Bibliography

Formal Specification and Verification Techniques

Prof．Dr．K．Madlener

12．Februar 2009

Prof．Dr．K．Madlener：Formal Specification and Verification Techniques			
Introduction 000000000000			
Generalities			
Course of Studies „Informatics＂，„Applied Informatics＂and ＂Master－Inf．＂WS08／09 Prof．Dr．Madlener TU－Kaiserslautern			
Lecture：			
Di 08．15－09．45	13／222	Fr 08．15－09．45	42／110
Exercises：？？			
Fr．11．45－13．15	11／201	Mo 11．45－13．15	13／370

－Information http：／／www－madlener．informatik．uni－kl．de／ teaching／ws2008－2009／fsvt／fsvt．html
－Evaluation method：
Exercises（efficiency statement）＋Final Exam（Credits）
－First final exam：（Written or Oral）
－Exercises（Dates and Registration）：See WWW－Site

目 M．O＇Donnell．
Computing in Systems described by Equations，LNCS 58， 1977
Equational Logic as a Programming language．
J．Avenhaus． Reduktionssysteme，（Skript），Springer 1995.
Cohen et．al．
The Specification of Complex Systems．
目 Bergstra et．al． Algebraic Specification．
Barendregt．
Functional Programming and Lambda Calculus．Handbook of TCS， 321－363， 1990.

```
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
lymyction
Introduction
```

Bibliography

Gehani et．al．
Software Specification Techniques．
R Huet．
Confluent Reductions：Abstract Properties and Applications to TRS
JACM，27， 1980
嗇 Nivat，Reynolds．
Algebraic Methods in Semantics．
目 Loeckx，Ehrich，Wolf
Specification of Abstract Data Types，Wyley－Teubner， 1996.
葍 J．W．Klop
Term Rewriting System．Handbook of Logic，INCS，Vol．2，Abransky， Gabbay，Maibaum．

Role of formal Specifications

- Software and hardware systems must accomplish well defined tasks (requirements).
- Software Engineering has as goal
- Definition of criteria for the evaluation of SW-Systems
- Methods and techniques for the development of SW-Systems, that accomplish such criteria
- Characterization of SW-Systems
- Development processes for SW-Systems
- Measures and Supporting Tools
- Simplified view of a SD-Process:

Definition of a sequence of actions and descriptions for the
SW-System to be developed. Process and Product Models
Goal: The group of documents that includes an executable program

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction	13
Introduction 0000000000	
Contents	

Computability and Implementation

Equational calculus and Computability
Implementations
Primitive Recursive Functions
Recursive and partially recursive functions
Partial recursive functions and register machines
Computable algebrae

Reduction strategies

Generalities
Orthogonal systems
Strategies and length of derivations
Sequential Orthogonal TES: Call by Need
Summary
Summary

- Waterfall model, Spiral model,. .

Phases \equiv Activities + Product Parts (partial descriptions) In each stage of the DP

Description: a SW specification, that is, a stipulation of what must be achieved, but not always how it is done.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
Role of formal Specifications
000 •00000000000000000000000000

Comment

- First Specification: Global Specification

Fundament for the Development
"Contract or Agreement" between Developers and Client

- Intermediate (partial) specifications:

Base of the Communication between Developers.

- Programs: Final products.

Development paradigms

- Structured Programming
- Design + Program
- Transformation Methods
- ...

Role of formal Spectications
00000000000000
Properties of Specifications

Consistency Completeness

- Validation of the global specification regarding the requirements.
- Verification of intermediate specifications regarding the previous one.
- Verification of the programs regarding the specification
- Verification of the integrated final system with respect to the global specification.
- Activities: Validation, Verification, Testing Consistency- and Completeness-Check
- Tool support needed!

Requirements
\(\left.\begin{array}{lrr}Functional -

what \& non functional

\vdots \& time aspects

how \& robustness

stability

security\end{array}\right\}\)| adaptability |
| ---: |
| ergonomics |
| maintainability |

Properties
Correctness: Does the implemented System fulfill the Requirements?
Test
Validate
Verify

Requirements Description \rightsquigarrow Specification Language

- Choice of the specification technique depends on the System. Frequently more than a single specification technique is needed. (What - How).
- Type of Systems: Pure function oriented (I/O), reactive- embedded- real timesystems.
- Problem : Universal Specification Technique (UST) difficult to understand, ambiguities, tools, size ... e.g. UML
- Desired: Compact, legible and exact specifications

Here: formal specification techniques

```
Role of formal Specifications
```

 000000000000000
 Requirements

- The global specification describes, as exact as possible, what must be done.
- Abstraction of the how

Advantages

- apriori: Reference document, compact and legible.
- aposteriori: Possibility to follow and document design decisions \rightsquigarrow traceability, reusability, maintenance.
- Problem: Size and complexity of the systems

Principles to be supported

- Refinement principle: Abstraction levels
- Structuring mechanisms

Decomposition and modularization principles

- Object orientation
- Verification and validation concepts
- A specification in a formal specification language defines all the possible behaviors of the specified system.
- 3 Aspects: Syntax, Semantics, Inference System
- Syntax: What's allowed to write: Text with structure, Properties often described by formulas from a logic.
- Semantics: Which models are associated with the specification, \rightsquigarrow specification models.
- Inference System: Consequences (Derivation) of properties of the system. \rightsquigarrow Notion of consequence.

Role of formal Specitications
Formal Specifications

Formal Specifications

- Two main classes:

Model oriented (constructive)
e.g.VDM, Z, ASM

Construction of a
non-ambiguous model
from available
data structures and
construction rules
Concept of correctness

Property oriented
(declarative)
signature (functions, predicates) Properties
(formulas, axioms)

models

algebraic specification AFFIRM, OBJ, ASF,...

Formal Specifications

- Advantages:
- The concepts of correctness, equivalence, completeness, consistency, refinement, composition, etc. are treated in a mathematical way (based on the logic)
- Tool support is possible and often available
- The application and interconnection of different tools are possible.
- Disadvantages:
- Operational specifications:

Petri nets, process algebras, automata based (SDL)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 25

Role of formal Specifications
$00000000000 \bullet$

Specifications: What for?

- The concept of program correctness is not well defined without a formal specification.
- A verification is not possible without a formal specification.
- Other concepts, like the concept of refinement, simulation become well defined.
Wish List
- Small gap between specification and program:

Generators, Transformators.

- Not too many different formalisms/notations.
- Tool support
- Rapid prototyping.
- Rules for "constructing" specifications, that guarantee certain properties (e.g. consistency + completeness).
Prof. Dr. K. Madener: Formal Specification and Verification Techniques: Introduction 27

Role of formal Specifications

Formal Specifications
Refinements

Abstraction mechanisms

- Data abstraction
- Control abstraction
- Procedural abstraction

Refinement mechanisms

- Choose a data representation (sets by lists)
- Choose a sequence of computation steps
- Develop algorithm (Sorting algorithm)

Concept: Correctness of the implementation

- Observable equivalences
- Behavioral equivalences

Role of formal Specifications
Formal Specifications

Structuring

Problems: Structuring mechanisms

- Horizontal:

Decomposition/Aggregation/Combination/Extension/
Parameterization/Instantiation
(Components)
Goal: Reduction of complexity, Completeness

- Vertical:

Realization of Behavior Information Hiding/Refinement

Goal: Efficiency and Correctness
Example: declarative

Example 2.1. Restricted logic: e.g. equational logic

- Axioms: $\forall X t_{1}=t_{2} \quad t_{1}, t_{2}$ terms
- Rules: Equals are replaced with equals. (directed).
- Terms \approx names for objects (identifier), structuring, construction of the object.
- Abstraction: Terms as elements of an algebra, term algebra.

Role of formal Specifications
00000000000000
Tool support

- Syntactic support (grammars, parser,...)
- Verification: theorem proving (proof obligations)
- Prototyping (executable specifications)
- Code generation (out of the specifications generate C code)
- Testing (from the specification generate test cases for the program)

Desired:
To generate the tools out of the syntax and semantics of the specification language

Foundations for the algebraic specification method:

- Axioms induce a congruence on a term algebra
- Independent subtasks
- Description of properties with equality axioms
- Representation of the terms
- Operationalization
- spec, t term give out the „value" of t, i.e. $t^{\prime} \in \operatorname{Value}($ spec $)$ with spec $\models t=t^{\prime}$.
- \rightsquigarrow Functional programming: LISP, CAML,... $F\left(t_{1}, \ldots, t_{n}\right) \quad$ eval ()\rightsquigarrow value.

