec ELEMENT
use BOOL
sorts elem
ops . ≤ . : elem, elem→ bool
eqns x ≤ x = true

imp(x ≤ y and y ≤ z , x ≤ z) = true
x ≤ y or y ≤ x = true
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Initial semantics

Specification morphisms

Example (Cont.)

spec LIST[ELEMENT]
use ELEMENT
sorts list
ops nil :→ list

. : elem, list→ list
insert : elem, list→ list
insertsort : list→ list
case : bool, list, list→ list
sorted : list→ bool
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Initial semantics

Specification morphisms

Example (Cont.)

eqns case(true, l1, l2) = l1
case(false, l1, l2) = l2

insert(x , nil) = x .nil
insert(x , y .l) = case(x ≤ y , x .y .l , y . insert(x , l))

insertsort(nil) = nil
insertsort(x .l) = insert(x , insertsort(l))

sorted(nil) = true
sorted(x .nil) = true
sorted(x .y .l) = if x ≤ y then sorted(y .l) else false

Property: sorted(insertsort(l)) = true
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Initial semantics

Specification morphisms

Example (Cont.)

ACTUAL ≡ BOOL
σ : elem→ bool, bool→ bool

. ≤ .→ impl
The equations of ELEMENT are in Th(BOOL)
 Specification morphism
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Initial semantics

Specification morphisms

Example (Cont.)

ACTUAL ≡ NAT
σ : bool→ nat elem→ nat

true→ suc(0) not allowed
false→ 0
not→ suc
or→ plus
and→ times
...
. ≤ .→ · · ·

is not a specification morphism
not(false) = true
not(true) = false does not hold!.
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Reduction Systems Term Rewriting Systems .

Abstract Reduction Systems

Abstract Reduction Systems: Fundamental notions and
notations

Definition 8.1. (U,→) U 6= ∅,→ binary relation is called a
reduction system.

I Notions:

I x ∈ U reducible iff ∃y : x → y
irreducible if not reducible.

I x ∗−→ y reflexive, transitive closure, x +→ y transitive closure,
x ∗←→ y reflexive, symmetrical, transitive closure.

I x i→ y i ∈ N defined as usual. Notice x ∗−→ y =
⋃

i∈N x i→ y.
I x ∗−→ y, y irreducible, then y is a normal form for x. Abb:: NF
I ∆(x) = {y | x → y}, the set of direct successors of x .
I ∆+(x) proper successors, ∆∗(x) successors.
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Reduction Systems Term Rewriting Systems .

Abstract Reduction Systems

Notions and notations

I Λ(x) = max{i | ∃y : x i→ y} derivational complexity. Λ : U → N∞
I → noetherian (terminating, satisfies the chain condition), in case

there is no infinite chain x1 → x2 → x3 → · · · .
I → bounded, in case that Λ : U → N.
I → cycle free :: ¬∃x ∈ U : x +→ x

I → locally finite x
↗
→
↘

 , i.e. ∆(x) finite for every x .
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Reduction Systems Term Rewriting Systems .

Abstract Reduction Systems

Notions and notations

Simple properties:
I → cycle free, then ∗−→ partial ordering.
I → noetherian, then → cycle free.
I → bounded, so → noetherian.

but not the other way around!
I → ⊂ +⇒ and ⇒ noetherian, then → noetherian.
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Reduction Systems Term Rewriting Systems .

Principle of the Noetherian Induction

Principle of the Noetherian Induction

Definition 8.2. → binary relation on U, P predicate on U.
P is →-complete, when

∀x [(∀y ∈ ∆+(x) : P(y)) ⊃ P(x)]

Fact:
PNI: If → is noetherian and P is →-complete, then P(x) holds for all
x ∈ U.
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Reduction Systems Term Rewriting Systems .

Principle of the Noetherian Induction

Applications

Lemma 8.3. → noetherian, then each x ∈ U has at least one normal
form.

More applications to come.... See e.g. König’s lemma.

Definition 8.4. Main properties for (U,→)
I → confluent iff ∗←− ◦ ∗−→ ⊆ ∗−→ ◦ ∗←−
I → Church-Rosser iff ∗←→ ⊆ ∗−→ ◦ ∗←−
I → locally-confluent iff ←− ◦ −→ ⊆ ∗−→ ◦ ∗←−
I → strong-confluent iff ←− ◦ −→ ⊆ ∗−→ ◦ ≤1←−
I Abbreviation: joinable ↓:

↓= ∗−→ ◦ ∗←−
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Reduction Systems Term Rewriting Systems .

Important relations

Important relations

Lemma 8.5. → confluent iff → Church-Rosser.

Theorem 8.6. (Newmann Lemma) Let → be noetherian, then

→ confluent iff → locally confluent.

Consequence 8.7. a) Let → confluent and x ∗←→ y.
i) If y is irreducible, then x ∗−→ y. In particular, when x , y irreducible,

then x = y.
ii) x ∗←→ y iff ∆∗(x) ∩∆∗(y) 6= ∅.
iii) If x has a NF, then it is unique.
iv) If → is noetherian, then each x ∈ U has exactly one NF: notation x ↓

b) If in (U,→) each x ∈ U has exactly one NF, then → is confluent (in
general not noetherian).
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Important relations

Convergent Reduction Systems

Definition 8.8. (U,→) convergent iff → noetherian and confluent.

Important since: x ∗←→ y iff x ↓= y ↓

Hence if → effective  decision procedure for Word Problem (WP):

For programming: x ∗−→ x ↓, f (t1, . . . , tn) ∗−→ „value“

As usual these properties are in general undecidable properties.

Task: Find sufficient computable conditions which guarantee these
properties.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 265

Reduction Systems Term Rewriting Systems .

Important relations

Termination and Confluence

Sufficient conditions/techniques

Lemma 8.9. (U,→), (M,�), � well founded (WF) partial ordering.
If there is ϕ : U → M with ϕ(x) � ϕ(y) for x → y, then → is noetherian.

Example 8.10. Often (N, >), (Σ∗, >) can be used.
For w ∈ Σ∗ let |w | length, |w |a a-length a ∈ Σ.

WF-partial orderings on Σ∗
I x > y iff |x | > |y |
I x > y iff |x |a > |y |a
I x > y iff |x | > |y |, |x | = |y | ∧ x �lex y

Notice that pure lex-ordering on Σ∗ is not noetherian.
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Sufficient conditions for confluence
Termination: Confluence iff local confluence
Without termination this doesn’t hold!

or

...........
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Confluence without termination

Theorem 8.11. → is confluent iff for every u ∈ U holds:

from u → x and u ∗→ y it follows x ↓ y.

. one-sided localization of confluence /

Theorem 8.12. If → is strong confluent, then → is confluent.

Not a necessary condition:
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Combination of Relations
Definition 8.13. Two relations →1, →2 on U commute, iff

∗
1← ◦ ∗→2 ⊆ ∗→2 ◦ ∗

1←

.
They commute locally iff 1← ◦ →2 ⊆ ∗→2 ◦ ∗

1←.

1

2

2

1 1

2

2

1

commutating locally commutating
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Combination of Relations

Lemma 8.14. Let → = →1 ∪ →2

(1) If →1 and →2 commute locally and → is noetherian, then →1 and
→2 commute.
(2) If →1 and →2 are confluent and commute, then → is also confluent.

Problem: Non-Orientability:

(a) x + 0 = x , x + s(y) = s(x + y)
(b) x + y = y + x , (x + y) + z = x + (y + z)

. Problem: permutative rules like (b) /
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Non-Orientability

Definition 8.15. Let (U,→, à) with → a binary relation, à a
symmetrical relation.
Let |=| = ↔ ∪ à, ∼ =

∗
à, ≈ =

∗
|=|,

→∼ = ∼ ◦ → ◦ ∼, ↓∼ = ∗→ ◦ ∼ ◦ ∗←.
If x ↓∼ y holds, then x , y ∈ U are called joinable modulo ∼.
→ is called Church-Rosser modulo ∼ iff ≈ ⊆ ↓∼
→ is called locally confluent modulo ∼ iff ← ◦ → ⊆ ↓∼
→ is called locally coherent modulo ∼ iff ← ◦ à ⊆ ↓∼
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Non-Orientability - Reduction Modulo à

Theorem 8.16. Let →∼ be terminating. Then → is Church-Rosser
modulo ∼ iff ∼ is local confluent modulo ∼ and local coherent modulo ∼.

Most frequent application: Modulo AC (Associativity + Commutativity)
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Equivalence relations and reduction relations

Representation of equivalence relations by convergent
reduction relations

Situation: Given: (U, à) and a noetherian PO > on U , find: (U,→)
with
(i) → ⊆ >, → convergent on U and
(ii) ∗↔ = ∼ with ∼ =

∗
à

Idea: Approximation of → by stepwise transformations

( à, ∅) = ( à0,→0) ` ( à1,→1) ` ( à2,→2) ` . . .
Invariant in i-th. step:

(i) ∼ = ( ài ∪ ↔i)∗ and
(ii) →i ⊆ >

Goal: ài= ∅ for an i and →i convergent.
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Equivalence relations and reduction relations

Representation of equivalence relations by convergent
reduction relations

Allowed operations in i-th. step:

(1) Orient:: u →i+1 v , if u > v and u ài v
(2) New equivalences:: u ài+1 v , if u i← w →i v
(3) Simplify:: u ài v to u ài+1 w , if v →i w
Goal: Limit system

→ = →∞ =
⋃
{→i | i ∈ N} with à∞ = ∅

Hence:
- −→∞ ⊆ >, i.e. noetherian
- ∗←→ = ∼
- −→∞ convergent !
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Equivalence relations and reduction relations

Grafical representation of an equivalence relation

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 275

Reduction Systems Term Rewriting Systems .

Equivalence relations and reduction relations

Transformation of an equivalence relation

(a) (b) (c)
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Equivalence relations and reduction relations

Inference system for the transformation of an equivalence
relation

Definition 8.17. Let > be a noetherian PO on U. The inference system
P on objects ( à,→) contains the following rules:
(1) Orient

( à ∪{u à v},→)
( à,→ ∪{u → v}) if u > v

(2) Introduce new consequence
( à,→)

( à ∪{u à v},→) if u ← ◦ → v

(3) Simplify
( à ∪{u à v},→)
( à ∪{u à w},→) if v → w
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Equivalence relations and reduction relations

Inference system (Cont.)

(4) Eliminate identities
( à ∪{u à u},→)

( à,→)

( à,→) `P ( à′,→′) if
( à,→) can be transformed in one step with a rule P into ( à′,→′).
`∗P transformation relation in finite number of steps with P.
A sequence (( ài ,→i))i∈N is called P-derivation, if

( ài ,→i) `P ( ài+1,→i+1) for every i ∈ N
.
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Transformation with the inference system

Transformation with the inference system

(d)(a) (b) (c)
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Properties of the inference system

Lemma 8.18. Let ( à,→) `P ( à′,→′)
(a) If → ⊆ >, then →′ ⊆ >

(b) ( à ∪ ↔)∗ = ( à′ ∪ ↔′)∗

Problem:
When does P deliver a convergent reduction relation → ?
How to measure progress of the transformation?

Idea: Define an ordering >P on equivalence-proofs, and prove that the
inference system P decreases proofs with respect to >P !

In the proof ordering ∗−→ ◦ ∗←− proofs should be minimal.
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Transformation with the inference system

Equivalence Proofs
Definition 8.19. Let ( à,→) be given and > a noetherian PO on U.
Furthermore let ( à ∪ ↔)∗ = ∼.
A proof for u ∼ v is a sequence u0 ∗1 u1 ∗2 · · · ∗n un with ∗i ∈ { à,←,→},
ui ∈ U, u0 = u, un = v and for every i ui ∗i+1 ui+1 holds.
P(u) = u is proof for u ∼ u.
A proof of the form u ∗→ z ∗← v is called V-proof.

dc

a b e

Proofs for a ∼ e:
P1(a, e) = a à b → c à d ← e P2(a, e) = a à b → c ← e
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Proof orderings

Two proofs in ( à,→) are called equivalent, if they prove the equivalence
of the same pair (u, v). Hence e.g. P1(a, e) and P2(a, e) are equivalent.

Notice: If P1(u, v),P2(v ,w) and P3(w , z) are proofs, then
P(u, z) = P1(u, v)P2(v ,w)P3(w , z) is also a proof.

Definition 8.20. A proof ordering >B is a PO on the set of proofs that
is monotonic, i.e.. P >B Q for each subproof, and if P >B Q then
P1PP2 >B P1QP2.

Lemma 8.21. Let > be noetherian PO on U and ( à,→), then there
exist noetherian proof orderings on the set of equivalence proofs.