Role of formal Specifications Examples

Example: Model-based constructive: VDM
Unambiguous (Unique model), standard (notations),
Independent of the implementation, formally manipulable, abstract, structured, expressive, consistency by construction
Example 2.2. Model (state)-based specification technique VDM

- Based on naive set theory, PL 1, preconditions and postconditions.

$$
\begin{array}{ll}
\text { Primitive types: } & \mathbb{B} \text { Boolean }\{\text { true, false }\} \\
& \mathbb{N} \text { natural }\{0,1,2,3, \ldots\}
\end{array}, \mathbb{Z}, \mathbb{R}
$$

- Sets: \mathbb{B}-Set: Sets of \mathbb{B}-'s.
- Operations on sets: $\in:$ Element, Element-Set $\rightarrow \mathbb{B}$,
- Sequences: \mathbb{Z}^{*} : Sequences of integer numbers.
- Sequence operations: \frown : Sequences, Sequences \rightarrow Sequences. "Concatenation"
e.g. [] \frown true, false, true $]=[$ true, false, true $]$
len: sequences $\rightarrow \mathbb{N}$, hd: sequences \rightsquigarrow elem (partial).
t : sequences \rightsquigarrow sequences, elem: sequences \rightarrow Elem-Set.
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 33

Role of formal Specifications
$0000000000000000000 \bullet 0000000000$

Operations in VDM

See e.g.: http://www.vdmportal.org/twiki/bin/view
VDM-SL: System State, Specification of operations
Format:
Operation-Identifier (Input parameters) Output parameters
Pre-Condition
Post-Condition

$$
\begin{aligned}
& \text { e.g. } \\
& \text { Int_SQR }(x: \mathbb{N}) z: \mathbb{N} \\
& \text { pre } \quad x \geq 1 \\
& \text { post } \quad\left(z^{2} \leq x\right) \wedge\left(x<(z+1)^{2}\right)
\end{aligned}
$$

Example VDM: Bounded stack

Example 2.3. - Operations: • Init . Push . Pop • Empty Full

		23		
45		45		45
78		78		78
29		29	$\xrightarrow{\text { Newstack }}$	29
56	$\xrightarrow{\text { Push (23) }}$	56	$\xrightarrow{\text { Pop }}$	56
78	Push (23)	78	p	78

$$
\text { Contents }=\mathbb{N}^{*} \quad \text { Max_Stack_Size }=\mathbb{N}
$$

- STATESTACK OF
s : Contents
n : Max_Stack_Size
inv : $\operatorname{mk-STACK}(s, n) \triangleq$ len $s \leq n$ END

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 35

Role of formal Specifications
Role of formal Speciications
$00000000000000000000 \bullet 00000000$

Bounded stack

Role of formal Specifications
Examples
General format for VDM-operations

Roo foopoo peoove0000
Examples

Stack: algebraic specification

Example 2.4. Elements of an algebraic specification: Signature (sorts, operation names with the arity), Axioms (often only equations)

```
SPEC STACK
USING NATURAL,BOOLEAN "Names of known SPECs"
SORT stack "Principal type"
OPS init : }->\mathrm{ stack "Constant of the type stack, empty stack"
    push : stack nat -> stack
    pop : stack -> stack
    top : stack }->\mathrm{ nat
is_empty? : stack }->\mathrm{ bool
stack_error : -> stack
nat_error: }->\mathrm{ nat
```

(Signature fixed)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
 37

Role of formal Specifications

General form VDM-operations

Proof obligations:

For each acceptable input there's (at least) one acceptable output.

$$
\forall s_{i}, i \cdot\left(\operatorname{pre-op}\left(i, s_{i}\right) \Rightarrow \exists s_{o}, o \cdot \operatorname{post-op}\left(i, s_{i}, o, s_{o}\right)\right)
$$

When there are state-invariants at hand:

$$
\forall s_{i}, i \cdot\left(\operatorname{inv}\left(s_{i}\right) \wedge \operatorname{pre-op}\left(i, s_{i}\right) \Rightarrow \exists s_{o}, o \cdot\left(\operatorname{inv}\left(s_{o}\right) \wedge \operatorname{post-op}\left(i, s_{i}, o, s_{o}\right)\right)\right)
$$

alternatively

$$
\forall s_{i}, i, s_{o}, o \cdot\left(\operatorname{inv}\left(s_{i}\right) \wedge \operatorname{pre-op}\left(i, s_{i}\right) \wedge \operatorname{post-op}\left(i, s_{i}, o, s_{o}\right) \Rightarrow \operatorname{inv}\left(s_{o}\right)\right)
$$

See e.g. Turner, McCluskey The Construction of Formal Specifications or Jones C.B. Systematic SW Development using VDM Prentice Hall.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 39

Role of formal Specifications
Role of formal Speciications
$000000000000000000000000 \bullet 0000$

Axioms for Stack

$$
\begin{aligned}
& \text { FORALL } \mathrm{s}: \text { stack } \mathrm{n}: \text { nat } \\
& \text { AXIOMS } \\
& \text { is_empty? (init) = true } \\
& \text { is_empty? (push }(\mathrm{s}, \mathrm{n}) \text {) }=\text { false } \\
& \text { pop (init) }=\text { stack_error } \\
& \text { pop (push }(\mathrm{s}, \mathrm{n}))=\mathrm{s} \\
& \text { top (init) }=\text { nat_error } \\
& \text { top (push }(\mathrm{s}, \mathrm{n}))=\mathrm{n}
\end{aligned}
$$

Terms or expressions:
top (push (push (init, 2), 3)) "means" 3
How is the "bounded stack" specified algebraically?
Semantics? Operationalization?

Role of formal Specifications
00000
Examples
Variant: Z and B- Methods:
Specification-Development-Programs.

- Covering: Technical specification (what), development through refinement, architecture (layers' architecture), generation of executable code.
- Proofs: Program construction \equiv Proof construction. Abstraction, instantiation, decomposition.
- Abstract machines: Encapsulation of information (Modules, Classes, ADT).
- Data and operations: SWS is composed of abstract machines. Abstract machines „get " data and „offer" operations. Data can only be accessed through operations.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
Role of formal Specifications
000000000000000000000000000 •00
Z- and B- Methods: Specification-Development-Programs.

- Data specification: Sets, relations, functions, sequences, trees. Rules (static) with help of invariants.
- Operator specification: not executable „pseudocode". Without loops:
Precondition + atomic action
PL1 generalized substitution
- Refinement (\rightsquigarrow implementation).
- Refinement (as specification technique).
- Refinement techniques:

Elimination of not executable parts, introduction of control structures (cycles).
Transformation of abstract mathematical structures.

Z- and B- Methods: Specification-Development-Programs.

- Refinement steps: Refinement is done in several steps.

Abstract machines are newly constructed. Operations for users remain the same, only internal changes. In-between steps: Mix code.

- Nested architecture:

Rule: not too many refinement steps, better apply decomposition.

- Library: Predefined abstract machines, encapsulation of classical DS.
- Reusability
- Code generation: Last abstract machine can be easily translated into a program in an imperative Language.

```
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 43
    Role of formal Specifications
    00000000000000000000000000000*
```

Z- and B- Methods: Specification-Development-Programs.

Important here:

- Notation: Theory of sets + PL1, standard set operations, Cartesian product, power sets, set restrictions $\{x \mid x \in s \wedge P\}, P$ predicate.
- Schemata (Schemes) in Z Models for declaration and constraint \{state descriptions\}.
- Types.
- Natural Language: Connection Math objects \rightarrow objects of the modeled world.
- See Abrial: The B-Book,

Potter, Sinclair, Till: An Introduction to Formal Specification and Z, Woodcock, Davis: Using Z Specification, Refinement, and Proof \rightsquigarrow Literature

Introduction to ASM: Fundamentals

Adaptable and flexible specification's technique

Modeling in the correct abstraction level

Natural and easy understandable semantics

Material: See http://www.di.unipi.it/AsmBook/

ASM Thesis

ASM Thesis The concept of abstract state machine provides a universal computation model with the ability to simulate arbitrary algorithms on their natural levels of abstraction. Yuri Gurevich

$0 \bullet 000000$
AOCOM MSM- Specification's method 00.000000000

Theoretical fundaments: ASM Theses

Abstract state machines as computation models

Turing Machines (RAM, part.rec. Fct,..) serve as computation model, e.g. fixing the notion of computable functions. In principle is possible to simulate every algorithmic solution with an appropriate TM.

Problem: Simulation is not easy, because there are different abstraction levels of the manipulated objects and different granularity of the steps.

Question: Is it possible to generalize the TM in such a way that every algorithm, independent from it's abstraction level, can be naturally and faithfully simulated with such generalized machine?
How would the states and instructions of such a machine look like?
Easy: If Condition Then Action

- The model of the sequential ASM's is universal for all the sequential algorithms.
- Each sequential algorithm, independent from his abstraction level, can be simulated step by step by a sequential ASM.
To confirm this thesis we need definitions for sequential algorithms and for sequential ASM's.
\rightsquigarrow Postulates for sequentiality

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 48

Sequentiality Postulates

- Sequential time:

Computations are linearly arranged.

- Abstract states:

Each kind of static mathematical reality can be represented by a structure of the first order logic (PL 1). (Tarski)

- Bounded exploration:

Each computation step depends only on a finite (depending only on the algorithm) bounded state information.
Y. Gurevich:: Sequential Abstract State Machines Capture

Sequential Algorithms, ACM Transactions on Computational Logic,
1, 2000, 77-111.
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 49

Astrat State Machines: ASM- Specification's metho
$00000 \bullet 00$
Sequential algorithms
The postulates in detail: Sequential time

Let A be a sequential algorithm. To A belongs:

- A set (Set of states) $S(A)$ of States of A.
- A subset $I(A)$ of $S(A)$ which elements are called initial states of A.
- A mapping $\tau_{A}: S(A) \rightarrow S(A)$, the one-step-function of A.

An run (or a computation) of A is a finite or infinite sequence of states of A

$$
X_{0}, X_{1}, X_{2}, \ldots
$$

in which X_{0} is an initial state and $\tau_{A}\left(X_{i}\right)=X_{i+1}$ holds for each i.

Logical time and not physical time.

Abstract States

Definition 3.1 (Equivalent algorithms). Algorithms A and B are equivalent if $S(A)=S(B), I(A)=I(B)$ and $\tau_{A}=\tau_{B}$.
In particular equivalent algorithms have the same runs.

Let A be a sequential algorithm:

- States of A are first order (PL1) structures.
- All the states of A have the same vocabulary (signature).
- The one-step-function doesn't change the base set (universe) $B(X)$ of a state.
- $S(A)$ and $I(A)$ are closed under isomorphisms and each isomorphism from state X to state Y is also an isomorphism of state $\tau_{A}(X)$ to $\tau_{A}(Y)$.
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 51

Abstract State Machines: ASM- Specification's method
Abstract State Machines: ASM-Specification's method
$0000000 \bullet 000$ Sequential algorithms

Exercises

States: Signatures, interpretations, universe, terms, ground terms, value
Signatures (vocabulary): function- and relation-names, arity ($n \geq 0$)
Assumption: true, false, undef (constants), Boole (monadic) and $=$ are contained in every signature.
The interpretation of true is different from the one for false, undef.
Relations are considered as functions with the value of true, false in the interpretations.
Monadic relations are seen as subsets of the base set of the interpretations
Let $\operatorname{Val}(t, X)$ be the value in state X for a ground term t that is in the vocabulary.
Functions are divided in dynamic and static, according whether they can change or not, when a state transition occurs.
Exercise: Model the states of a TM as an abstract state.
Model the states of the standard Euclidean algorithm.

Bounded exploration

- Unbounded-Parallelism: Consider the following graph-reachability algorithm that iterates the following step. (It is assumed that at the beginning only one node satisfies the unary relation R.)

```
do for all }x,y\mathrm{ with Edge (x,y)}\wedgeR(x)\wedge\negR(y)\quadR(y):= tru
```

In each computation step an unbounded number of local changes is made on a global state.

- Unbounded-Step-Information:

Test for isolated nodes in a graph:

$$
\text { if } \forall x \exists y \operatorname{Edge}(x, y) \text { then Output }:=\text { false else Output }:=\text { true }
$$

In one step only bounded local changes are made, though an unbounded part of the state is considered in one step.
How can these properties be formalized? \leadsto Atomic actions
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 53

Astract State Machines: ASM- Specification's methe
000000000 .000
Sequential algorithms
Update sets
Consider the structure X as memory:
If f is a function name of arity j and \bar{a} a j-tuple of base elements from X, then the pair (f, \bar{a}) is called a location and $\operatorname{Content}_{X}(f, \bar{a})$ is the value of the interpretation of f for \bar{a} in X.

Is (f, \bar{a}) a location of X and b an element of X, then (f, \bar{a}, b) is called an update of X. The update is trivial when $b=\operatorname{Content}_{X}(f, \bar{a})$.

To make (fire) an update, the actual content of the location is replaced by b.

A set of updates of X is consistent when in the set there is no pair of updates with the same location and different values.
A set Δ of updates is executed by making all updates in the set simultaneously (in case the set is consistent, in other case nothing is done).
The result is denoted by $X+\Delta$.

Update sets of algorithms, Reachable elements

Lemma 3.2. If X, Y are structures over the same signature and with the same base set, then there is a unique consistent set Δ of non-trivial updates of X with $Y=X+\Delta$. Let $\Delta \leftrightharpoons Y-X$.
Definition 3.3. Let X be a state of algorithm A. According to the definition, X and $\tau_{A}(X)$ have the same signature and base set. Set:

$$
\Delta(A, X) \leftrightharpoons \tau_{A}(X)-X \quad \text { i.e. } \tau_{A}(X)=X+\Delta(A, X)
$$

How can we bring up the elements of the base set in the description of the algorithm at all? \rightsquigarrow Using the ground terms of the signature.

Definition 3.4 (Reachable element). An element a of a structure X is reachable when $a=\operatorname{Val}(t, X)$ for a ground term t in the vocabulary of X. A location (f, \bar{a}) of X is reachable when each element in the tuple \bar{a} is reachable.
An update (f, \bar{a}, b) of X is reachable when (f, \bar{a}) and b are reachable.
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction $\quad 55$

Abstract State Machines: ASM- Specification's method
00000000000.000

Sequential algorithms

Bounded exploration postulate

Two structures X and Y with the same vocabulary Sig coincide on a set T of Sig- terms, when $\operatorname{Val}(t, X)=\operatorname{Val}(t, Y)$ for all $t \in T$. The vocabulary (signature) of an algorithm is the vocabulary of his states.

Let A be a sequential algorithm.

- There exist a finite set T of terms in the vocabulary of A, so that: $\Delta(A, X)=\Delta(A, Y)$, for all states X, Y of A, that coincide on T.
Intuition: Algorithm A examines only the part of a state that is reachable with the set of terms T. If two states coincide on this term-set, then the update-sets of the algorithm for both states should be the same.

The set T is a bounded-exploration witness for A.

Example

Example 3.5. Consider algorithm A

$$
\text { if } P(f) \text { then } f:=S(f)
$$

States with interpretations with base set \mathbb{N}, P subset of the natural numbers, for S the successor function and f a constant.

Evidently A fulfills the postulates of sequential time and abstract states.
One could believe that
$T_{0}=\{f, P(f), S(f)\}$ is a bounded-exploration witness for A.

```
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
```



```
000000000000000000000000000000000000000000000000000000000000000000000
```

Example: Continued

Let X be the canonical state of A with $f=0$ and $P(0)$ holding.
Set $a \leftrightharpoons \operatorname{Val}($ true,$X)$ and $b \leftrightharpoons \operatorname{Val}(f a l s e, X)$, so that

$$
\operatorname{Val}(P(0), X)=\operatorname{Val}(\text { true }, X)=a .
$$

Let Y be the state that is obtained out of X through reinterpretation of true as b and false as a, i.e. $\operatorname{Val}($ true,$Y)=b$ and $\operatorname{Val}(f a l s e, Y)=a$. The values of f and $P(0)$ are left unchanged:
$\operatorname{Val}(P(0), Y)=a$, thus $P(0)$ is not valid in Y.
Consequently X, Y coincide on T_{0} but $\Delta(A, X) \neq \emptyset=\Delta(A, Y)$.
The set $T=T_{0} \cup\{$ true $\}$ is a bounded-exploration witness for A.

Sequential algorithms

Definition 3.6 (Sequential algorithm). A sequential algorithm is an object A, which fulfills the three postulates.
In particular A has a vocabulary and a bounded-exploration witness T. Without loss of generality (w.l.o.g.) T is subterm-closed and contains true, false, undef. The terms of T are called critical and their
interpretations in a state X are called critical values in X.
Lemma 3.7. If $\left(f, a_{1}, \ldots, a_{j}, a_{0}\right)$ is an update in $\Delta(A, X)$, then all the elements $a_{0}, a_{1}, \ldots, a_{j}$ are critical values in X.

Proof: exercise (Proof by contradiction).
The set of the critical terms does not depend of X, thus there is a fixed upper bound for the size of $\Delta(A, X)$ and A changes in every step a bounded number of locations. Each one of the updates in $\Delta(A, X)$ is an atomic action of A. I.e. $\Delta(A, X)$ is a bounded set of atomic actions of A.

[^0]
Sequential ASM-programs: Update rules

Definition 3.8 (Update rule). An update rule over the signature Sig has the form

$$
f\left(t_{1}, \ldots, t_{j}\right):=t_{0}
$$

in which f is a function and t_{i} are (ground) terms in Sig. To fire the rule in the Sig-structure X, compute the values $a_{i}=\operatorname{Val}\left(t_{i}, X\right)$ and execute update $\left(\left(f, a_{1}, \ldots, a_{j}\right), a_{0}\right)$ over X.
Parallel update rule over Sig: Let R_{i} be update rules over Sig, then par
R_{1}
R_{2}
Notation: Block (when empty skip)
R_{k}
endpar fires through simultaneously firing of R_{i}.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Sequential ASM-programs

Definition 3.9 (Semantics of update rules). If R is an update rule
$f\left(t_{1}, \ldots, t_{j}\right):=t_{0}$ and $a_{i}=\operatorname{Val}\left(t_{i}, X\right)$ then set

$$
\Delta(R, X) \leftrightharpoons\left\{\left(f,\left(a_{1}, \ldots, a_{j}\right), a_{0}\right)\right\}
$$

If R is a par-update rule with components $R_{1}, \ldots R_{k}$ then set

$$
\Delta(R, X) \leftrightharpoons \Delta(R 1, X) \cup \cdots \cup \Delta(R k, X)
$$

Consequence 3.10. There exists in particular for each state X a rule R^{X} that uses only critical terms with $\Delta\left(R^{X}, X\right)=\Delta(A, X)$.
Notice: If X, Y coincide on the critical terms, then $\Delta\left(R^{X}, Y\right)=\Delta(A, Y)$ holds. If X, Y are states and $\Delta\left(R^{X}, Z\right)=\Delta(A, Z)$ for a state Z, that is isomorphic to Y, then also $\Delta\left(R^{X}, Y\right)=\Delta(A, Y)$ holds.
Consider the equivalence relation $E_{X}(t 1, t 2) \leftrightharpoons \operatorname{Val}(t 1, X)=\operatorname{Val}(t 2, X)$ on T.
X, Y are T-similar, when $E_{X}=E_{Y} \rightsquigarrow \Delta\left(R^{X}, Y\right)=\Delta(A, Y)$. Exercise

Sequential ASM-machines

Definition 3.14 (A sequential abstract-state-machine (seq-ASM)). A seq-ASM B over the signature Σ is given through:

- A sequential ASM-programm Π over Σ.
- A set $S(B)$ of interpretations of Σ that is closed under isomorphisms and under the mapping τ_{Π}
- A subset $I(B) \subset S(B)$, that is closed under isomorphisms.