Proof: Using multiset orderings.
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Multisets and the multiset ordering

Instruments: Multiset ordering
Objects: U, Mult(U) Multisets over U
A ∈ Mult(U) iff A : U → N with {u | A(u) > 0} finite.
Operations: ∪,∩,−

(A ∪ B)(u) := A(u) + B(u)

(A ∩ B)(u) := min{A(u),B(u)}
(A− B)(u) := max{0,A(u)− B(u)}

Explicit notation:
U = {a, b, c} e.g . A = {{a, a, a, b, c, c}},B = {{c, c, c}}
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Transformation with the inference system

Multiset ordering

Definition 8.22. Extension of (U, >) to (Mult(U),�)

A� B iff there are X ,Y ∈ Mult(U) with ∅ 6= X ⊆ A and
B = (A− X ) ∪ Y , so that ∀y ∈ Y ∃x ∈ X x > y

Properties:
(1) > PO  � PO
(2) {m1} � {m2} iff m1 > m2
(3) > total  � total
(4) A� B  A ∪ C � B ∪ C
(5) B ⊂ A  A� B
(6) > noetherian iff � noetherian

Example: a < b < c then B � A
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Construction of the proof ordering
Let ( à,→) be given and > a noetherian PO on U with →⊂>
Assign to each „atomic“ proof a complexity

c(u ∗ v) =


{u} if u → v
{v} if u ← v
{{u, v}} if u à v

Extend this complexity to „composed“ proofs through
c(P(u)) = ∅
c(P(u, v)) = {{c(ui ∗i+1 ui+1) | i = 0, . . . n − 1}}
Notice: c(P(u, v)) ∈ Mult(Mult(U))
Define ordering on proofs through

P >P Q iff c(P)�� c(Q)
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Construction of the proof ordering

Fact : >P is notherian proof ordering!

Which proof steps are large and which small?
Consider:
(a) P1 = x ← u → y , P2 = x à y
c(P1) = {{{u}, {u}}} �� {{x , y}} = c(P2) since u > x and u > y
 P1 >P P2

analogously for
(b) P1 = x à y , P2 = x → y
(c) P1 = u à v , P2 = u à w ← v
(d) P1 = u à v , P2 = u → w ← v
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Construction of the proof ordering

Fair Deductions in P
Definition 8.23 (Fair deduction). Let ( ài ,→i)i∈N be a P-deduction. Let

à∞=
⋃

i≥0
⋂

j≥i ài and →∞=
⋃

i≥0 →i .

The P-Deduction is called fair, in case
(1) à∞= ∅ and
(2) If x ∞← u →∞ y, then there exists k ∈ N with x àk y.

Lemma 8.24. Let ( ài ,→i)i∈N be a fair P-deduction
(a) For each proof P in ( ài ,→i) there is an equivalent proof P’ in
( ài+1,→i+1) with P ≥P P ′.
(b) Let i ∈ N and P proof in ( ài ,→i) which is not a V-proof. Then there
exists a j > i and an equivalent proof P’ in ( àj ,→j) with P >P P ′.
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Construction of the proof ordering

Main result

Theorem 8.25. Let ( ài ,→i)i∈N a fair P-Deduction and → = →∞.
Then
(a) If u ∼ v, then there exists an i ∈ N with u ∗→i ◦ i

∗← v
(b) → is convergent and ∗↔ = ∼
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Principles

Term Rewriting Systems
Goal: Operationalization of specifications and implementation of
functional programming languages

Given spec = (sig ,E ) when is Tspec a computable algebra?

(Tspec)s = {[t]=E : t ∈ Term(sig)s}
Tspec is a computable Algebra if there is a computable function

rep : Term(sig)→ Term(sig), with rep(t) ∈ [t]=E the “unique
representative” in its equivalence class.

Paradigm: Choose as representative the minimal object in the equivalence
class with respect to an ordering.

f (x1, ..., xn) : ((Tspec)s1 × ...(Tspec)sn)→ (Tspec)s
f ([r1], ..., [rn]) := [rep(f (rep(r1), ..., (rep(rn))]
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Principles

Term Rewriting Systems
Definition 9.1. Rules, rule sets, reduction relation

I Sets of variables in terms: For t ∈ Terms(F ,V ) let V (t) be the set
of the variables in t (Recursive definition! always finite)
Notice: V (t) = ∅ iff t is ground term.

I A rule is a pair
(l , r), l , r ∈ Terms(F ,V ) (s ∈ S) with Var(r) ⊆ Var(l)
Write: l → r

I A rule system R is a set of rules.
R defines a reduction relation →R over Term(F ,V ) by:
t1 →R t2 iff ∃ l → r ∈ R, p ∈ O(t1), σ substitution :

t1|p = σ(l) ∧ t2 = t1[σ(r)]p
I Let (Term(F ,V ),→R) be the reduction system defined by R

(term rewriting system).
I A rule system R defines a congruence =R on Term(F ,V ) just by

considering the rules as equations.
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Principles

Term Rewriting Systems
Goal: Transform E in R, so that =E= ∗←→R holds and →R has
“sufficiently”good termination and confluence properties.
For instance convergent or confluent. Often it is enough when these
properties hold “only” on the set of ground terms.

Notice:
I The condition V (r) ⊆ V (l) in the rule l → r is necessary for the

termination.
If neither V (r) ⊆ V (l) nor V (l) ⊆ V (r) in an equation l = r of a
specification, we have used superfluous variables in some function’s
definition.

I →R is compatible with substitutions and term replacement. i.e.
From s →R t also σ(s)→R σ(t) and u[s]p →R u[t]p

I In particular: =R= ∗←→R
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Principles

Matching substitution

Definition 9.2. Let l , t ∈ Terms(F ,V ). A substitution σ is called a
match (matching substitution) of l on t, if σ(l) = t.

Consequence 9.3. Properties:
I ∀ σ substitution O(l) ⊆ O(σ(l)).
I ∃σ : σ(l) = t iff for σ defined through
∀u O(l) : l |u = x ∈ V  u ∈ O(t) ∧ σ(x) = t|u
σ is a substitution ∧ σ(l) = t.

I If there is such a substitution, then it is unique on V (l). The
existence and if possible calculation are effective.

I It is decidable whether t is reducible with rule l → r .
I If R is finite, then ∆(s) = {t : s →R t} is finite and computable.
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Principles

Examples
Example 9.4. Integer numbers

sig : 0 :→ int
s, p : int → int

if 0 : int, int, int → int
F : int, int → int

eqns : 1 :: p(0) = 0
2 :: p(s(x)) = x
3 :: if 0(0, x , y) = x
4 :: if 0(s(z), x , y) = y

5 :: F (x , y) = if 0(x , 0,F (p(x),F (x , y)))

Interpretation: 〈N, ..., 〉 spec- Algebra with functions
ON = 0, sN = λn. n + 1,
pN = λn. if n = 0 then 0 else n − 1 fi
if 0N = λi , j , k. if i = 0 then j else k fi
FN = λm, n. 0
Orient the equations from left to right  rules R (variable condition is
fulfilled).
Is R terminating? Not with a syntactical ordering, since the left side is
contained in the right side.
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Principles

Example (Cont.)
Reduction sequence:

F (s(0), 0)→5 if 0(s(0), 0,F (p(s(0))︸ ︷︷ ︸
2

,F (s(0), 0)︸ ︷︷ ︸
5

)

︸ ︷︷ ︸
)

︸ ︷︷ ︸
4

→4 F (p(s(0))︸ ︷︷ ︸,F (s(0), 0)︸ ︷︷ ︸)︸ ︷︷ ︸
5

→2 F (0,F (s(0), 0)︸ ︷︷ ︸)︸ ︷︷ ︸
5

→5 if 0(0, 0,F (p(0)︸︷︷︸,F (0,F (s(0), 0)︸ ︷︷ ︸)︸ ︷︷ ︸)︸ ︷︷ ︸
)

︸ ︷︷ ︸
3

→3 0
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Principles

Equivalence

Definition 9.5. Let spec = (sig ,E ), spec ′ = (sig ,E ′) be specifications.
They are equivalent in case =E = =E ′ , i.e.. Tspec = Tspec′ .
A rule system R over sig is equivalent to E, in case =E = ∗←→R .

Notice: If R is finite, convergent, equivalent to E , then =E is decidable

s =E t iff s ↓= t ↓ i.e.. identical NF

For functional programs and computations in Tspec ground convergence is
suficient, i.e.. convergence on ground terms.
Problems: Decide whether

I R noetherian (ground noetherian)
I R confluent (ground confluent)
I How can we transform E in an equivalent R with these properties?
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Principles

Decidability questions

For finite ground term-rewriting-systems the problems are decidable.
For terminating systems deciding local confluence is sufficient, i.e.. out of
t1 ← t → t2 prove t1 ↓ t2  confluent.

u v

t t

u

v

u | v u < v

s(l) t(l’)
s(l) t(l’)

joinable  Critical pairs
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Critical pairs, unification

Critical pairs
Consider the group axioms:
(x ′ · y ′) · z︸ ︷︷ ︸

l1

→ x ′ · (y ′ · z) and x · x−1︸ ︷︷ ︸
l2

→ 1.

“Overlappings” (Superpositions)

(x · x−1) · z (x · y) · (x · y)−1
↙l2 ↘l1 ↙l2 ↘l1

1 · z x · (x−1 · z) 1 x · (y · (x · y)−1)

I l1|1 is “unifiable” with l2 with substitution
σ :: {x ′ ← x , y ′ ← x−1, x ← x} σ(l1|1) = σ(l2)

I l1 “unifiable” with l2 with substitution
σ :: {x ′ ← x , y ′ ← y , z ← (x · y)−1, x ← x · y} σ(l1) = σ(l2)
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Subsumption, unification

Definition 9.6. Subsumption ordering on terms:
s � t iff ∃σ substitution : σ(s) subterm of t
s ≈ t iff (s � t ∧ t � s)
s � t iff (t � s ∧ ¬(s � t))
� is noetherian partial ordering over Term(F ,V ) Proof!.

Notice:
O(σ(t)) = O(t) ∪⋃w∈O(t):t|w =x∈V {wv : v ∈ O(σ(x))}
Compatibility properties:
t|u = t ′  σ(t)|u = σ(t ′)
t|u = x ∈ V  σ(t)|uv = σ(x)|v (v ∈ O(σ(x)))
σ(t)[σ(t ′)]u = σ(t[t ′]u) for u ∈ O(t)

Definition 9.7. s, t ∈ Term(F ,V ) are unifiable iff there is a substitution
σ with σ(s) = σ(t). σ is called a unifier of s and t.
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Unification, Most General Unifier

Definition 9.8. Let V ′ ⊆ V , σ, τ be substitutions.
I σ � τ (V ′) iff ∃ρ substitution : ρ ◦ σ|V ′ = τ |V ′

Quote: σ is more general than τ over V ′
I σ ≈ τ (V ′) iff σ � τ (V ′) ∧ τ � σ (V ′)
I σ ≺ τ (V ′) iff τ � σ (V ′) ∧ ¬(σ � τ (V ′))
I Notice: ≺ is noetherian partial ordering on the substitutions.

Question: Let s, t be unifiable. Is there a most general unifier mgu(s, t)
over V = Var(s) ∪ Var(t)?
i.e.. for any unifier σ of s, t always mgu(s, t) � σ (V ) holds.
Is mgu(s, t) unique? (up to variable renaming).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 299

Reduction Systems Term Rewriting Systems .

Critical pairs, unification

Unification’s problem and its solution

Definition 9.9. I A unification’s problem is given by a set
E = {si

?= ti : i = 1, ..., n} of equations.
I σ is called a solution (or a unifier) in case that σ(si) = σ(ti) for

i = 1, ..., n.
I If τ � σ (Var(E )) holds for each solution τ of E , then mgu(E) := σ

most general solution or most general unifier.
I Let Sol(E ) be the set of the solutions of E .

E and E ′ are equivalent, if Sol(E ) = Sol(E ′).
I E ′ is in solved form, in case that

E ′ = {xj
?= tj : xi 6= xj (i 6= j), xi /∈ Var(tj) (1 ≤ i ≤ j ≤ m)}

I E ′ is a solved form for E , if E ′ is in solved form and equivalent to E
with Var(E ′) ⊆ Var(E ).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 300



Reduction Systems Term Rewriting Systems .

Critical pairs, unification

Examples

Example 9.10. Consider

I s = f (x , g(x , a)) ?= f (g(y , y), z) = t
 x ?= g(y , y) g(x , a) ?= z split
 x ?= g(y , y) g(g(y , y), a) ?= z merge
 σ :: x ← g(y , y) z ← g(g(y , y), a) y ← y

I f (x , a) ?= g(a, z) unsolvable (not unifiable).
I x ?= f (x , y) unsolvable, since f (x , y) not x free.
I x ?= f (a, y) solution σ :: x ← f (a, y) is the most general solution.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 301

Reduction Systems Term Rewriting Systems .

Critical pairs, unification

Inference system for the unification

Definition 9.11. Calculus UNIFY. Let σ = be the binding set.

(1) Erase (E ∪ {s ?= s}, σ)
(E , σ)

(2) Split (Decompose) (E ∪ {f (s1, ..., sm) ?= g(t1, ..., tn)}, σ) (unsolvable)
if f 6= g

(E ∪ {f (s1, ..., sm) ?= f (t1, ..., tm)}, σ)
(E ∪ {si

?= ti : i = 1, ...,m}, σ)

(3) Merge (Solve) (E ∪ {x ?= t}, σ)
(τ(E ), σ ∪ τ) if x /∈ Var(t), τ = {x ?= t}

“occur check” (E ∪ {x ?= t}, σ) (unsolvable)
if x ∈ Var(t) ∧ x 6= t
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Unification algorithms
Unification algorithms based on UNIFY start always with (E0,S0) :=
(E , ∅) and return a sequence (E0,S0) `UNIFY ... `UNIFY (En,Sn)
They are successful in case they end with En = ∅, unsuccessful in case
they end with Sn =  . Sn defines a substitution σ which represents
Sol(Sn) and consequently also Sol(E ).

Lemma 9.12. Correctness.
Each sequence (E0,S0) `UNIFY ... `UNIFY (En,Sn) terminates: either with (unsolvable, not unifiable) or with (∅,S) and S is a solved form for E .

Notice: Representations in solved form can be quite different
(Complexity!!)
s ?= f (x1, ..., xn) t ?= f (g(x0, x0), ..., g(xn−1, xn−1))
S = {xi

?= g(xi−1, xi−1) : i = 1, ..., n} and
S1 = {xi+1

?= ti : t0 = g(x0, x0), ti+1 = g(ti , ti) i = 0, ..., n − 1}
are both in solved form. The size of ti grows exponentialy with i .
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Example

Example 9.13. Execution:

f (x , g(a, b)) ?= f (g(y , b), x)

Ei Si rule
f (x , g(a, b)) ?= f (g(y , b), x) ∅
x ?= g(y , b), x ?= g(a, b) ∅ split
g(y , b) ?= g(a, b) x ?= g(a, b) solve
y ?= a, b ?= b x ?= g(a, b) split
b ?= b x ?= g(a, b), y ?= a solve

x ?= g(a, b), y ?= a delete
Solution: mgu = σ = {x ← g(a, b), y ← a}
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Critical pairs - Local confluence

Definition 9.14. Let R be a rule system and l1 → r1, l2 → r2 ∈ R with
V (l1) ∩ V (l2) = ∅ (renaming of variables if necessary,
l1 ≈ l2 resp. l1 → r1 ≈ l2 → r2 are allowed).
Let u ∈ O(l1) with l1|u /∈ V s.t. σ = mgu(l1|u, l2) exists.
σ(l1) is called then a overlap (superposition) of l2 → r2 in l1 → r1 and
(σ(r1), σ(l1[r2]u)) is the associated critical pair to the overlap
l1 → r1, l2 → r2, u ∈ O(l1), provided that σ(r1) 6= σ(l1[r2]u).
Let CP(R) be the set of all the critical pairs that can be constructed with
rules of R.

Notice: The overlaps and consequently the set of critical pairs is unique
up to renaming of the variables.
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Local confluence

Examples
Example 9.15. Consider

I f (f (x , y), z)→ f (x , f (y , z)) f (f (x ′, y ′), z ′)→ f (x ′, f (y ′, z ′))
unifiable with x ← f (x ′, y ′), y ← z ′

f (f (f (x ′, y ′), z ′), z)
↙ ↘

t1 = f (f (x ′, y ′), f (z ′, z)) f (f (x ′, f (y ′, z ′)), z) = t2
I t = f (x , g(x , a))→ h(x) h(x ′)→ g(x ′, x ′), t|1 = t|21 = x

no critical pairs. Consider variable overlaps:
f (h(z), g(h(z), a)))
↙ ↘

t1 = h(h(z)) f (g(z , z), g(h(z), a)) = t2
↘

↓
f (g(z , z), g(g(z , z), a))

↙
h(g(z , z))
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Local confluence

Properties

I Let σ, τ be substitutions, x ∈ V , σ(y) = τ(y) for y 6= x and
σ(x)→R τ(x). Then for each term t holds:

σ(t) ∗→R τ(t)
I Let l1 → r1, l2 → r2 be rules, u ∈ O(l1), l1|u = x ∈ V . Let
σ(x)|w = σ(l2), i.e.. σ(l2) is introduced by σ(x).
Then t1 ↓R t2 holds for

t1 := σ(r1)← σ(l1)→ σ(l1)[σ(r2)]uw =: t2

Lemma 9.16. Critical-Pair Lemma of Knuth/Bendix
Let R be a rule system. Then the following holds:

from t1 ←R t →R t2 either t1 ↓R t2 or t1 ↔CP(R) t2 hold.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 307

Reduction Systems Term Rewriting Systems .

Local confluence

Proofs
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Confluence test

Theorem 9.17. Main result: Let R be a rule system.
I R is locally confluent iff all the pairs (t1, t2) ∈ CP(R) are joinable.
I If R is terminating, then:

R confluent iff (t1, t2) ∈ CP(R) t1 ↓ t2.
I Let R be linear (i.e.. for l , r ∈ l → r ∈ R variables appear at most

once). If CP(R) = ∅ , then R is confluent.

Example 9.18. I Let R = {f (x , x)→ a, f (x , s(x))→ b, a→ s(a)}.
R is locally confluent,but not confluent:

a← f (a, a)→ f (a, s(a))→ b
but not a ↓ b. R is neither terminating nor left-linear.
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Local confluence

Example (Cont.)
I R = {f (f (x))→ g(x)}

t1 = g(f (x))← f (f (f (x)))→ f (g(x)) = t2
It doesn’t hold t1 ↓R t2  R not confluent.
Add rule t1 → t2 to R. R1 is equivalent to R, terminating and
confluent.

g(f (f (x)))
↙ ↘

f (g(f (x))) g(g(x))
↘ ↗
f (f (g(x)))

I R = {x + 0→ x , x + s(y)→ s(x + y)}, linear without critical pairs
 confluent.

I R = {f (x)→ a, f (x)→ g(f (x)), g(f (x))→ f (h(x)), g(f (x))→ b}
is locally confluent but not confluent.
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Confluence without Termination

Definition 9.19. ε− ε - Properties. Let ε→ = 0→ ∪ 1→.
I R is called ε− ε closed , in case that for each critical pair

(t1, t2) ∈ CP(R) there exists a t with t1 ε→
R

t ε←
R

t2 .

I R is called ε− ε confluent iff ←
R
◦ →

R
⊆ ε→

R
◦ ε←

R

Consequence 9.20. I → ε− ε confluent  → strong-confluent.
I R ε− ε closed ; R ε− ε confluent

R = {f (x , x)→ a, f (x , g(x))→ b, c → g(c)}. CP(R) = ∅, i.e..
R ε− ε closed but a← f (c, c)→ f (c, g(c))→ b, i.e.. R not
confluent  .

I If R is linear and ε− ε closed , then R is strong-confluent, thus
confluent (prove that R is ε− ε confluent).

These conditions are unfortunately too restricting for programming.
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Example

Example 9.21. R left linear ε− ε closed is not sufficient:
R = {f (a, a)→ g(b, b), a→ a′, f (a′, x)→ f (x , x), f (x , a′)→ f (x , x),

g(b, b)→ f (a, a), b → b′, g(b′, x)→ g(x , x), g(x , b‘)→ g(x , x)}
It holds f (a′, a′) ∗←→

R
g(b′, b′) but not f (a′, a′) ↓R g(b′, b′).

R left linear ε− ε closed :

f (a, a)
↙ ↓ ↘

g(b, b) f (a′, a) f (a, a′)
↓

↘ ↓ ↘ ↙ .
f (a, a) f (a′, a′)

↓
f (a′, a′)
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Parallel reduction

Notice: Let →,⇒ with ∗→ = ∗⇒. (Often: → ⊆ ⇒ ⊆ ∗→).
Then → is confluent iff ⇒ confluent.

Definition 9.22. Let R be a rule system.
I The parallel reduction, 7→R , is defined through t 7→R t ′ iff
∃U ⊂ O(t) : ∀ui , uj(ui 6= uj  ui |uj) ∃li → ri ∈ R, σi with t|ui =
σi(li) :: t ′ = t[σi(ri)]ui (ui ∈ U) (t[u1 ← σ1(r1)]...t[un ← σ1(rn)]).

I A critical pair of R : (σ(r1), σ(l1[r2]u) is parallel 0-joinable in case
that σ(l1[r2]u) 7→R σ(r1).

I R is parallel 0-closed in case that each critical pair of R is parallel
0-joinable.

Properties: 7→R is stable and monotone. It holds ∗7→R = ∗→R and
consequently, if 7→R is confluent then →R too.
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Parallel reduction
Theorem 9.23. If R is left-linear and parallel 0-closed, then 7→R is
strong-confluent, thus confluent, and consequently R is also confluent.

Consequence 9.24. I If R fulfills the O’Donnel condition, then R is
confluent. O’Donnel’s condition: R left-linear, CP(R) = ∅, R
left-sequential (Redexes are unambiguous when reading the terms
from left to right: f (g(x , a), y)→ 0, g(b, c)→ 1 has not this
property).
By regrouping of the arguments, the property can frequently be
achieved, for instance f (g(a, x), y)→ 0, g(b, c)→ 1

I Orthogonal systems:: R left-linear and CP(R) = ∅, so R confluent.
(In the literature denominated also as regular systems).

I Variations: R is strongly-closed, in case that for each critical pair
(s, t) there are terms u, v with s ∗→ u ≤1←− t and s ≤1→ v ∗← t.
R linear and strongly-closed, so R strong-confluent.
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Consequences
I Does confluence follow from CP(R) = ∅? No.

R = {f (x , x)→ a, g(x)→ f (x , g(x)), b → g(b)}.
Consider g(b)→ f (b, g(b))→ f (g(b), g(b))→ a
“Outermost” reduction.
g(b)→ g(g(b)) ∗→ g(a)→ f (a, g(a)) not joinable.

I Regular systems can be non terminating:
{f (x , b)→ d , a→ b, c → c}. Evidently CP = ∅.
f (c, a)
↓∗

→ f (c, b)→ d

f (c, a)→ f (c, b). Notice that f (c, a) has a normal form.  
Reduction strategies that are normalizing or that deliver
shortest reduction sequences.

I A context is a term with “holes” �, e.g. f (g(�, s(0)),�, h(�)) as
“tree pattern” (pattern) for rule f (g(x , s(0)), y , h(z))→ x . The
holes can be filled freely. Sequentiality is defined using this notion.
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Termination-Criteria
Theorem 9.25. R is terminating iff there is a noetherian partial ordering
� over the ground terms Term(F ), that is monotone, so that σ(l) � σ(r)
holds for each rule l → r ∈ R and ground substitution σ.

Proof:y Define s � t iff s +→ t (s, t ∈ Term(F ))
x Asume that →R not terminating, t0 → t1 → ...(V (ti) ⊆ V (t0)).
Let σ be a ground substitution with V (t0) ⊂ D(σ), then
σ(t0) � σ(t1) � ... .
Problem: infinite test.

Definition 9.26. A reduction ordering is partial ordering � over
Term(F ,V ) with
(i) � is noetherian (ii) � is stable and (iii) � is monotone.

Theorem 9.27. R is noetherian iff there exists a reduction ordering �
with l � r for every l → r ∈ R
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Termination’s criteria
Notice: There are no total reduction orderings for terms with variables..
x � y?  σ(x) � σ(y)
f (x , y) � f (y , x) ? commutativity cannot be oriented.
Examples for reduction orderings:
Knuth-Bendix ordering: Weight for each function symbol and precedence
over F .
Recursive path ordering (RPO): precedence over F is recursively
extended to paths (words) in the terms that are to be compared.
Lexicographic path ordering( LPO), polynomial interpretations, etc.
f (f (g(x))) = f (h(x)) f (f (x)) = g(h(g(x))) f (h(x)) = h(g(x))
KB → l(f ) = 3 l(g) = 2 → l(h) = 1 →
RPO ← g > h > f ← ←

Confluence modulo equivalence relation (e.g. AC):
R :: f (x , x)→ g(x) G :: {(a, b)} g(a)← f (a, a) ∼ f (a, b) but not
g(a) ↓∼ f (a, b).
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Knuth-Bendix Completion method

Input: E set of equations, � reduction ordering, R = ∅.
Repeat while E not empty
(1) Remove t = s of E with t � s, R := R ∪ {t → s} else abort
(2) Bring the right side of the rules to normal form with R
(3) Extend E with every normalized critical pair generated by t → s with
R
(4) Remove all the rules from R, whose left side is properly larger than t
w.r. to the subsumption ordering.
(5) Use R to normalize both sides of equations of E .