Theorem 3.15. For each sequential algorithm A there is an equivalent sequential ASM.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introductio

Abstract State Machines: ASM- Specification's method
0000000000000000000 00 Sequential algorithms

Example

```
Example 3.16. Maximal interval-sum.[Gries 1990]. Let A be a function
from \(\{0,1, \ldots, n-1\} \rightarrow \mathbb{R}\) and \(i, j, k \in\{0,1, \ldots, n\}\).
For \(i \leq j: S(i, j) \rightleftharpoons \sum_{i \leq k<j} A(k)\). In particular \(S(i, i)=0\).
Problem: Compute \(\quad S \rightleftharpoons \max _{i \leq j} S(i, j)\).
Define \(y(k) \rightleftharpoons \max _{i \leq j \leq k} S(i, j)\). Then \(y(0)=0, y(n)=S\) and
\(y(k+1)=\max \left\{\max _{i \leq j \leq k} S(i, j), \max _{i \leq k+1} S(i, k+1)\right\}=\max \{y(k), x(k+1)\}\)
where \(x(k) \rightleftharpoons \max _{i \leq k} S(i, k)\), thus \(x(0)=0\) and
    \(x(k+1)=\max \left\{\max _{i \leq k} S(i, k+1), S(k+1, k+1)\right\}\)
    \(=\max \left\{\max _{i \leq k}(S(i, k)+A(k)), 0\right\}\)
    \(=\max \left\{\left(\max _{i \leq k} S(i, k)\right)+A(k), 0\right\}\)
    \(=\max \{x(k)+A(k), 0\}\)
\[
\begin{aligned}
x(k+1)= & \max \left\{\max _{i \leq k} S(i, k+1), S(k+1, k+1)\right\} \\
= & \max \left\{\max _{i \leq k}(S(i, k)+A(k)), 0\right\} \\
= & \max \left\{\left(\max _{i \leq k} S(i, k)\right)+A(k), 0\right\} \\
& =\max \{x(k)+A(k), 0\}
\end{aligned}
\]
```

Continuation of the example
Due to $y(k) \geq 0$, we have

$$
y(k+1)=\max \{y(k), x(k+1)\}=\max \{y(k), x(k)+A(k)\}
$$

Assumption: The 0 -ary dynamic functions k, x, y are 0 in the initial state. The required algorithm is then

$$
\begin{aligned}
& \text { if } \quad \begin{aligned}
k \neq n & \text { then } \\
\text { par } & \\
x & :=\max \{x+A(k), 0\} \\
y & :=\max \{y, x+A(k)\} \\
k & :=k+1
\end{aligned} \\
& \text { else } \quad S:=y
\end{aligned}
$$

Exercise 3.17. Simulation

Define an ASM, that implements Markov's Normal-algorithms
e.g. for $a b \rightarrow A, b a \rightarrow B, c \rightarrow C$

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
67
Abstract State Machines: ASM- Specification's method
$00000000000000000000000 \bullet 000$
\qquad

Signatures

Definition. A signature Σ is a finite collection of function names.

- Each function name f has an arity, a non-negative integer.
- Nullary function names are called constants.
- Function names can be static or dynamic.
- Every ASM signature contains the static constants
undef, true, false.

Signatures are also called vocabularies.

Classification of functions

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Abstract State Machines: ASM- Specification's metho

ASM-Specifications

States

Definition. A state \mathfrak{A} for the signature Σ is a non-empty set X, the superuniverse of \mathfrak{A}, together with an interpretation $f^{\mathfrak{A}}$ of each function name f of Σ.

- If f is an n-ary function name of Σ, then $f^{\mathfrak{A}}: X^{n} \rightarrow X$ - If c is a constant of Σ, then $c^{\mathfrak{A}} \in X$.
- The superuniverse X of the state \mathfrak{A} is denoted by $|\mathfrak{A}|$.
- The superuniverse is also called the base set of the state.
- The elements of a state are the elements of the superuniverse

Copyight © 2002 Roberet F. Stäk, Computer Science Department, ETH Zuirich, Switereland

States (continued)

- The interpretations of undef, true, false are pairwise different.
- The constant undef represents an undetermined object.
- The domain of an n-ary function name f in \mathfrak{A} is the set of all n-tuples $\left(a_{1}, \ldots, a_{n}\right) \in|\mathfrak{A}|^{n}$ such that $f^{\mathfrak{A}}\left(a_{1}, \ldots, a_{n}\right) \neq$ unde $f^{\mathfrak{A}}$.
- A relation is a function that has the values true, false or undef.

We write $a \in R$ as an abbreviation for $R(a)=$ true

- The superuniverse can be divided into subuniverses represented by unary relations.

Copyright © 2002 Roberet F S. Stark, Computer Science Department, ETH Zurich, Switerland.

$$
\begin{aligned}
& \text { Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction } \\
& \text { Abstract State Machines: ASM- Specification's method } \\
& 00
\end{aligned}
$$

Locations

Definition. A location of \mathfrak{A} is a pair

$$
\left(f,\left(a_{1}, \ldots, a_{n}\right)\right)
$$

where f is an n-ary function name and a_{1}, \ldots, a_{n} are elements of \mathfrak{A}.

- The value $f^{\mathfrak{A}}\left(a_{1}, \ldots, a_{n}\right)$ is the content of the location in \mathfrak{A}.
-The elements of the location are the elements of the set $\left\{a_{1}, \ldots, a_{n}\right\}$.
- We write $\mathfrak{A}(l)$ for the content of the location l in \mathfrak{A}

Notation. If $l=\left(f,\left(a_{1}, \ldots, a_{n}\right)\right)$ is a location of \mathfrak{A} and α is a function defined on $|\mathfrak{A}|$, then $\alpha(l)=\left(f,\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right)\right)$.

Homomorphisms and isomorphisms

Let \mathfrak{A} and \mathfrak{B} be two states over the same signature.

> Definition. A homomorphism from \mathfrak{A} to \mathfrak{B} is a function α from $|\mathfrak{A}|$ into $|\mathfrak{B}|$ such that $\alpha(\mathfrak{A}(l))=\mathfrak{B}(\alpha(l))$ for each location l of \mathfrak{A}.
of \mathfrak{A} and v is an element of \mathfrak{A}

- The update is trivial, if $v=\mathfrak{A}(l)$.
- An update set is a set of updates.

Definition. An update set U is consistent, if it has no clashing updates, i.e., if for any location l and all elements v, w, if $(l, v) \in U$ and $(l, w) \in U$, then $v=w$.

Coopright © 2002 Robert F. Staik, Computer Science Department, ETH Zuirich, Switeselnand
Copyight © 200 R Robert F. Stäkk, Computer Science Department, ETH Zürich, Swizeeland.

```
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
    Abstract State Machines: ASM- Specification's method
```



```
    ASM-Specifications
```

Firing of updates

Definition. The result of firing a consistent update set U in a
state \mathfrak{A} is a new state $\mathfrak{A}+U$ with the same superuniverse as \mathfrak{A} such that for every location l of \mathfrak{A} :

$$
(\mathfrak{A}+U)(l)= \begin{cases}v, & \text { if }(l, v) \in U ; \\ \mathfrak{A}(l), & \text { if there is no }\end{cases}
$$

is no v with $(l, v) \in U$.
The state $\mathfrak{A}+U$ is called the sequel of \mathfrak{A} with respect to U

Definition. An isomorphism from \mathfrak{A} to \mathfrak{B} is a homomorphism from \mathfrak{A} to \mathfrak{B} which is a ono-to-one function from $|\mathfrak{A}|$ onto $|\mathfrak{B}|$

Lemma (Isomorphism). Let α be an isomorphism from \mathfrak{A} to \mathfrak{B} If U is a consistent update set for \mathfrak{A}, then $\alpha(U)$ is a consistent update set for \mathfrak{B} and α is an isomorphism from $\mathfrak{A}+U$ to $\mathfrak{B}+\alpha(U)$.
/

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Abstract State Machines: ASM- Specification's method
00 ASM-Specifications

Composition of update sets

$$
U \oplus V=V \cup\{(l, v) \in U \mid \text { there is no } w \text { with }(l, w) \in V\}
$$

```
Lemma. Let }U,V,W\mathrm{ be update sets
- (U\oplusV)\oplusW=U\oplus(V\oplusW)
\square If U and V are consistent, then U\oplusV is consistent.
| If U and V are consistent, then }\mathfrak{A}+(U\oplusV)=(\mathfrak{A}+U)+V\mathrm{ .
```

Let \mathfrak{A} be a state.

Definition. A variable assignment for \mathfrak{A} is a finite function ζ
which assigns elements of $|\mathfrak{A}|$ to a finite number of variables.

- We write $\zeta[x \mapsto a]$ for the variable assignment which coincides with ζ except that it assigns the element a to the variable x :

$$
\zeta[x \mapsto a](y)= \begin{cases}a, & \text { if } y=x \\ \zeta(y), & \text { otherwise }\end{cases}
$$

- Variable assignments are also called environments.

Terms

Let Σ be a signature.
Definition. The terms of Σ are syntactic expressions generated
as follows:

- Variables x, y, z, \ldots are terms.
- Constants c of Σ are terms.
- If f is an n-ary function name of $\Sigma, n>0$, and t_{1}, \ldots, t_{n} are
terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
- A term which does not contain variables is called a ground term.
- A term is called static, if it contains static function names only.
- By $t \frac{s}{x}$ we denote the result of replacing the variable x in term t
everywhere by the term s (substitution of s for x in t).