Remove identities.

Output: 1) Termination with R convergent, equivalent to E . 2) Abortion
3) not termination (it runs infinitely).
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Examples for Knuth-Bendix-Procedure

Example 9.28. I SRS:: Σ = {a, b, c},E = {a2 = λ, b2 = λ, ab = c}
u < v iff |u| < |v | or |u| = |v | and u <lex v with a <lex b <lex c
E0 = {a2 = λ, b2 = λ, ab = c},R0 = ∅
E1 = {b2 = λ, ab = c},R1 = {a2 → λ},CP1 = ∅
E2 = {ab = c},R2 = {a2 → λ, b2 → λ},CP2 = ∅
R3 = {a2 → λ, b2 → λ, ab → c},NCP3 = {(b, ac), (a, cb)}
E3 = {b = ac, a = cb}
R4 = {a2 → λ, b2 → λ, ab → c, ac → b},NCP4 = ∅,E4 = {a = cb}
R5 = {a2 → λ, b2 → λ, ab → c, ac → b, cb → a},NCP5 = ∅,E5 = ∅
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Examples for Knuth-Bendix-Completion

I E = {ffg(x) = h(x),ff (x) = x , fh(x) = g(x)} >: KBO(3, 2, 1)
R0 = ∅,E0 = E
R1 = {ffg(x)→ h(x)},KP1 = ∅.E1 = {ff (x) = x , fh(x) = g(x)}
R2 = {ffg(x)→ h(x),ff (x)→ x},NKP2 = {(g(x), h(x))},
E2 = {fh(x) = g(x), g(x) = h(x)},R2 = {ff (x)→ x}
R3 = {ff (x)→ x , fh(x)→ g(x)},NKP3 = {(h(x), fg(x))},E3 =
{g(x) = h(x), h(x) = fg(x)}
R4 = {ff (x)→ x , fh(x)→ h(x), g(x)→ h(x)},NKP3 = ∅,E4 = ∅

I E = {fgf (x) = gfg(x)} >: LL :: f > g
R0 = ∅,E0 = E
R1 = {fgf (x)→ gfg(x)},NKP1 = {(gfggf (x), fggfg(x))},E1 =
{gfggf (x) = fggfg(x)}
R1 = {fgf (x)→ gfg(x), fggfg(x)→ gfggf (x)},NKP2 =
{(gfggfggfg(x), fgggfggfg(x), ..}...
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Refined Inference system for Completion
Definition 9.29. Let > be a noetherian PO over Term(F ,V ). The
inference system PTES is composed by the following rules:

(1) Orientate (E ∪ {s .= t},R)
(E ,R ∪ {s → t}) in case that s > t

(2) Generate (E ,R)
(E ∪ {s .= t},R) in case that s ←R ◦ →R t

(3) Simplify EQ (E ∪ {s .= t},R)
(E ∪ {u .= t},R) in case that s →R u

(4) Simplify RS (E ,R ∪ {s → t})
(E ,R ∪ {s → u)) in case that t →R u

(5) Simplify LS (E ,R ∪ {s → t})
(E ∪ {u .= t},R) in case that s →R u with l → r and

s � l (SubSumOrd.)
(6) Delete identities
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Equational implementations
Programming = Description of algorithms in a formal system

Definition 10.1. Let f : M1 × ...×Mn  Mn+1 be a (partial) function.
Let Ti , 1 = 1...n + 1 be decidable sets of ground terms over Σ,
f̂ n-ary function symbol, E set of equations.
A data interpretation I is a function I : Ti → Mi .
f̂ implements f under the interpretation I in E iff
1) I(Ti) = Mi (i = 1...n + 1)
2) f (I(t1), ...,I(tn)) = I(tn+1) iff f̂ (t1, ..., tn) =E tn+1 (∀ti ∈ Ti)

T1 × ...× Tn
f̂−→ Tn+1

I ↓ I ↓ I ↓
M1 × ...×Mn

f−→ Mn+1

Abbreviation: (f̂ ,E , I) implements f .
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Equational implementations

Theorem 10.2. Let E be set of equations or rules (same notations).
For every i = 1, ..., n + 1 assume
1) I(Ti) = Mi
2a) f (I(t1), ...,I(tn)) = I(tn+1) f̂ (t1, ..., tn) =E tn+1 (∀ti ∈ Ti)
f̂ implements the total function f under I in E when one of the following
conditions holds:
a) ∀t, t ′ ∈ Tn+1 : t =E t ′  I(t) = I(t ′)
b) E confluent and ∀t ∈ Tn+1 : t →E t ′  t ′ ∈ Tn+1 ∧ I(t) = I(t ′)
c) E confluent and Tn+1 contains only E-irreducible terms.

Application: Assume (f̂ ,E , I) implements the total function f . If E is
extended by E0 under retention of I, then 1 and 2a still hold. If one of
the criteria a, b, c are fullfiled for E ∪ E0, then (f̂ ,E ∪ E0, I) implements
also the function f . This holds specially when E ∪ E0 is confluent and
Tn+1 contains only E ∪ E0 irreducible terms.
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Equational implementations
Theorem 10.3. Let (f̂ ,E , I) implement the (partial) function f . Then
a) ∀t, t ′ ∈ Tn+1 :: I(t) = I(t ′) ∧ I(t) ∈ Image(f ) t =E t ′
b) Let E be confluent and Tn+1 contains only normal forms of E . Then I
is injective on {t ∈ Tn+1 : I(t) ∈ Image(f )}.
Theorem 10.4. Criterion for the implementation of total functions.
Assume
1) I(Ti) = Mi (i = 1, ..., n + 1)
2) ∀t, t ′ ∈ Tn+1 :: I(t) = I(t ′) iff t =E t ′
3) ∀1≤i≤n ti ∈ Ti ∃tn+1 ∈ Tn+1 ::

f̂ (t1, ..., tn) =E tn+1 ∧ f (I(t1), ...I(tn)) = I(tn+1)

Then f̂ implements the function f under I in E and f is total.

Notice: If Tn+1 contains only normal forms and E is confluent, so 2) is
fulfilled, in case I is injective on Tn+1.
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Equational implementations

Theorem 10.5. Let (f̂ ,E , I) implement f : M1 × ...×Mn → Mn+1. Let
Si = {t ∈ Ti :: ∃t0 ∈ Ti : t 6= t0, I(t) = I(t0) t +→E t0} be recursive
sets.
Then f̂ implements also f with term sets T ′i = Ti\Si under I|T ′i in E .

So we can delete terms of Ti that are reducible to other terms of Ti with
the same I-value. Consequently the restriction to E -normal forms is
allowed.

Consequence 10.6. I Implementations can be composed.
I If we extend E by E- consequences then the implementation

property is preserved.
This is important for the KB-Completion since only E-consequences
are added.
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Examples: Propositional logic, natural numbers
Example 10.7. Convention: Equations define the signature. Occasionally
variadic functions and overloading. Single sorted.
Boolean algebra: Let M = {true, false} with ∧,∨,¬,⊃, ....
Constants tt,ff . Term set Bool := {tt,ff }, I(tt) = true, I(ff ) = false.
Strategy: Avoid rules with tt or ff as left side. According to theorem 10.2
c) we can add equations with these restrictions without influencing the
implementation property, as long as confluence is achieved.
Consider the following rules:
(1) cond(tt, x , y)→ x (2) cond(ff , x , y)→ y. (help function).
(3) x vel y → cond(x , tt, y)
E = {(1), (2), (3)} is confluent. Hence: tt vel y =E cond(tt, tt, y) =E tt
holds, i.e.

(∗1) tt vel y = tt and (∗2) x vel tt = cond(x , tt, tt)
x vel tt = tt cannot be deduced out of E .
However vel implements the function ∨ with E.
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Examples: Propositional logic
According to theorem 10.4, we must prove the conditions (1), (2), (3):
∀t, t ′ ∈ Bool ∃t̄ ∈ Bool :: I(t) ∨ I(t ′) = I(t̄) ∧ t vel t ′ =E t̄
For t = tt (∗1) and t = ff (2) since ff vel t ′ →E cond(ff , tt, t ′)→E t ′
Thus x vel tt 6=E tt but tt vel tt =E tt, ff vel tt =E tt.
MC Carthy’s rules for cond :

(1) cond(tt, x , y) = x (2) cond(ff , x , y) = y (*) cond(x , tt, tt) = tt

Notice Not identical with cond in Lisp. Difference: Evaluation strategy.
Consider
(**) cond(x , cond(x , y , z), u)→ cond(x , y , u)
 E ′ = {(1), (2), (3), (∗), (∗∗)} is terminating and confluent.

Conventions: Sets of equations contain always (1), (2), (3) and
x et y → cond(x , y , ff ) .
Notation: cond(x , y , z) :: [x → y , z ] or
[x → y1, x2 → y2, ..., xn → yn, z ] for [x → [...]..., z ]

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 327

Equational calculus and Computability

Implementations

Examples: Semantical arguments

Properties of the implementing functions:
(vel ,E , I) implements ∨ of BOOL.
Statement: vel is associative on Bool .
Prove: ∀t1, t2, t3 ∈ Bool : t1 vel (t2 vel t3) =E (t1 vel t2) vel t3
There exist t, t ′,T ,T ′ ∈ Bool with
I(t2) ∨ I(t3) = I(t) and I(t1) ∨ I(t2) = I(t ′) as well as
I(t1) ∨ I(t) = I(T ) and I(t ′) ∨ I(t3) = I(T ′)
Because of the semantical valid associativity of ∨
I(T ) = I(t1) ∨ I(t2) ∨ I(t3) = I(T ′) holds.
Since vel implements ∨ it follows:
t1 vel (t2 vel t3) =E t1 vel t =E T =E T ′ =E t ′ vel t3 =E (t1 vel t2) vel t3
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Implementations

Examples: Natural numbers
Function symbols: 0̂, ŝ Ground terms: {ŝn(0̂) (n ≥ 0)}
I Interpretation I(0̂) = 0, I(ŝ) = λx .x + 1, i.e. I(ŝn(0̂)) = n (n ≥ 0).
Abbreviation: ˆn + 1 := ŝ(n̂) (n ≥ 0)
Number terms. NAT = {n̂ : n ≥ 0} normal forms (Theorem 10.2 c
holds).
Important help functions over NAT :
Let E = {is_null(0̂)→ tt, is_null(ŝ(x))→ ff }.
is_null implements the predicate Is_Null : N→ {true, false} Zero-test.
Extend E with (non terminating rules)
ĝ(x)→ [is_null(x)→ 0̂, ĝ(x)], f̂ (x)→ [is_null(x)→ ĝ(x), 0̂]
Statement:It holds under the standard interpretation I
f̂ implements the null function f (x) = 0 (x ∈ N) and
ĝ implements the function g(0) = 0 else undefined.
Because of f̂ (0̂)→ [is_null(0̂)→ ĝ(0̂), 0̂] ∗→ ĝ(0̂)→ [...] ∗→ 0̂ and
f̂ (ŝ(x))→ [is_null(ŝ(x))→ ĝ(ŝ(x)), 0̂] ∗→ 0̂ (follows from theorem 10.4).
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Implementations

Examples: Natural numbers
Extension of E to E ′ with rule:
f̂ (x , y) = [is_null(x)→ y , 0̂] (f̂ overloaded).
f̂ implements the function F : N× N→ N

F (x , y) =
{
y x = 0
0 x 6= 0

f̂ (0̂, ŷ) ∗→ ŷ
f̂ (ŝ(x), ŷ) ∗→ 0̂

Nevertheless it holds:

f̂ (x , ĝ(x)) =E ′ [is_null(x)→ ĝ(x), 0̂]) =E ′ f̂ (x)

But f (n) = F (n, g(n)) for n > 0 is not true.

If one wants to implement all the computable functions, then the recursion
equations of Kleene cannot be directly used, since the composition
of partial functions would be needed for it.
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Primitive Recursive Functions

Representation of primitive recursive functions

The class P contains the functions
s = λx .x + 1, πn

i = λx1, ..., xn.xi , as well as c = λx .0 on N and
is closed w.r. to composition and primitive recursion, i.e.
f (x1, ..., xn) = g(h1(x1, ..., xn), ..., hr (x1, ..., xn)) resp.
f (x1, ..., xn, 0) = g(x1, ..., xn)
f (x1, ..., xn, y + 1) = h(x1, ..., xn, y , f (x1, ..., xn, y))
Statement: f ∈ P is implementable by (f̂ ,Ef̂ , I)
Idea: Show for suitable Ef̂ :

f̂ (k̂1, ..., k̂n)
∗→Ef̂

ˆf (k1, ..., kn) with Ef̂ confluent and terminating.
Assumption: FUNKT (signature) contains for every n ∈ N a countable
number of function symbols of arity n.
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Implementation of primitive recursive functions
Theorem 10.8. For each finite set A ⊂ FUNKT \ {0̂, ŝ} the
exception set, and each function f : Nn → N, f ∈ P there exist
f̂ ∈ FUNKT and Ef̂ finite, confluent and terminating such that
(f̂ ,Ef̂ , I) implements f and none of the equations in Ef̂ contains function
symbols from A.