Coprigigt © 2002 Robert F. Starik, Computer Science Department, ETH Zürich, Swizereland

Evaluation of terms (continued)

Lemma (Coincidence). If ζ and η are two variable assignments for t such that $\zeta(x)=\eta(x)$ for all variables x of t, then $\llbracket t \rrbracket_{\zeta}^{\mathfrak{A}}=\llbracket t \rrbracket_{\eta}^{\mathfrak{A}}$.

Lemma (Homomorphism). If α is a homomorphism

 from \mathfrak{A} to \mathfrak{B}, then $\alpha\left([t]_{\zeta}^{\mathfrak{A}}\right)=[t]_{\alpha \circ \zeta}^{\mathfrak{B}}$ for each term t.
Lemma (Substitution). Let $a=[s]_{\zeta}^{\mathcal{Z}}$
 Then $\left.\llbracket t \frac{s}{\bar{x}} \rrbracket_{\zeta}^{\mathfrak{A}}=\llbracket t\right]_{\zeta[x \mapsto a]}^{\mathfrak{A}}$.

Formulas (continued)

symbol	name	meaning
\neg	negation	not
\wedge	conjunction	and
\vee	disjunction	or (inclusive)
\rightarrow	implication	if-then
\forall	universal quantification	for all
\exists	existential quantification	there is

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
81

Abstract State Machines: ASM- Specification's methe
 ASM-Specifications

Formulas

Let Σ be a signature

Definition. The formulas of Σ are generated as follows
\square If s and t are terms of Σ, then $s=t$ is a formula

- If φ is a formula, then $\neg \varphi$ is a formula.
\square If φ and ψ are formulas, then $(\varphi \wedge \psi),(\varphi \vee \psi)$ and $(\varphi \rightarrow \psi)$ are formulas.
- If φ is a formula and x a variable, then $(\forall x \varphi)$ and $(\exists x \varphi)$ are formulas
- A formula $s=t$ is called an equation.
- The expression $s \neq t$ is an abbreviation for $\neg(s=t)$.

Copyright © 2002 Robert F. Stäk, Conputer Science Department, ETH Zürich, Swizeeland

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
83

Abstract State Machines: ASM- Specification's method
000

Formulas (continued

$$
\begin{aligned}
& \varphi \wedge \psi \wedge \chi \quad \text { stands for }((\varphi \wedge \psi) \wedge \chi) \\
& \varphi \vee \psi \vee \chi \quad \text { stands for }((\varphi \vee \psi) \vee \chi) \\
& \varphi \wedge \psi \rightarrow \chi \text { stands for }((\varphi \wedge \psi) \rightarrow \chi), \text { etc. }
\end{aligned}
$$

- The variable x is bound by the quantifier $\forall(\exists)$ in $\forall x \varphi$ ($\exists x \varphi)$
- The scope of x in $\forall x \varphi(\exists x \varphi)$ is the formula φ
- A variable x occurs free in a formula, if it is not in the scope of a quantifier $\forall x$ or $\exists x$.
- By $\varphi \frac{t}{x}$ we denote the result of replacing all free occurrences of the variable x in φ by the term t. (Bound variables are renamed.)

Coyvight © 2002 Robeert F. Staik, Computer Science Department, ETH Zuirioh. Swizereland

Semantics of formulas

Copyigigh © 2002 Robert F. Staik, Computer Science Department, ETH Zuirch. Swizeelina
Definition. A state \mathfrak{A} is a model of φ (written $\mathfrak{A} \models \varphi$), if $\llbracket \varphi \rrbracket_{\zeta}^{\mathfrak{N}}=$ true for all variable assignments ζ for φ.

Abstract State Machines: ASM- Specification's method
Abstract State Machines: ASM- Specification's method $00 \bullet 000000000000000000000000000$
ASM-Specifications

Coincidence, Substitution, Isomorphism

> Lemma (Coincidence). If ζ and η are two variable assignments for φ such that $\zeta(x)=\eta(x)$ for all free variables x of φ, then $\left[\varphi \rrbracket_{\zeta}^{\mathfrak{\lambda}}=\left[\varphi \rrbracket_{\eta}^{\mathfrak{A}}\right.\right.$.

Lemma (Substitution). Let t be a term and $a=\llbracket t]_{\zeta}^{\mathfrak{A}}$.
Then $\left.\llbracket \varphi \frac{t}{x}{ }^{\mathfrak{A}} \mathfrak{\zeta}=\llbracket \varphi\right]_{\zeta[x \mapsto a]}^{\mathfrak{2}}$.

Lemma (Isomorphism). Let α be an isomorphism from \mathfrak{A} to \mathfrak{B}. Then $\left.\llbracket \varphi \rrbracket_{\zeta}^{\mathfrak{A}}=\llbracket \varphi\right]_{\alpha \circ \zeta}^{\mathfrak{B}}$.

Transition rules

Skip Rule:	skip
Meaning: Do nothing	
Update Rule:	$f\left(s_{1}, \ldots, s_{n}\right):=t$
Meaning: Update the value of f at $\left(s_{1}, \ldots, s_{n}\right)$ to t.	
Block Rule:	P par Q
Meaning: P and Q are executed in parallel.	
Conditional Rule:	if φ then P else Q

Meaning: If φ is true, then execute P, otherwise execute Q.
Let Rule:

$$
\text { let } x=t \text { in } P
$$

Transition rules (continued)

Forall Rule: \quad forall x with φ do P
Meaning: Execute P in parallel for each x satisfying φ.

Choose Rule:
choose x with φ do P
Meaning: Choose an x satisfying φ and then execute P.

Sequence Rule: \square
Meaning: P and Q are executed sequentially, first P and then Q

Call Rule:

$$
r\left(t_{1}, \ldots, t_{n}\right)
$$

Meaning: Call transition rule r with parameters t_{1}, \ldots, t_{n}.

[^1]
Example

Example 3.18. Sorting of linear data structures in-place one-swap-a-time.
Let a: Index \rightarrow Value

$$
\text { choose } x, y \in \text { Index }: x<y \wedge a(x)>a(y)
$$

do in - parallel
$a(x):=a(y)$
$a(y):=a(x)$
Two kinds of non-determinisms:
"Don't-care" non-determinism: random choice
choose $x \in\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ with $\varphi(x)$ do $R(x)$
"Don't-know" indeterminism
Extern controlled actions and events (e.g. input actions)

$$
\text { monitored } f: X \rightarrow Y
$$

Rule declarations

$$
\begin{aligned}
& \text { Definition. A rule declaration for a rule } \\
& \text { name } r \text { of arity } n \text { is an expression } \\
& \qquad \quad r\left(x_{1}, \ldots, x_{n}\right)=P \\
& \text { where } \\
& \text { - } P \text { is a transition rule and } \\
& \text { - the free variables of } P \text { are contained in the } \\
& \text { list } x_{1}, \ldots, x_{n} .
\end{aligned}
$$

Remark: Recursive rule declarations are allowed.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
95

Abstrat Stat Master ASM Speriferion

$000 \bullet 00000000000000000$

Abstract State Machines

Definition. An abstract state machine M consists of
-a signature Σ,

- a set of initial states for Σ,
- a set of rule declarations,
- a distinguished rule name of arity zero called the main rule name of the machine.

Semantics of transition rules

The semantics of transition rules is defined in a calculus by rules:
$\frac{\text { Premise }_{1} \cdots \text { Premise }_{n}}{\text { Conclusion } \text { Condition }}$

The predicate

$$
\text { yields }(P, \mathfrak{A}, \zeta, U)
$$

means

$$
\begin{aligned}
& \text { The transition rule } P \text { yields the update set } U \text { in } \\
& \text { state } \mathfrak{A} \text { under the variable assignment } \zeta \text {. } \\
& \hline
\end{aligned}
$$

Semantics of transition rules (continued)

yields $(P, \mathfrak{A}, \zeta[x \mapsto a], U)$	if $a \in \operatorname{range}(x, \varphi, \mathfrak{A}, \zeta)$
$\overline{\text { yields(choose } x \text { with } \varphi \text { do } P, \mathfrak{A}, \zeta, \emptyset)}$	if $\operatorname{range}(x, \varphi, \mathfrak{A}, \zeta)=\emptyset$
$\frac{\text { yields }(P, \mathfrak{A}, \zeta, U) \quad \text { yields }(Q, \mathfrak{A}+U, \zeta, V)}{\text { yields }(P \text { seq } Q, \mathfrak{A}, \zeta, U \oplus V)}$	if U is consistent
$\frac{\text { yields }(P, \mathfrak{A}, \zeta, U)}{\text { yields }(P \mathbf{s e q} Q, \mathfrak{A}, \zeta, U)}$	if U is inconsistent
$\frac{\text { yields }\left(P \frac{t_{1}, t_{n}}{1, x_{n}}, \mathcal{A}_{,}, U\right)}{\text { yields }\left(r\left(t_{1}, \ldots, t_{n}\right), \mathfrak{A}, \zeta, U\right)}$	where $r\left(x_{1}, \ldots, x_{n}\right)=P$ is a rule declaration of M

$$
\overline{\operatorname{range}(x, \varphi, \mathfrak{A}, \zeta)=\left\{a \in|\mathfrak{A}|:[\varphi\}_{(\mid x \mapsto a]}^{\mathfrak{A}}=\operatorname{true}\right\}}
$$