Proof: Induction over construction of P: 0̂, ŝ /∈ A. Set A′ = A ∪ {0̂, ŝ}
I ŝ implements s with Eŝ = ∅
I π̂n

i ∈ FUNKT n \ A′ implem. πn
i with Eπ̂n

i
= {π̂n

i (x1, ..., xn)→ xi}
I ĉ ∈ FUNKT 1 \ A′ implements c with Eĉ = {ĉ(x)→ 0}
I Composition: [ĝ ,Eĝ ,A0], [ĥi ,Eĥi

,Ai ] with
Ai = Ai−1 ∪ {f ∈ FUNKT : f ∈ Eĥi−1

} \ {0̂, ŝ}. Let f̂ ∈ FUNKT \ A′r
and Ef̂ = Eĝ ∪

⋃r
1 Eĥi

∪ {f̂ (x1, ..., xn)→ ĝ(ĥ1(...), ..., ĥr (...))}
I Primitive recursion: Analogously with the defining equations.
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Primitive Recursive Functions

Implementation of primitive recursive functions
All the rules are left-linear without overlappings  confluence.
Termination criteria: Let J : FUNKT → (N∗ → N), i.e
J(f ) : Nst(f ) → N, strictly monotonous in all the arguments. If E is a rule
system, l → r ∈ E , b : VAR → N (assignment), if J[b](l) > J[b](r) holds,
then E terminates.
Idea: Use the Ackermann function as bound:
A(0, y) = y + 1,A(x + 1, 0) = A(x , 1),A(x + 1, y + 1) = A(x ,A(x + 1, y))
A is strictly monotonic,
A(1, x) = x + 2,A(x , y + 1) ≤ A(x + 1, y),A(2, x) = 2x + 3
For each n ∈ N there is a βn with

∑n
1 A(xi , x) ≤ A(βn(x1, ..., xn), x)

Define J through J(f̂ )(k1, ..., kn) = A(pf̂ ,
∑

ki) with suitable pf̂ ∈ N.
I pŝ := 1 :: J[b](ŝ(x)) = A(1, b(x)) = b(x) + 2 > b(x) + 1 =

J[b]( ˆx + 1)
I pπ̂n

i
:= 1 :: J[b](π̂n

i (x1, ..., xn)) = A(1,
∑n

1 b(xi)) > b(xi) = J[b](xi)
I pĉ := 1 :: J[b](ĉ(x)) = A(1, b(x)) > 0 = J[b](0̂)
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Primitive Recursive Functions

Implementation of primitive recursive functions

I Composition: f (x1, ..., xn) = g(h1(...), ..., hr (...)).
Set c∗ = βr (pĥ1

, ..., pĥr
) and pf̂ := pĝ + c∗ + 2. Check that

J[b](f̂ (x1, ..., xn)) > J[b](ĝ(ĥ1(x1, ..., xn), ..., ĥr (x1, ..., xn)))
I Primitive recursion:

Set m = max(pĝ , pf̂ ) and pf̂ := m + 3. Check that
J[b](f̂ (x1, ..., xn, 0)) > J[b](ĝ(x1, ..., xn)) and
J[b](f̂ (x1, ..., xn, ŝ(y))) > J[b](ĝ(....)).
Apply A(m + 3, k + 3) > A(pĥ, k + A(pf̂ , k))

I By induction show that
f̂ (k̂1, ..., k̂n)

∗→Ef̂
ˆf (k1, ..., kn)

I From the theorem 10.4 the statement follows.
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Recursive and partially recursive functions

Representation of recursive functions

Minimization:: µ-Operator µy [g(x1, ..., xn, y) = 0] = z iff
i) g(x1, ..., xn, i) defined 6= 0 for 0 ≤ i < z ii) g(x1, ..., xn, z) = 0

Regular minimization: µ is applied to total functions for which
∀x1, ..., xn∃y : g(x1, ..., xn, y) = 0
R is closed w.r. to composition, primitive recursion and regular
minimization.
Show that: regular minimization is implementable with exception set A.
Assume ĝ ,Eĝ implement g where ĝ(k̂1, ..., k̂n+1)

∗→Eĝ
ˆg(k1, ..., kn+1)

Let f̂ , f̂ +, f̂ ∗ be new and Ef̂ := Eĝ ∪ {f̂ (x1, ..., xn)→ f̂ ∗(x1, ..., xn, 0̂),
f̂ ∗(x1, ..., xn, y)→ f̂ +(ĝ(x1, ..., xn, y), x1, ..., xn, y),

f̂ +(0̂, x1, ..., xn, y)→ y , f̂ +(ŝ(x), x1, ..., xn, y)→ f̂ ∗(x1, ..., xn, ŝ(y))}
Claim: (f̂ ,Ef̂ ) implements the minimization of g .
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Recursive and partially recursive functions

Implementation of recursive functions
Assumption: For each k1, ..., kn ∈ N there is a smallest k ∈ N with
g(k1, ..., kn, k) = 0
Claim: For every i ∈ N, i ≤ k f̂ ∗(k̂1, ..., k̂n, ˆ(k − i)) ∗→Ef̂

k̂ holds
Proof: induction over i :

I i = 0 :: f̂ ∗(k̂1, ..., k̂n, k̂)→ f̂ +(ĝ(k̂1, ..., k̂n, k̂), k̂1, ..., k̂n, k̂) ∗→Eĝ

f̂ +( ˆg(k1, ..., kn, k), k̂1, ..., k̂n, k̂)→ k̂
I i > 0 :: f̂ ∗(k̂1, ..., k̂n, ˆk − (i + 1))→

f̂ +(ĝ(k̂1, ..., k̂n, ˆk − (i + 1)), k̂1, ..., k̂n, ˆk − (i + 1)) ∗→Eĝ

f̂ +(ŝ(x̂), k̂1, ..., k̂n, ˆk − (i + 1)→ f̂ ∗(k̂1, ..., k̂n, ŝ( ˆk − (i + 1))) =
f̂ ∗(k̂1, ..., k̂n, ˆk − i)) ∗→Eĝ k̂
For appropiate x and Induction hypothesis.

I Ef̂ is confluent and according to Theorem 10.4, (f̂ ,Ef̂ ) implements
the total function f .

I Ef̂ is not terminating.g(k,m) = δk,m  f̂ ∗(k̂, ˆk + 1) leads to
NT-chain. Termination is achievable!.
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Recursive and partially recursive functions

Representation of partial recursive functions
Problem: Recursion equations (Kleene’s normal form) cannot be directly
used. Arguments must have “number” as value. (See example). Some
arguments can be saved:

Example 10.9.
f (x , y) = g(h1(x , y), h2(x , y), h3(x , y)). Let g , h1, h2, h3 be
implementable by sets of equations as partial functions.
Claim: f is implementable. Let f̂ , f̂1, f̂2 be new and set:

f̂ (x , y) =
f̂1(ĥ1(x , y), ĥ2(x , y), ĥ3(x , y), f̂2(ĥ1(x , y)), f̂2(ĥ2(x , y)), f̂2(ĥ3(x , y)))
f̂1(x1, x2, x3, 0̂, 0̂, 0̂) = ĝ(x1, x2, x3), f̂2(0̂) = 0̂, f̂2(ŝ(x)) = f̂2(x)
(f̂ ,Eĝ ,Eĥ1

,Eĥ2
,Eĥ3

∪ REST ) implements f.
Theorem 10.4 cannot be applied!!.
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(f̂ ,Eĝ ,Eĥ1,Eĥ2,Eĥ3 ∪ REST ) implements f.
Apply definition 10.1:
y For number-terms let f (I(t1), I(t2)) = I(t). There are number-terms
Ti (i = 1, 2, 3) with
g(I(T1), I(T2), I(T3)) = I(t) and hi(I(t1), I(t2)) = I(Ti).
Assumption: ĝ(T1,T2,T3) =Ef̂

t and ĥi(t1, t2) =Ef̂
Ti(i = 1, 2, 3). The

Ti are number-terms:: f̂2(Ti) =Ef̂
0̂ i.e. f̂2(ĥi(t1, t2)) =Ef̂

0̂ (i = 1, 2, 3).
Hence
f̂ (t1, t2) =Ef̂

f̂1(T1,T2,T3, 0̂, 0̂, 0̂) f̂ (t1, t2) =Ef̂
t(=Ef̂

ĝ(T1,T2,T3))
x For number-terms t1, t2, t let f̂ (t1, t2) =Ef̂

t, so
f̂1(ĥ1(t1, t2), ĥ2(t1, t2), ĥ3(t1, t2), f̂2(ĥ1(t1, t2), ....) =Ef̂

t. If for an
i = 1, 2, 3 f̂2(ĥi(t1, t2)) would not be Ef̂ equal to 0̂, then the Ef̂
equivalence class contains only f̂1 terms. So there are number-terms
T1,T2,T3 with ĥi(t1, t2) =Ef̂

= Ti (i = 1, 2, 3) (Otherwise only f̂2 terms
equivalent to f̂2(ĥi(t1, t2) ). From Assumption:
 hi(I(T1), I(T2)) = I(Ti), g(I(T1), I(T2), I(T3)) = I(t)
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Rp and normalized register machines
Definition 10.10. Program terms for RM: Pn (n ∈ N) Let 0 ≤ i ≤ n
Function symbols: ai , si constants , ◦ binary ,W i unary
Intended interpretation:
ai :: Increase in one the value of the contents on register i .
si :: Decrease in one the value of the contents on register i .(−̇1)
◦(M1,M2) :: Concatenation M1M2 (First M1, then M2)
W i(M) :: While contents of register i not 0, execute M Abbr.: (M)i

Note: Pn ⊆ Pm for n ≤ m
Semantics through partial functions: Me : Pn × Nn → Nn

I Me(ai , 〈x1, ..., xn〉) = 〈...xi−1, xi + 1, xi+1...〉 (si :: xi−̇1)
I Me(M1M2, 〈x1, ..., xn〉) = Me(M2,Me(M1, 〈x1, ..., xn〉))

I Me((M)i , 〈x1, ..., xn〉) =
{
〈x1, ..., xn〉 xi = 0
Me((M)i ,Me(M, 〈x1, ..., xn〉)) otherwise
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Implementation of normalized register machines
Lemma 10.11. Me can be implemented by a system of equations.

Proof: Let tupn be n-ary function symbol. For ti ∈ N (0 < i ≤ n) let
〈t1, ..., tn〉 be the interpretation for tupn(t̂1, ..., t̂n). Program terms are
interpreted by themselves (since they are terms). For m ≥ n ::
Pn tupm(t̂1, ..., t̂m) syntactical level
I ↓ I ↓
Pn 〈t1, ..., tm〉 Interpretation

Let eval be a binary function symbol for the implementation of Me and
i ≤ n. Define En := {
eval(ai , tupn(x1, ..., xn))→ tupn(x1, ..., xi−1, ŝ(xi), xi+1, ..., xn)
eval(si , tupn(..., xi−1, 0̂, xi+1...))→ tupn(..., xi−1, 0̂, xi+1...)
eval(si , tupn(..., xi−1, ŝ(x), xi+1...))→ tupn(..., xi−1, x , xi+1...)
eval(x1x2, t)→ eval(x2, eval(x1, t))
eval((x)i , tupn(..., xi−1, 0̂, xi+1...))→ tupn(..., xi−1, 0̂, xi+1...)
eval((x)i , tupn(..., xi−1, ŝ(y), xi+1...)→

eval((x)i , eval(x , tupn(..., xi−1, ŝ(y), xi+1...))}
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(eval ,En, I) implements Me

Consider program terms that contain at most registers with 1 ≤ i ≤ n.
I En is confluent (left-linear, without critical pairs).
I Theorem 10.4 not applicable, since Me is not total.