Copyight © 2002 Robert F. Stäk, Computer Science Department, ETH Zürch, Swizereland

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Abstract State Machines: ASM- Specification's methe
00
ASM-Specifications

Semantics of transition rules (continued)

$\overline{\text { yeilds }(\mathbf{s k i p}, \mathfrak{A}, \zeta, \emptyset)}$	
$\overline{\text { yields }\left(f\left(s_{1}, \ldots, s_{n}\right):=t, \mathfrak{A}, \zeta,\{(l, v)\}\right)}$	$\begin{aligned} & \text { where } l=\left(f,\left(\left[s_{1}\right]_{\zeta}^{\mathfrak{1}}, \ldots,\left[s_{n}\right]_{\zeta}^{1}\right)\right) \\ & \text { and } v=[t]_{\zeta}^{2} \end{aligned}$
yields $(P, \mathfrak{A}, \zeta, U)$ yields $(Q, \mathfrak{A}, \zeta, V)$	
yields(P par $Q, \mathfrak{A}, \zeta, U \cup V)$	
yields $(P, \mathfrak{A}, \zeta, U)$	if $[\varphi]_{\zeta}^{\underline{1}}=$ true
yields(if φ then P else $Q, \mathfrak{A}, \zeta, U)$	
yields $(Q, \mathfrak{A}, \zeta, V)$	if $[\varphi]_{\zeta}^{\text {a }}=$ false
yields(if φ then P else $Q, \mathfrak{A}, \zeta, V)$	
yields ($P, \mathfrak{A}, \zeta[x \mapsto a], U)$	where $a=[t]_{\zeta}^{\text {a }}$
yields(let $x=t$ in $P, \mathfrak{A}, \zeta, U)$	
yields $\left(P, \mathfrak{A}, \zeta[x \mapsto a], U_{a}\right) \quad$ for each $a \in I$	where $I=\operatorname{range}(x, \varphi, \mathfrak{A}, \zeta)$
yields(forall x with φ do $\left.P, \mathfrak{A}, \zeta, \bigcup_{a \in I} U_{a}\right)$	

Copyright © 2002 Robet F. Staik, Computer Science Department, ETH Zuirich, Swizeeland

Example

Example 3.19. Minimal spanning tree:: Prim's algorithm
Two separated phases: initial, run
Signature: Weighted graph (connected, without loops) given by sets NODE, EDGE, ... functions
weight : $E D G E \rightarrow$ REAL, frontier $: E D G E \rightarrow$ Bool, tree $: E D G E \rightarrow$ Bool
if mode $=$ initial then
choose $p: N O D E$
Selected $(p):=$ true
forall $e: E D G E: p \in$ endpoints (e)
frontier $(e):=$ true
mode $:=$ run

Abstract State Machines: ASM- Specification's method
$000 \cdot 000000000$
Example: Prim's algorithm (Cont.)

```
if mode= run then
    choose e:EDGE: frontier (e)^
        ((\forallf\inEDGE) : frontier (f) => weight (f) \geq weight(e))
        tree(e):= true
        choose p: NODE:p\inendpoints(e)\wedge\negSelected (p)
            Selected (p):= true
            forall f:EDGE:p\in endpoints(f)
            frontier(f):= \negfrontier(f)
    ifnone mode:= done
```

How can we prove the correctness, termination?
Exercise 3.20. Construct an ASM-Machine that implements Kruskal's algorithm.

Importing new elements from the reserve

Import rule \square
Meaning: Choose an element x from the reserve, delete it from the reserve and execute P

$$
\begin{array}{|l|l|}
\hline \text { let } x=\operatorname{new}(X) \text { in } P \\
\hline
\end{array} \text { abbreviates } \begin{array}{|l}
\text { import } x \text { do } \\
X(x):=\text { true } \\
P
\end{array}
$$

The reserve of a state

New dynamic relation Reserve.

- Reserve is updated by the system, not by rules.
- $\operatorname{Res}(\mathfrak{A})=\left\{a \in|\mathfrak{A}|: \operatorname{Reserve}^{\mathfrak{A}}(a)=\right.$ true $\}$
- The reserve elements of a state are not allowed to be in the domain and range of any basic function of the state

Definition. A state \mathfrak{A} satisfies the reserve condition with respect to an environment ζ, if the following two conditions hold for each element $a \in \operatorname{Res}(\mathfrak{A}) \backslash \operatorname{ran}(\zeta)$:

- The element a is not the content of a location of \mathfrak{A}
- If a is an element of a location l of \mathfrak{A} which is not a location for Reserve, then the content of l in \mathfrak{A} is undef.
\qquad

```
Abstract State Machines: ASM- Specification's method
```

$00 \bullet 00000$
ASM-Specifications

Semantics of ASMs with a reserve

yields $(P, \mathfrak{A}, \zeta[x \mapsto a], U)$	if $a \in \operatorname{Res}(\mathfrak{R}) \backslash \operatorname{ran}(\zeta)$ and
yields(import x do $P, \mathfrak{A}, \zeta, V)$	$V=U \cup\{($ Reserve, $a)$, fals $)\}$
$\underline{\text { yields }(P, \mathfrak{A}, \zeta, U) \quad \text { yields }(Q, \mathfrak{A}, \zeta, V)}$	if $\operatorname{Res}(\mathfrak{A l}) \cap E l(U) \cap E l(V) \subseteq \operatorname{ran}(\zeta)$
yields $\left(P, \mathfrak{A}, \zeta[x \mapsto a], U_{a}\right)$ for each $a \in I$	if $I=\operatorname{range}(x, \varphi, \mathfrak{A}, \zeta)$ and for $a \neq b$
yields(forall x with φ do $\left.P, \mathfrak{A}, \zeta, \bigcup U_{a}\right)$	$\operatorname{Res}(\mathfrak{A}) \cap E l\left(U_{a}\right) \cap E l\left(U_{b}\right) \subseteq \operatorname{ran}(\zeta)$

. $E l(U)$ is the set of elements that occur in the updates of U
The elements of an update (l, v) are the value v and the elements of the location l

Problem

Problem 1: New elements that are imported in parallel must be different.
import x do $\operatorname{parent}(x)=$ root
import y do parent $(y)=$ root
Problem 2: Hiding of bound variables

import x do

$f(x):=0$
let $x=1$ in
import y do $f(y):=x$
Syntactic constraint. In the scope of a bound variable the same variable should not be used again as a bound variable (let, forall, choose, import)
Copyright © 2002 Robert F. Staik, Computer Science Deparatment, ETH Zuirch, Swizereland.

Independence of the choice of reserve elements

Lemma (Preservation of the reserve condition).

If a state \mathfrak{A} satisfies the reserve condition wrt. ζ and P yields a
consistent update set U in \mathfrak{A} under ζ, then
the sequel $\mathfrak{A}+U$ satisfies the reserve condition wrt. ζ

- $\operatorname{Res}(\mathfrak{A}+U) \backslash \operatorname{ran}(\zeta)$ is contained in $\operatorname{Res}(\mathfrak{A}) \backslash E l(U)$.

Lemma (Independence)

```
Let \(P\) be a rule of an ASM without choose. If
\(-\mathfrak{A}\) satisfies the reserve condition wrt. \(\zeta\),
- the bound variables of \(P\) are not in the domain of \(\zeta\),
- \(P\) yields \(U\) in \(\mathfrak{A}\) under \(\zeta\),
- \(P\) yields \(U^{\prime}\) in \(\mathfrak{A}\) under \(\zeta\),
then there exists a permutation \(\alpha\) of \(\operatorname{Res}(\mathfrak{A}) \backslash \operatorname{ran}(\zeta)\) such that
\(\alpha(U)=U^{\prime}\).
```

Properties of binary relations

- X set
- $\rho \subseteq X \times X$ binary relation
- Properties

(P1)	$x \rho x$	(reflexive)
(P2)	$(x \rho y \wedge y \rho x) \rightarrow x=y$	(antisymmetric)
(P3)	$(x \rho y \wedge y \rho z) \rightarrow x \rho z$	(transitive)
(P4)	$(x \rho y \vee y \rho x)$	(linear)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction	113
Distributed ASM: Concurrency, reactivity, time 000	Refinement

Distributed ASM: Concurrency, reactivity, time

Distributed ASM (DASM)

- Computation model:
- Asynchronous computations
- Autonomous operating agents
- A finite set of autonomous ASM-agents, each with a program of his own.
- Agents interact through reading and writing common locations of global machine states.
- Potential conflicts are solved through the underlying semantic model, according to the definition of (partial-ordered) runs.
- $\lesssim \subseteq \times X$ Quasi-order iff \lesssim reflexive and transitive
-Kernel:

$$
\approx=\lesssim \cap \lesssim^{-1}
$$

- Strict part: $<=\lesssim \backslash$
- $Y \subseteq X$ left-closed (in respect of \lesssim) iff

$$
(\forall y \in Y:(\forall x \in X: x \lesssim y \rightarrow x \in Y))
$$

- Notation: Quasi-order (X, \lesssim)

Partial-Orders

- $\leq \subseteq X \times X$ partial-order iff \leq reflexive, antisymmetric and transitive
- Kernel: Following holds

$$
\mathrm{id}_{X}=\leq \cap \leq^{-1}
$$

- Strict part: $<=\leq$ id $_{X}$
- Often: < Partial-order iff < irreflexive, transitive.
- Notation: Partial-order (X, \leq)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction	117
Distributed ASM: Concurrency, reactivity, time $0000 \bullet 000000000000000000000000000000000000000$	Refinement -