Prove conditions of the Definition 10.1.
(1) I(Ti) = Mi according to the definition.
(2) Me(p, 〈k1, ..., kn〉) = 〈m1, ...,mn〉 iff

eval(p, tupn(k̂1, ..., k̂n)) =En tupn(m̂1, ..., m̂n)
y out of the def. of Me res. En. induction on construction of p.
x Structural induction on p ::
1. p = ai(si) ::k̂j = m̂j(j 6= i), ŝ(k̂i) = m̂i res. k̂i = m̂i = 0̂

(k̂i = ŝ(m̂i)) for si
2.Let p = p1p2 and

eval(p2, eval(p1, tupn(k̂1, ..., k̂n)))
∗→En tupn(m̂1, ..., m̂n)

Because of the rules in En it holds:
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(eval ,En, I) implements Me

There are i1, ..., in ∈ N with eval(p1, tupn(k̂1, ..., k̂n))
∗→En tupn (̂i1, ..., în)

hence
eval(p2, tupn (̂i1, ..., în)) ∗→En tupn(m̂1, ..., m̂n)
According to the induction hypothesis (2-times) the statement holds.
3. Let p = (p1)i . Then:
eval((p1)i , tupn(k̂1, ..., k̂n))

∗→En tupn(m̂1, ..., m̂n)
There exists a finite sequence (tj)1≤j≤l with
t1 = eval((p1)i , tupn(k̂1, ..., k̂n)), tj → tj+1, tl = tupn(m̂1, ..., m̂n)
There exists subsequence (Tj)1≤j≤m of form eval((p1)i , tupn (̂i1,j , ..., în,j))
For Tm ii,m = 0 holds, i.e. i1,m = m1, ..., ii,m = 0 = mi , ..., in,m = mn.
For j < m always ii,j 6= 0 holds and
eval(p1, tupn (̂i1,j , ..., în,j) ∗→En tupn (̂i1,j+1, ..., în,j+1).
The induction hypothesis gives:
Me(p1, 〈i1,j , ..., in,j〉) = 〈i1,j+1, ..., in,j+1〉 for j = 1, ...,m.
But then Me((p1)i , 〈i1,j , ..., in,j〉) = 〈m1, ...,mn〉 (1 ≤ j < m)
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Implementation of Rp

For f ∈ Rn,1
p there are r ∈ N, program term p with at most r-registers

(n + 1 ≤ r), so that for every k1, ..., kn, k ∈ N holds:
f (k1, ..., kn) = k iff ∀m ≥ 0

eval(p, tupr+m(k̂1, ..., k̂n, 0̂, 0̂, ..., 0̂, x̂1, ..., x̂m)) =Er+m

tupr+m(k̂1, ..., k̂n, k̂, 0̂, ..., 0̂, x̂1, ..., x̂m) iff

eval(p, tupr (k̂1, ..., k̂n, 0̂, 0̂, ..., 0̂)) =Er tupr (k̂1, ..., k̂n, k̂, 0̂, ..., 0̂)

Note: Er @ Er+m via tupr (...) I tupr+m(..., 0̂, ..., 0̂).
Let f̂ , R̂ be new function symbols, p program for f . Extend Er by
f̂ (y1, ..., yn)→ R̂(eval(p, tupr (y1, ..., yn), 0̂, ..., 0̂)) and
R̂(tupr (y1, ..., yr )) = yn+1 to Eext(f ).

Theorem 10.12. f ∈ Rn,1
p is implemented by (f̂ ,Eext(f ), I).
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Non computable functions
Let E be recursive, Ti recursive. Then the predicate

P(t1, ..., tn, tn+1) iff f̂ (t1, ..., tn) =E tn+1

is a r.a. predicate on T1 × ...× Tn × Tn+1
If the function f̂ implements f , then P represents the graph of the
function f  f ∈ Rp.
Kleene’s normal form theorem:
f (x1, ..., xn) = U(µ

y
[Tn(p, x1, ..., xn, y) = 0])

Let h be the total non recursive function, defined by:

h(x) =

µy [T1(x , x , y) = 0] in case that ∃y : T1(x , x , y) = 0

0 otherwise
h is uniquely defined through the following predicate:
(1) (T1(x , x , y) = 0 ∧ ∀z(z < y  T1(x , x , z) 6= 0)) h(x) = y
(2) (∀z(z < y ∧ T1(x , x , z) 6= 0)) (h(x) = 0 ∨ h(x) ≥ y)
If h(x) is replaced by u, then these are prim. rec. predicates in x , y , u.
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Non computable functions
There are primitive recursive functions P1,P2 in x , y , u, so that

(1‘) P1(x , y , h(x)) = 0 and (2′) P2(x , y , h(x)) = 0

represent (1) and (2).
Hence there are an equational system E and function symbols P̂1, P̂2,
that implement P1,P2 under the standard interpretation.
(As prim. rec. functions in the Var. x , y , u)
Let ĥ be fresh. Add to E the equations

P̂1(x , y , ĥ(x)) = 0̂ and P̂2(x , y , ĥ(x)) = 0̂.
The equational system is consistent (there are models) and ĥ is
interpreted by the function h on the natural numbers. 
It is possible to specify non recursive functions implicitly with a finite set
of equations, in case arbitrary models are accepted as interpretations.
Through non recursive sets of equations any function can be
implemented by a confluent, terminating ground system :
E = {ĥ(t̂) = t̂ ′ : t, t ′ ∈ N, h(t) = t ′} (Rule application is not effective).
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Computable algebras

Definition 10.13. I A sig-Algebra A is recursive (effective,
computable), if the base sets are recursive and all operations are
recursive functions.

I A specification spec = (sig ,E ) is recursive, if Tspec is recursive.
Example 10.14. Let sig = ({nat, even}, odd :→ even, 0 :→ nat,
s : nat → nat, red : nat → even).
As sig-Algebra A choose: Aeven = {2n : n ∈ N} ∪ {1},Anat = N with
odd as 1, red as λx .if x even then x else 1, s successor
Claim: There is no finite (init-Algebra) specification for A

I No equations of the sort nat.
I odd , red(sn(0)), red(sn(x)) (n ≥ 0) terms of sort even. No equations

of the form red(sn(x)) = red(sm(x) (n 6= m) are possible.
I Infinite number of ground equations are needed.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 346

Equational calculus and Computability

Computable algebrae

Computable algebras
Solution: Enrichment of the signature with:
even : nat → nat and cond : nat even even→ even with
interpretation

λx . if x even then 0 else 1, λx , y , z . if x = 0 then y else z
Equations:
even(0) = 0, even(s(0)) = s(0), even(s(s(x)) = even(x)
cond(0, y , z) = y , cond(s(x), y , z) = z
red(x) = cond(even(x), red(x), odd)
Alternative: Conditional equations:
red(s(0)) = odd , red(s(s(x)) = odd if red(x) = odd

Conditional equational systems (term replacement systems) are more
“expressive” as pure equational systems. They also define reduction
relations. Confluence and termination criteria can be derived. Negated
equations in the conditions lead to problems with the initial semantics
(non Horn-clause specifications).
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Equational calculus and Computability

Computable algebrae

Computable algebras: Results

Theorem 10.15. Let A be a recursive term generated sig- Algebra.
Then there is a finite enrichment sig ′ of sig and a finite specification
spec ′ = (sig ′,E ) with Tspec′ |sig ∼= A.

Theorem 10.16. Let A be a term generated sig- Algebra. Then there
are equivalent:

I A is recursive.
I There is a finite enrichment (without new sorts) sig ′ of sig and a

finite convergent rule system R, so that
A ∼= Tspec′ |sig for spec ′ = (sig ′,R)

See Bergstra, Tucker: Characterization of Computable Data Types
(Math. Center Amsterdam 79).

Attention: Does not hold for signatures with only unary function symbols.
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Reduction strategies .

Generalities

Reduction strategies for replacement systems
Main implementation problems for functional programming languages.
Which reduction strategies guarantee the calculation of normal forms, in
case these exist. Let R be TES, t ∈ term(Σ).
Assuming that there is t̄ irreducible with t ∗→R t̄.

I Which choice of the redexes guarantees a “computation” of t̄?
I Which choice of the redexes delivers the “shortest” derivation

sequence?
I Let R be terminating. Is there a reduction strategy that delivers

always the shortest derivation sequence? How much does it cost?
For SKI−calculus and λ−calculus the Left-Most-Outermost strategy
(normal strategy) is normalizing, i.e. calculates a normal form of a term if
it exists. It doesn’t deliver the shortest derivation sequences. Though it
holds: If t k→ t̄ is a shortest derivation sequence, then t 52k

→LMOM t̄. By
using structure-sharing-methods, the bounds for LMOM can be lowered.
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Reduction strategies .

Generalities

Functional computability models

I Partial recursive functions (Basic functions + Operators)
I Term rewriting systems (Algebraic Specification)
I λ-Calculus and Combinator Calculus
I Graph replacement Systems (Implementation + efficiency)

Central Notion: Application:

Expressions represent (denote) functions.
Application of functions on functions  Self application problem

See e.g. Barendregt: Functional Programming and λ-Calculus Handbook
of Theoretical Computer Science.
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Reduction strategies .

Generalities

λ-Calculus und Combinator Calculus: Informal
Basic operations:

I Application:: For “expressions” F ,A:: F .A or (FA)
F as program term is “applied” on A as argument term.

I Abstraction:: For an “expression” M, Variable x :: λx .M
Denotes a function which maps x into M, M can “depend”on x .

I Example: (λx .2 ∗ x + 1).3 should give as result 2 ∗ 3 + 1, hence 7.
I β-Equation:: (λx .M[x ])N = M[x := N]

“Free” occurrences of x in M are “replaced” by N. β-Conversion
(yx(λx .x))[x := N] ≡ (yN(λx .x))

Notice: Free occurrences of variables in N remain free.
Renaming of (bound) variables if necessary

(λx .y)[y := xx ] ≡ λz .xx z “new”
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Reduction strategies .

Generalities

λ-Calculus und Combinator Calculus: Informal
I α-Equation:: λx .M = λy .M[x := y ] with y “new”
λx .x = λy .y . Same effect as “Functions” α-Conversion

I Set of λ- terms in C and V ::
Λ(C ,V ) = C |V |(ΛΛ)|(λV .Λ)

I Set of free variables of M:: FV (M)
I M is closed (Combinator) if FV (M) = ∅
I Standard Combinators:: I ≡ λx .x K ≡ λxy .x ≡ λx .(λy .x)

B ≡ λxyz .x(yz) K∗ ≡ λxy .y S ≡ λxyz .xz(yz)
I Following equalities hold:

IM = M KMN = M K∗MN = N SMNL = ML(NL)
BLMN = L(M(N)) left parenthesis !

I Fixpoint Theorem:: ∀F∃X FX = X with e.g.
X ≡WW and W ≡ λx .F (xx)
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Reduction strategies .

Generalities

λ-Calculus und Combinator Calculus: Informal

I Representation of functions, numbers cn ≡ λfx .f n(x)
F combinator represents f iff Fzn1...znk = zf (n1,...,nk)

I f is partial recursive iff f is represented by a combinator.
I Theorem of Scott: Let A ⊂ Λ,A non trivial and closed under =,

then A not recursively decidable.
I β-Reduction:: (λx .M)N →β M[x := N]
I NF = Set of terms which have a normal form is not recursive.
I (λx .xx)y is not in normal form, yy is in normal form.
I (λx .xx)(λx .xx) has no normal form.
I Church Rosser Theorem:: →β ist confluent
I Theorem of Curry If M has a normal form then M →∗l N, i.e.

Leftmost Reduction is normalizing.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 353

Reduction strategies .

Generalities

Reduction strategies for replacement systems
Definition 11.1. Let R be a TES.

I A one-step reduction strategy S for R is a mapping
S : term(R,V )→ term(R,V ) with t = S(t) in case that t is in
normal form and t →R S(t) otherwise.

I S is a multiple-step-reduction strategy for R if t = S(t) in case
that t is in normal form and t +→R S(t) otherwise.

I A reduction strategy S is called normalizing for R, if for each term t
with a R- normal form, the sequence (Sn(t))n≥0 contains a normal
form. (Contains in particular a finite number of terms).

I A reduction strategy S is called cofinal for R, if for each t and
r ∈ ∆∗(t) there is a n ∈ N with r ∗→R Sn(t).

Cofinal reduction strategies are optimal in the following sense: they
deliver maximal information gain.
Assuming that normal forms contain always maximal information.
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Reduction strategies .

Generalities

Known reduction strategies

Definition 11.2. Reduction strategies:
I Leftmost-Innermost (Call-by-Value). One-step-RS, the redex that

appears most left in the term and that contains no proper redex is
reduced.

I Paralell-Innermost. Multiple-step-RS. PI(t) = t̄ , at which t 7→ t̄
(All the innermost redexes are reduced).

I Leftmost-Outermost (Call-by-Name). One-step-RS.
I Parallel-Outermost. Multiple-step-RS. PO(t) = t̄ , at which t 7→ t̄

(All the disjoint outermost redexes are reduced).
I Fair-LMOM. A left-most outermost redex in a red-sequence is

eventually reduced. (A LMOR in such a strategy doesn’t remain
unreduced for ever). (Lazy strategy).
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Reduction strategies .