Well-founded Orderings

Supremum

- Let (X, \leq) be a partial-order and $Y \subseteq X$
- $S \subseteq X$ is a chain iff elements of S are linearly ordered through \leq.
- y is an upper bound of Y iff

$$
\forall y^{\prime} \in Y: y^{\prime} \leq y
$$

- Supremum: y is a supremum of Y iff y is an upper bound of Y and

$$
\forall y^{\prime} \in X:\left(\left(y^{\prime} \text { upper bound of } Y\right) \rightarrow y \leq y^{\prime}\right)
$$

- Analog: lower bound, Infimum $\inf (Y)$

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction	119
Distributed ASM: Concurrency, reactivity, time 000	Refinement 0
Fundamentals: Orders, CPO's, proof techniques	

- Partial-order $\leq \subseteq X \times X$ well-founded iff

$$
(\forall Y \subseteq X: Y \neq \emptyset \rightarrow(\exists y \in Y: y \text { minimal in } Y \text { in respect of } \leq))
$$

- Quasi-order \lesssim well-founded iff strict part of \lesssim is well-founded
- Initial segment: $Y \subseteq X$, left-closed
- Initial section of $x: \sec (x)=\{y: y<x\}$
- A Partial-order (D, \sqsubseteq) is a complete partial ordering (CPO) iff
- \exists the smallest element \perp of D (with respect of \sqsubseteq)
- Each chain S has a supremum $\sup (S)$

Example

Example 4.1. $(\mathcal{P}(X), \subseteq)$ is $C P O$

- (D, \sqsubseteq) is CPO with
- $D=X \nrightarrow Y$: set of all the partial functions f with $\operatorname{dom}(f) \subseteq X$ and $\operatorname{cod}(f) \subseteq Y$.
Let $f, g \in X \nrightarrow Y$

$$
f \sqsubseteq g \text { iff } \operatorname{dom}(f) \subseteq \operatorname{dom}(g) \wedge(\forall x \in \operatorname{dom}(f): f(x)=g(x))
$$

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction	121
Distributed ASM: Concurrency, reactivity, time 000	Refinement

Monotonous, continuous

- $(D, \sqsubseteq),\left(E, \sqsubseteq^{\prime}\right) \mathrm{CPOs}$
- $f: D \rightarrow E$ monotonous iff

$$
\left(\forall d, d^{\prime} \in D: d \sqsubseteq d^{\prime} \rightarrow f(d) \sqsubseteq^{\prime} f\left(d^{\prime}\right)\right)
$$

- $f: D \rightarrow E$ continuous iff f monotonous and

$$
(\forall S \subseteq D: S \text { chain } \rightarrow f(\sup (S))=\sup (f(S)))
$$

- $X \subseteq D$ is admissible iff

$$
(\forall S \subseteq X: S \text { chain } \rightarrow \sup (S) \in X)
$$

Fixpoint

- $(D, \sqsubseteq) \mathrm{CPO}, f: D \rightarrow D$
$d \in D$ fixpoint of f iff

$$
f(d)=d
$$

- $d \in D$ smallest fixpoint of f iff d fixpoint of f and

$$
\left(\forall d^{\prime} \in D: d^{\prime} \text { fixpoint } \rightarrow d \sqsubseteq d^{\prime}\right)
$$

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction	123
Distributed ASM: Concurrency, reactivity, time $0000000000 \bullet 000000000000000000000000000000000$	Refinement
Fundamentals: Orders, CPO's, proof techniques	

Fixpoint-Theorem

Theorem 4.2 (Fixpoint-Theorem:). (D, \sqsubseteq) CPO, $f: D \rightarrow D$ continuous, then f has a smallest fixpoint μf and

$$
\mu f=\sup \left\{f^{i}(\perp): i \in \mathbb{N}\right\}
$$

Proof: (Sketch)

- $\sup \left\{f^{i}(\perp): i \in \mathbb{N}\right\}$ fixpoint:
$f\left(\sup \left\{f^{i}(\perp): i \in \mathbb{N}\right\}\right)=\sup \left\{f^{i+1}(\perp): i \in \mathbb{N}\right\}$
(continuous)
$=\sup \left\{\sup \left\{f^{i+1}(\perp): i \in \mathbb{N}\right\}, \perp\right\}$
$=\sup \left\{f^{i}(\perp): i \in \mathbb{N}\right\}$

Fixpoint-Theorem (Cont.)

Fixpoint-Theorem: $(D, \sqsubseteq) \mathrm{CPO}, f: D \rightarrow D$ continuous, then f has a smallest fixpoint μf and

$$
\mu f=\sup \left\{f^{i}(\perp): i \in \mathbb{N}\right\}
$$

Proof: (Continuation)

- $\sup \left\{f^{i}(\perp): i \in \mathbb{N}\right\}$ smallest fixpoint:

1. d^{\prime} fixpoint of f
2. $\perp \sqsubseteq d^{\prime}$
3. f monotonous, d^{\prime} FP: $f(\perp) \sqsubseteq f\left(d^{\prime}\right)=d^{\prime}$
4. Induction: $\forall i \in \mathbb{N}: f^{i}(\perp) \sqsubseteq f^{i}\left(d^{\prime}\right)=d^{\prime}$
5. $\sup \left\{f^{i}(\perp): i \in \mathbb{N}\right\} \sqsubseteq d^{\prime}$

Induction's principle:

$$
(\forall X \subseteq \mathbb{N}:(\forall x \in \mathbb{N}: \sec (x) \subseteq X \rightarrow x \in X) \rightarrow X=\mathbb{N})
$$

Correctness:

1. Let's assume no, so $\exists X \subseteq \mathbb{N}: \mathbb{N} \backslash X \neq \emptyset$
2. Let y be minimum in $\mathbb{N} \backslash X$ (with respect to $<$).
3. $\sec (y) \subseteq X, y \notin X$
4. Contradiction

Well-founded induction

Induction's principle: Let (Z, \leq) be a well-founded partial order.

$$
(\forall X \subseteq Z:(\forall x \in Z: \sec (x) \subseteq X \rightarrow x \in X) \rightarrow X=Z)
$$

Correctness:

1. Let's assume no, so $Z \backslash X \neq \emptyset$
2. Let z be minimum in $Z \backslash X$ (in respect of \leq).
3. $\sec (z) \subseteq X, z \notin X$
4. Contradiction

FP-Induction: Proving properties of fixpoints

Induction's principle: Let $(D, \sqsubseteq) \mathrm{CPO}, f: D \rightarrow D$ continuous.

$$
(\forall X \subseteq D \text { admissible }:(\perp \in X \wedge(\forall y: y \in X \rightarrow f(y) \in X)) \rightarrow \mu f \in X)
$$

Correctness: Let $X \subseteq D$ admissible.

$$
\begin{array}{rlr}
\mu f \in X & \Leftrightarrow \sup \left\{f^{i}(\perp): i \in \mathbb{N}\right\} \in X & \text { (FP-theorem) } \\
& \Leftarrow \forall i \in \mathbb{N}: f^{i}(\perp) \in X & (X \text { admissible) } \\
& \Leftarrow \perp \in X \wedge\left(\forall n \in \mathbb{N}: f^{n}(\perp) \in X \rightarrow f\left(f^{n}(\perp)\right) \in X\right) \\
& \Leftarrow \perp \in X \wedge(\forall y \in X \rightarrow f(y) \in X) & \text { (Induction } \mathbb{N}) \\
& \text { (Ass.) }
\end{array}
$$

Exercise 4.3. Let $(D, \sqsubseteq) C P O$ with

- $X=Y=\mathbb{N}$
- $D=X \leadsto Y$: set all partial functions f with $\operatorname{dom}(f) \subseteq X$ and $\operatorname{cod}(f) \subseteq Y$.
- Let $f, g \in X \leadsto Y$.

$$
f \sqsubseteq g \text { iff } \operatorname{dom}(f) \subseteq \operatorname{dom}(g) \wedge(\forall x \in \operatorname{dom}(f): f(x)=g(x))
$$

Consider

$$
\begin{aligned}
& F: \quad D \quad \rightarrow \quad \mathcal{P}(\mathbb{N} \times \mathbb{N}) \\
& g \mapsto \begin{cases}\{(0,1)\} & g=\emptyset \\
\{(x, x \cdot g(x-1)): x-1 \in \operatorname{dom}(g)\} \cup\{(0,1)\} & \text { otherwise }\end{cases}
\end{aligned}
$$

Problem

Prove:

1. $\forall g \in D: F(g) \in D$, i.e. $F: D \rightarrow D$
2. $F: D \rightarrow D$ continuous
3. $\forall n \in \mathbb{N}: \mu F(n)=n$!

Note:

- μF can be understood as the semantics of a function's definition

$$
\begin{aligned}
& \text { function } \operatorname{Fac}\left(n: \mathbb{N}_{\perp}\right): \mathbb{N}_{\perp}={ }_{\text {def }} \\
& \quad \text { if } n=0 \text { then } 1 \\
& \text { else } n \cdot \operatorname{Fac}(n-1)
\end{aligned}
$$

- Keyword: 'derived functions' in ASM

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction	131
Distributed ASM: Concurrency, reactivity, time $000000000000000000 \cdot 0000000000000000000000000$	Refinement
Induction	

Exercise 4.4. Prove: Let $G=(V, E)$ be an infinite directed graph with

- G has finitely many roots (nodes without incoming edges).
- Each node has finite out-degree.
- Each node is reachable from a root.