Generalities

Known reduction strategies

I Full-substitution-rule. (Only for orthogonal systems).
Multiple-step-RS. GK (t) :: t +→ GK (t) all the redexes in t are
reduced, in case they’re not disjunct, then the residuals of the
redexes are also reduced.

I Call-By-Need. One-step-RS. It reduces always a necessary redex. A
redex in t is necessary, when it must be reduced in order to compute
the normal form. (Only for certain TES e.g. LMOM for SKI calculus)
Problem: How can one decide whether a redex is necessary or not?

I Variable-Delay-Strategy: One-step-RS. Reduce redex, that doesn’t
appear as redex in the instance of a variable of another redex.
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Reduction strategies .

Generalities

Examples

Example 11.3. :
I and(true, x)→ x , and(false, x)→ false,

or(true, x)→ true, or(false, x)→ x
Orthogonal, strong left sequential (constants “before” the variables).

true and

and

and

true true false

or

or

truefalse

and

false

LMIM, PIM, LMOM, POM, FSR

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 357

Reduction strategies .

Generalities

Examples
I Σ = {0, s, p, if 0,F},R = {p(0)→ 0, p(s(x))→ x , if 0(0, x , y)→

x , if 0(s(z), x , y)→ y ,F (x , y)→ if 0(x , 0,F (p(x),F (x , y)))}
Left-linear, without overlaps. (orthogonal).
F (0, 0)→ if 0(0, 0,F (p(0),F (0, 0)))

↓ PIM

OM→ 0

if 0(0, 0,F (0, if 0(0, 0,F (p(0),F (0, 0)))))
No IM-strategy is for all orthogonal systems normalizing or cofinal.

I FSR (Full-Substitution-Rule): Choose all the redexes in the term and
reduce them from innermost to outermost (notice no redex is
destroyed). Cofinal for orthogonal systems.

I Σ = {a, b, c, di : i ∈ N}
R := {a→ b, dk(x)→ dk+1(x), c(dk(b))→ b
confluent (left linear parallel 0-closed).
c(d0(a))→1 c(d1(a))→1 .... not normalizing (POM).
c(d0(a))→1,1 c(d0(b))→0 b
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Reduction strategies .

Generalities

Examples

I Σ = {a, bi , c, d : i ∈ N}. Non confluent SRS:
R = {ab0c → acb0, ab0d → ad , c → d , cbi → d , bi → bi+1(i ≥ 1)}
ab0c →11 ab0d → ad
ab0c →0 acb0 →11 acb1 → adb1 → ...

I Σ = {f , a, b, c, d} R = {f (x , b)→ d , a→ b, c → c} Orthogonal.
LMOM must not be normalizing:
f (c, a)→ f (c, a)→ .... but f (c, a)→ f (c, b)→ d

I f (a, f (x , y))→ f (x , f (x , f (b, b))) left linear with overlaps.
f (a, f (a, f (b, b)))

↓INN
→OUT f (a, f (a, f (b, b)))→OUT ....

f (a, f (b, f (b, f (b, b))))→ f (b, f (b, f (b, b)))
I R = {f (g(x), c)→ h(x , d), b → c}

f (g(f (a, f (a, b))), c)→VD h(f (a, f (a, b)), d)→VD
h(f (a, f (a, c)), d)
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Orthogonal systems

Strategies for orthogonal systems
Theorem 11.4. For orthogonal systems the following holds:

I Full-Substitution-Rule is a cofinal reduction strategy.
I POM is a normalizing reduction strategy.
I LMOM is normalizing for λ-calculus and CL-calculus.
I Every fair-outermost strategy is normalizing.
I Main tools:

Elementary reduction diagrams,residuals and reduction diagrams

Sab(Ic)
↓

→ a(Ic)(b(Ic))
↓

Ka(Ib)
↓

→ Kab
↓

ac(b(Ic))
↓

Sabc → ac(bc) a →∅ a

Ia
↓∅
→ a

↓∅
Ia
↓
→ a

↓∅
a → a

Ia → a a →∅ a a a
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Reduction strategies .

Orthogonal systems

Composition of E-reduction diagrams
Reduction diagrams and projections:

t0 → t1 → . . . → tn
↓ ↓ ∗ ∗→ ∗→ ↓ ∗
t ′1

∗→ ∗→ ∗→ ↓ ∗
↓ ↓ ∗ ∗→ ∗→ ↓ ∗ R4 = R2�R1
↓ ↓ ∗ ∗→ ∗→ ↓ ∗
...

... . . . . . . ↓ ∗
↓ ↓ ∗ ∗→ ∗→ ↓ ∗
t ′m

∗→ ∗→ ∗→ ↓ ∗
R3 = R1�R2 projections

Let R1 :: t +→ t ′ and R2 :: t +→ t ′ be two reduction sequences of r from t
to t ′. They are equivalent R1 ∼= R2 iff R1�R2 = R2�R1 = ∅.
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Reduction strategies .

Orthogonal systems

Strategies for orthogonal systems
Lemma 11.5. Let D be an elementary reduction diagram for orthogonal
systems, Ri ⊆ Mi (i = 0, 2, 3) redexes with R0 − .− .→ R2 − .− . ∗→ R3
i.e. R2 is residual of R0 and R3 is residual of R2. Then there is a unique
redex R1 ⊆ M1 with R0 − .− .→ R1 − .− . ∗→ R3, i.e.

M0 M1

M3M2

R0

R2 R3

R1
*

*

Notice, that in the reduction sequences M1
∗→ M3 and M2

∗→ M3 only
residuals of the corresponding used redex in the reduction in M0 are
reduced.
Property of elementary reduction diagrams!
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Reduction strategies .

Orthogonal systems

Strategies for orthogonal systems
Definition 11.6. Let Π be a predicate over term pairs M,R so that
R ⊆ M and R is redex (e.g. LMOM, LMIM,...).
i) Π has property I when for a D like in the lemma it holds:

Π(M0,R0) ∧Π(M2,R2) ∧Π(M3,R3) Π(M1,R1)

ii) Π has property II if in each reduction step M →R M ′ with ¬Π(M,R),
each redex S ′ ⊆ M ′ with Π(M ′,S ′) has an ancestor-redex S ⊆ M with
Π(M,S). (i.e. ¬Π steps introduce no new Π-redexes).
Lemma 11.7. Separability of developments. Assume Π has property II.
Then each development R :: M0 → ...→ Mn can be partitioned in a
Π-part followed by a ¬Π-part.
More precisely: There are reduction sequences
RΠ :: M0 = N0 →R0 ...→Rk−1 Nk with Π(Ni ,Ri) (i < k) and
R¬Π :: Nk →Rk ...→Rk+l−1 Nk+l with ¬Π(Nj ,Rj) (k ≤ j < k + l) and R
is equivalent to RΠ ×R¬Π.
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Reduction strategies .

Orthogonal systems

Example 11.8. I Π(M,R) iff R is redex in M. I and II hold.
I Π(M,R) iff R is an outermost redex in M. Then properties I and II

hold: To I
M0 M1

M3M2

R0

R2 R3

R1
*

*

R0,R2,R3 outermost redexes
Let Si be the redex in M0 → Mi
Assuming that is not OM  In M1 a
redex (P) is generated by the
reduction of S1, that contains R1.

In M1 →> M3 R1 becomes again outermost. i.e. P is reduced: But
in M1 →> M3 only residuals of S2 are reduced and P is not residual,
since was newly introduced. . II is clear.

I Π(M,R) iff R is left-most redex in M. I holds. II not always:
F (x , b)→ d , a→ b, c → c :: F (c, a)→ F (c, b)
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Reduction strategies .

Orthogonal systems

Descendants of redexes (residuals)

Definition 11.9. Traces in reduction sequences:
I Let R :: M0 → M1 → . . . be a reduction sequence. Let Mj be fixed

and Li ⊆ Mi (i ≥ j) (provided that Mi exists) redexes with
Lj − .− .→ Lj+1 − .− .→ . . . .
The sequence L = (Lj+i)i≥0 is a trace of descendants (residuals) of
redexes in Mj .

I L is called Π-trace, in case that ∀i ≥ j Π(Mi , Li).
I Let R be a reduction sequence, Π a predicate. R is Π-fair, if R has

no infinite Π-Traces.

Results from Bergstra, Klop :: Conditional Rewrite Rules:
Confluence and Termination. JCSS 32 (1986)
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Orthogonal systems

Properties of Traces

Lemma 11.10. Let Π be a predicate with property I.
I Let D be a reduction diagram with

Ri ⊆ Mi ,R0 − .− .→> R2 − .− .→> R3 is Π trace.
M

M0 M1

M3

R0

R2 R3

*

*

** *

*

*

*

M2

R1

Then R0 − .− .→> R1 − .− .→> R3 via M1 also a Π trace
I Let R,R′ be equivalent reduction sequences from M0 to M.

S ⊆ M0,S ′ ⊆ M redexes, so that a Π-trace S − .− .→> S ′ via R
exists. Then there is a unique Π-trace S − .− .→> S ′ via R′.
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Reduction strategies .

Orthogonal systems

Main Theorem of O’Donnell 77
Theorem 11.11. Let Π be a predicate with properties I,II. Then the
class of Π-fair reduction sequences is closed w.r. to projections.
Proof Idea:

M0 ... ...

N0 N1 Nk Nk+1

M1 Mk Mk+1... Ml

Nl... ...* * * *

S *

Rk Rl

Ak

Pi

−Pi

Bk+1
Ak+1

Pi

−Pi

Pi
−Pi

Pk Qk+1

Pk+1

*

Rk+1

Let R :: M0 → ... be Π-fair and R′ :: N0
∗→ a projection.

∀k∃Mk
Π→> Ak

¬Π→> Nk equivalent to the complete development
Mk →> Nk . In the resulting rearrangement both derivations between Nk
and Nk+1 are equivalent. In particular the Π-Traces remain the same.
Results in an echelon form: Ak − Bk+1 − Ak+1 − Bk+2 − ....
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Reduction strategies .

Orthogonal systems

Main Theorem: Proof

This echelon reaches R after a finite number of steps, let’s say in Ml ::
If not R would have an infinite trace of S residuals with property Π.

Let’s assume that R′ is not Π fair. Hence it contains an infinite Π -trace
Rk , ...,Rk+1... that starts from Nk .

There are Π-ancestors Pk ⊆ Ak from the Π-redex Rk ⊆ Nk , i.e with
Π(Ak ,Pk). Then the Π-trace Pk − .− .→> Rk − .− .→> Rk+1 can be
lifted via Bk+1 to the Π-trace Pk − .− .→> Qk+1 − .− .→> Rk+1.

Iterating this construction until Ml , a redex Pl that is predecessor of Rl
with Π(Ml ,Pl) is obtained. This argument can be now continued with
Rl+1.
Consequently R is not Π-fair. .
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Reduction strategies .

Orthogonal systems

Consequences

Lemma 11.12. Let R :: M0 → M1 → ... be an infinite sequence of
reductions with infinitely outermost redex-reductions. Let S ⊆ M0 be a
redex. Then R′ = R�{S} is also infinite.

Proof: Assume that R′ is finite with length k. Let l ≥ k and Rl be the
redex in the reduction of Ml → Ml+1 and let Rl the reduction sequence
from Ml to M ′l
• If Rl is outermost, then M ′l

∗→ M ′l+1 can only be empty if Rl is one of
the residuals of S which are reduced in Rl . Thus Rl+1 has one step less
than Rl .
• Otherwise Rl is properly contained in the residual of S reduced in Rl .

However given that R must contain infinitely many outermost
redex-reductions then Rq would become empty. Consequently R′ must
coincide with R from some position on, hence it is also infinite.
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Orthogonal systems

Consequences for orthogonal systems

Theorem 11.13. Let Π(M,R) iff R is outermost redex in M.
I The fair outermost reduction sequences are terminating, when they

start from a term which has a normal form.
I Parallel-Outermost is normalizing for orthogonal systems.

Proof: If t has a normal form, then there is no infinite Π-fair reduction
sequence that starts with t.
Let R :: t → t1 → ....→ be an infinite Π-fair and R′ :: t → t ′1 → ...→ t̄
a normal form.
R contains infinitely many outermost reduction steps (otherwise it would
not Π-fair). Then R�R′ also infinite.  .
Observe that: The theorem doesn’t hold for LMOM-strategy: property II
is not fulfilled. Consider for this purpose a→ b, c → c, f (x , b)→ d .
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Reduction strategies .

Orthogonal systems

Consequences for orthogonal systems

Definition 11.14. Let R be orthogonal, l → r ∈ R is called left normal,
if in l all the function symbols appear left of the variables. R is
left normal, if all the rules in R are left normal.

Consequence 11.15. Let R be left normal. Then the following holds:
I Fair leftmost reduction sequences are terminating for terms with a

normal form.
I The LMOM-strategy is normalizing.

Proof: Let Π(M, L) iff L is LMO-redex in M. Then the properties I and II
hold. For II left normal is needed.
According to theorem 11.11 the Π-fair reduction sequences are closed
under projections. From Lemma 11.12 the statement follows.
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Orthogonal systems

Summary

A strategy is called perpetual if it can induce infinite reduction sequences.

Strategy Orthogonal LN-Ortogonal Orthogonal-NE

LMIM p p p n

PIM p p p n

LMOM n p n

POM n n p n

FSR n c n c p n c
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Reduction strategies .

Strategies and length of derivations

Classification of TES according to appearances of variables

Definition 11.16. Let R be TES, Var(r) ⊆ Var(l) for
l → r ∈ R, x ∈ Var(l).

I R is called variable reducing, if for every l → r ∈ R, |l |x > |r |x
R is called variable preserving, if for every l → r ∈ R, |l |x = |r |x
R is called variable augmenting, if for every l → r ∈ R, |l |x ≤ |r |x

I Let D[t, t ′] be a derivation from t to t ′. Let |D[t, t ′]| the length of
the reduction sequence. D[t, t ′] is optimal if it has the minimal
length among all the derivations from t to t ′.

Lemma 11.17. Let R be orthogonal, variable preserving. Then every
redex remains in each reduction sequence, unless it is reduced. Each
derivation sequence is optimal.

Proof: Exchange technique: residuals remain as residuals, as long as they
are not reduced, i.e. the reduction steps can be interchanged.
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Strategies and length of derivations

Examples

Example 11.18. Lengths of derivations:
I Variable preserving:

R :: f (x , y)→ g(h(x), y)), g(x , y)→ l(x , y), a→ c, b → d.
Consider the term f (a, b) and its derivations.
All derivation sequences to the normal form are of the same length (4).

I Variable augmenting (non erasing):
R :: f (x , b)→ g(x , x), a→ b, c → d. Consider the term f (c, a) and
its derivations.
Innermost derivation sequences are shorter than the outermost ones.
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Strategies and length of derivations

Further Results
Lemma 11.19. Let R be overlap free, variable augmenting. Then an
innermost redex remains until it is reduced.

Theorem 11.20. Let R be orthogonal variable augmenting (ne). Let
D[t, t ′] be a derivation sequence from t to its normal form t ′, which is
non-innermost. Then there is an innermost derivation D′[t, t ′] with
|D′| ≤ |D|.
Proof: Let L(D) = derivation length from the first non-innermost
reduction in D to t ′.
Induction over L(D) :: t → t1 → ...→ ti S→ ...→ tj ∗→ t ′.
Let i be this position.
S is non-innermost in ti , hence it contains an innermost redex Si that
must be reduced later on, let’s say in the reduction of tj . Consider the

reduction sequence D′ :: t → t1 → ...→ ti Si→ t ′i+1
S→ ...t ′j

<
∗→ t ′

|D′| ≤ |D|, L(D′) < L(D)  there is a derivation D′ with L(D′) = 0.
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Reduction strategies .

Strategies and length of derivations

Further Results
Theorem 11.21. Let R be overlap free, variable augmenting. Every two
innermost derivations to a normal form are equally long.
Sure! given that innermost redexes are disjoint and remain preserved as
long as they are not reduced.
Consequence:Let R be left linear, variable augmenting. Then innermost
derivations are optimal. Especially LMIM is optimal.
Example 11.22. If there are several outermost redexes, then the length
of the derivation sequences depend on the choice of the redexes.
Consider:
f (x , c)→ d , a→ d , b → c and the derivations:
f (a, b)→ f (d , b)→ f (d , c)→ d and respectively f (a, b)→ f (a, c)→ d
 variable delay strategy. If an outermost redex after a reduction step is
no longer outermost, then it is located below a variable of a redex
originated in the reduction. If this rule deletes this variable, then the
redex must not be reduced.
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Further Results

Theorem 11.23. Let R be overlap free.
I Let D be an outermost derivation and L a non-variable outermost

redex in D. Then L remains a non-variable outermost redex until it is
reduced.

I Let R be linear. For each outermost derivation D[t, t ′], t ′ normal
form, exists a variable delaying derivation D′[t, t ′] with |D′| ≤ |D|.
Consequently the variable delaying derivations are optimal.

Theorem 11.24. Ke Li. The following problem is NP-complete:

Input: A convergent TES R, term t and D[t, t ↓].
Question: Is there a derivation D′[t, t ↓] with |D′| < |D|.

Proof Idea: Reduce 3-SAT to this problem.
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Computable Strategies

Definition 11.25. A reduction strategy S is computable, if the mapping
S : Term→ Term with t ∗→ S(t) is recursive.

Observe that: The strategies LMIM, PIM, LMOM, POM, FSR are
polynomially computable.
Question: Is there a one-step computable normalizing strategy for
orthogonal systems ?.

Example 11.26. I (Berry) CL-calculus extended by rules
FABx → C ,FBxA→ C ,FxAB → C is orthogonal, non-left-normal.
Which argument does one choose for the reduction of FMNL? Each
argument can be evaluated to A resp. B, however this is undecidable
in CL.

I Consider or(true, x)→ true, or(x , true)→ true + CL.
Parallel evaluation seems to be necessary!
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Computable Strategies: Counterexample

Example 11.27. Signature: Constants: S,K ,S ′,K ′,C , 0, 1
unary: A, activate binary: ap, ap′ ternary: B

Rules:
ap(ap(ap(S, x), y), z)→ ap(ap(x , y), ap(y , z))
ap(ap(K , x), y)→ x
activate(S ′)→ S, activate(K ′)→ K
activate(ap′(x , y))→ ap(activate(x), activate(y))
A(x)→ B(0, x , activate(x)), A(x)→ B(1, x , activate(x))
B(0, x ,S)→ C , B(1, x ,K )→ C , B(x , y , z)→ A(y)
Terms: Starting with terms of form A(t) where t is constructed from
S ′,K ′ and ap′.
Claim: R is confluent and has no computable one step strategy which is
normalizing.
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A sequential Strategy for paror Systems
Example 11.28. Let f , g : N+ → N recursive functions. Define a “term
rewriting system” R on N× N with rules:

I (x , y)→ (f (x), y) if x , y > 0
I (x , y)→ (x , g(y)) if x , y > 0
I (x , 0)→ (0, 0) if x > 0
I (0, y)→ (0, 0) if y > 0

Obviously R is confluent. Unique normal form is (0, 0) and for x , y > 0,
(x , y) has a normal form iff ∃n. f n(x) = 0 ∨ gn(x) = 0.

A one step reductions strategy must choose among the application of f
res. g in the first res. second argument.
Such a reduction strategy cannot compute first the zeros of f n(x) res.
gn(y) in order to choose the corresponding argument. One could expect,
that there are appropriate functions f and g for which no computable
one step strategy exists. But this is not the case!!
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A sequential strategy for paror systems
There exists a computable one step reduction strategy which is
normalizing.

Lemma 11.29. Let (x , y) ∈ N× N. Then:
I x < y:: For n either f n(x) = 0 or f n(x) ≥ y or there exists an i < n

with f n(x) = f i(x) 6= 0 holds. Choose n minimal with this property.
The three alternatives are mutually excluding.
If one of the first two holds then S(x , y) = L else R

I x ≥ y:: For n either gn(y) = 0 or gn(y) > x or there exists an i < n
with gn(y) = g i(y) 6= 0. Choose n minimal with this property. The
three alternatives are mutually excluding. If one of the first two
holds then S(x , y) = R else L

I Claim: S is a computable one step reduction strategy for R which is
normalizing. (Proof: Exercise)
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Computable Strategies
Theorem 11.30. Kennaway (Annals of Pure and Applied Logic 43(89))
For each orthogonal system there is a computable sequential (one step)
normalising reduction strategy.

Definition 11.31. Standard reduction sequences
Let R :: t0 → t1 → ... be a reduction sequence in the TES R. Mark in
each step in R all top-symbols of redexes that appear on the left side of
the reduced redex. R is a standard reduction sequence if no redex with
marked top-symbol is ever reduced.

Theorem 11.32.
Standardization theorem for left-normal orthogonal TES.
Let R be LNO.
If t ∗→ s holds, then there exists a standard reduction sequence in R with
t ∗→ST s.
Especially LMOM is normalizing.
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Sequential Orthogonal TES

Example 11.33. For applicative TES:: PxQ → xx ,R → S, Ix → x
Consider R :: PR(IQ)→ PRQ → RR → SR
There exists no standard reduction sequence from PR(IQ) to SR

Fact: λ-Calculus and CL-Calculus are sequential, i.e. always needed
redexes are reduced for computing the normal form.

Definition 11.34. Let R be orthogonal, t ∈ Term(R) with normal form
t ↓. A redex s ⊆ t is a needed redex, if in every reduction sequence
t → ...→ t ↓ some residual of s is reduced (contracted).
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Sequential Orthogonal TES: Call-by-need
Theorem 11.35. Huet- Levy (1979) Let R be orthogonal

I Let t with a normal form but reducible , then t contains a needed
redex

I “Call-by-need” Strategy (needed redexes are contracted) is
normalizing

I Fair needed-redex reduction sequences are terminating for terms
with a normal form.

Lemma 11.36. Let R be orthogonal, t ∈ Term(R), s, s ′ redexes in t s.t.
s ⊆ s ′. If s is needed, then also s ′ is.
In particular:: If t is not in normal form, then a outermost redex is a
needed redex.
Let C [..., ..., ...] be a context with n-places (holes), σ a substitution of
the redexes s1, ..., sn in places 1, ..., n. The Lemma implies the following
property:
∀C [..., ..., ...] in normal form, ∀σ∃i .si needed in C [s1, ..., sn].
Which one of the si is needed, depends on σ .
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Sequential Orthogonal TES

Definition 11.37. Let R be orthogonal.
I R is sequential* iff ∀C [..., ..., ...] in normal form ∃i∀σ.si is needed in

C [s1, ..., sn]
Unfortunately this property is undecidable

I Let C [...] context. The reduction relation →? (possible reduction) is
defined by

C [s]→? C [r ] for each redex s and arbitrary term r
→∗? and residuals defined in analogy.

I A redex s in t is called strongly needed if in every reduction
sequence t →? ...→? t ′, where t ′ is a normal form, some
descendant of s gets reduced.

I R is strongly sequential if ∀C [..., ..., ..] in normal form ∃i∀σ.si is
strongly needed.
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Example

F

G F

A x B y
x y

G

D

F

D

G

A

F

C

Is not strong sequential  F(G(1,2),F(G(3,4),5))
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Strong Sequentiality

Lemma 11.38. Let R be orthogonal.
I The property of being strongly sequential is decidable. The needed

index i is computable.
Proof: See e.g. Huet-Levy

I Call-by-need is a computable one step reduction strategy for such
systems.
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Summary: Formal Specification and Verification Techniques

I What have we learned?  See contents of lecture.
I Which were the important notions about FSVT?
I Are formal methods helpful for better software development?
I Can formal methods be integrated in SD-Process models?
I What is needed in order to understand and use formal methods?
I Are there criteria for evaluating formal methods?
I The importance of knowing what one does....
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Principles to make a formal method a useful tool in system
development

I formal syntax
I formal semantics
I clear conceptual system model
I uniform notion of an interface
I sufficient expressiveness and descriptive power
I concept of development techniques with a proper notion of

refinement and implementation
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Model oriented specification techniques

I ASM
I VDM
I Z and B-Methods
I SDL
I STATECHARTS
I CSP, Petri-Nets (concurrent)
I ....
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Property oriented specification techniques

I Algebraic Specification Techniques (equational logic)
I Logical Specification Techniques (Prolog, temporal- and modal

logics)
I Hybrids
I LARCH, OBJ, MAUDE,....
I Tools: http://rewriting.loria.fr/
I ....

Interesting reading:
http://www.comp.lancs.ac.uk/computing/resources/IanS/SE6/Slides/PDF/ch9.pdf
http://libra.msra.cn/ConferenceDetail.aspx?id=1618
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Verification techniques

Important: What and where should something hold...
What to do when it does not hold?
Use the proper tools depending on the abstraction level.

I Equational Logic (Term Rewriting ...)
I Equational properties in a single model (Induction methods....)
I First order Logics (General theorem provers...)
I First order properties of single models (Inductive methods...)
I Temporal and modal logics (Propositional part...Model checking)
I Propositional logics (Sat solvers, Davis Putman, tableaux,...)
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Summary

FSVT

I Thanks for your attention
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