There exists an infinite path that begins on a root.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 132

Distributed ASM

Definition 4.5. A DASM A over a signature (vocabulary) Σ is given through:

- A distributed programm Π_{A} over Σ.
- A non-empty set I_{A} of initial states

An initial state defines a possible interpretation of Σ over a potential infinite base set X.
A contains in the signature a dynamic relation's symbol AGENT, that is interpreted as a finite set of autonomous operating agents.

- The behaviour of an agent a in state S of A is defined through program $_{S}(a)$.
- An agent can be ended through the definition of $\operatorname{program}_{S}(a):=$ undef (representation of an invalid programm).

Distributed ASM: Concurrency, reactivity, time
$0000000000000000000 \bullet 00000000000000000000000$ \qquad

Partially ordered runs

A run of a distributed ASM \boldsymbol{A} is given through a triple $\varrho \rightleftharpoons(M, \lambda, \sigma)$ with the following properties:

1. M is a partial ordered set of "moves", in which each move has only a finite number of predecessors.
2. λ is a function on M, that assigns an agent to each move, so that the moves of a particular agent are always linearly ordered.
3. σ asociates a state of A with each finite initial segment Y of M. Intended meaning:: $\sigma(Y)$ is the "result of the execution of all moves in $Y^{\prime \prime} . \sigma(Y)$ is an initial state when Y is empty.
4. The coherence condition is satisfied:

If max is a set of maximal elements in a finite initial segment X of M and $Y=X \backslash \max$, then for $x \in \max :: \lambda(x)$ is an agent in $\sigma(Y)$ and we get $\sigma(X)$ from $\sigma(Y)$ by firing $\{\lambda(x): x \in \max \}$ (their programs) in $\sigma(Y)$.

Comment, example

The agents of A modell the concurrent control-threads in the execution of Π_{A}.
A run can be seen as the common part of the history of the same computation from the point of view of multiple observers.

The role of λ :

Distributed ASM: Concurrency, reactivity, time
$0000000000000000000000 \bullet 000000000000000000000$

Comment, example (cont.)

The role of σ : Snap-shots of the computation are the initial segments of the partial ordered set M. To each initial segment a state of A is assigned (interpretation of Σ), that reflects the execution of the programs of the agents that appear in the segment.
\rightsquigarrow "Result of the execution of all the moves" in the segment.

Coherence condition, example

If max is a set of maximal elements in a finite initial segment X of M and $Y=X \backslash \max$, then for $x \in \max :: \lambda(x)$ is an agent in $\sigma(Y)$ and we get $\sigma(X)$ from $\sigma(Y)$ by firing $\{\lambda(x): x \in \max \}$ (their programs) in $\sigma(Y)$.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction hack

Distributed ASM: Concurrency, reactivity, tim
DASM
Consequences of the coherence condition

Lemma 4.6. All the linearizations of an initial segment (i.e. respecting the partial ordering) of a run ϱ lead to the same "final" state.

Lemma 4.7. A property P is valid in all the reachable states of a run ϱ, iff it is valid in each of the reachable states of the linearizations of ϱ.

Variants of simple example

The program consists of two agents, a door-Manager d and a window-manager w with the following programs:
program $_{d}=i f \neg$ window then door $:=$ true // move x
program $_{w}=$ if \neg door then window $:=$ true // move y
In the initial state S_{0} let the door and window be closed, let d and w be in the agent set. How do the runs look like? Same ϱ 's as before.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
Distributed ASM: Concurrency, reactivity, time
0000000000000000000000000000.000000000000000

More variations

Exercise 4.9. Consider the following pair of agents
$x, y \in \mathbb{N} \quad(x=2, y=1$ in the initial state $)$

1. $a=x:=x+1$ and $b=x:=x+1$
2. $a=x:=x+1$ and $b=x:=x-1$
3. $a=x:=y$ and $b=y:=x$

Which runs are possible with partial-ordered sets containing two elements?

Try to characterize all the runs.
dinbuted ASM: Concurrency, reactivity, time
$0000000000000000000000000000 \bullet 00000000000000$
More variations

Consider the following agents with the conventional interpretation:

1. Program ${ }_{d}=$ if \neg window then door $:=$ true $/ /$ move \times
2. $\operatorname{Program}_{w}=$ if \neg door then window $:=$ true $/ /$ move y
3. Program $_{l}=$ if \neg light $\wedge(\neg$ door $\vee \neg$ window) then $/ /$ move z
light := true
door := false
window := false

Which end states are possible, when in the initial state the three constants are false?

Further exercises

Consumer-producer problem: Assume a single producer agent and two or more consumer agents operating concurrently on a global shared structure. This data structure is linearly organized and the producer adds items at the one end side while the consumers can remove items at the opposite end of the data structure. For manipulating the data structure, assume operations insert and remove as introduced below.

```
insert: Item }\times ItemList -> ItemLis
remove: ItemList }->\mathrm{ (Item }\times\mathrm{ ItemList)
```

(1) Which kind of potential conflicts do you see?
(2) How does the semantic model of partially ordered runs resolve such conflicts?

Environment

Reactive systems are characterized by their interaction with the environment. This can be modeled with the help of an environment-agent. The runs can then contain this agent (with λ), λ must define in this case the update-set of the environment in the corresponding move.
The coherence condition must also be valid for such runs.
For externally controlled functions this surely doesn't lead to inconsistencies in the update-set, the behaviour of the internal agents can of course be influenced. Inconsistent update-sets can arise in shared functions when there's a simultaneous execution of moves by an internal agent and the environment agent.

Often certain assumptions or restrictions (suppositions) concerning the environment are done.
In this aspect there are a lot of possibilities: the environment will be only observed or the environment meets stipulated integrity conditions.

ATM (Automatic Teller Machine)

Exercise 4.10. Abstract modeling of a cash terminal:
Three agents are in the model: ct-manager, authentication-manager account-manager. To withdraw an amount from an account, the following logical operations must be executed:

1. Input the card (number) and the PIN.
2. Check the validity of the card and the PIN (AU-manager).
3. Input the amount.
4. Check if the amount can be withdrawn from the account (ACC-manager).
5. If OK, update the account's stand and give out the amount.
6. If it is not OK, show the corresponding message.

Implement an asynchronous communication model in which timeouts can cancel transactions .

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 145

Distributed ASM: Concurrency, reactivity, time
Refinement
0000000000000000000000000000000.00000000000

Time
The description of real-time behaviour must consider explicitly time aspects. This can be done successfully with help of timers (see SDL), global system time or local system time.

- The reactions can be instantaneous (the firing of the rules by the agents don't need time)
- Actions need time

Concerning the global time consideration, we assume, that there is on hand a linear ordered domain TIME, for instance with the following declarations:
domain $($ TIME,$\leq),($ TIME,$\leq) \subset(\mathbb{R}, \leq)$
In these cases the time will be measured with a discrete system watch: e.g.
monitored now : \rightarrow TIME
Prof. Dr. K. Madener: Formal Specification and Verification Techniques: Introduction 147
istributed ASM: Concurrency, reactivity, time \qquad
Distributed Termination Detection

Example 4.11. Implement the following termination detection protocol:

Edsger W. Dijkstra, W. H. J. Feijen, and A.J.M. van Gasteren. Derivation of a Termination Detection Algorithm for Distributed Computations. IPL 16 (1983).
\qquad

Assumptions for distributed termination detection

Rules for a probe
Rule 0 When active, Machine ${ }_{i+1}$ keeps the token; when passive, it hands over the token to Machine ${ }_{i}$.

Rule 1 A machine sending a message makes itself red.
Rule 2 When Machine $_{i+1}$ propagates the probe, it hands over a red token to Machine ${ }_{\text {i }}$ when it is red itself, whereas while being white it leaves the color of the token unchanged.
Rule 3 After the completion of an unsuccessful probe, Machine ${ }_{0}$ initiates a next probe.
Rule 4 Machine 0 initiates a probe by making itself white and sending to Machine $_{n-1}$ a white token.
Rule 5 Upon transmission of the token to Machine ${ }_{i}$, Machine ${ }_{i+1}$ becomes white. (Notice that the original color of Machine ${ }_{i+1}$ may have affected the color of the token).
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction ©a, 149

Distributed ASM: Concurrency, reactivity, time
000

Distributed Termination Detection: Procedure

Signature:

static

COLOR $=\{$ red, white $\} \quad$ TOKEN $=\{$ redToken, whiteToken $\}$
MACHINE $=\{0,1,2, \ldots, n-1\}$
next : MACHINE \rightarrow MACHINE
e.g. with $\operatorname{next}(0)=n-1, \operatorname{next}(n-1)=n-2, \ldots, \operatorname{next}(1)=0$

controlled

color : MACHINE \rightarrow COLOR token : MACHINE \rightarrow TOKEN
RedTokenEvent, WhiteTokenEvent : MACHINE \rightarrow BOOL
monitored Active : MACHINE \rightarrow BOOL
SendMessageEvent : MACHINE $\rightarrow B O O L$

Distributed Termination Detection: Procedure

Macros: (Rule definitions)

- ReactOnEvents(m : MACHINE) $=$
if RedTokenEvent (m) then token $(m):=$ redToken RedTokenEvent $(m):=$ undef
if WhiteTokenEvent(m) then token $(m):=$ whiteToken WhiteTokenEvent $(m):=$ undef
if SendMessageEvent (m) then $\operatorname{color}(m):=$ red Rule 1
- Forward $(m:$ MACHINE, $t:$ TOKEN $)=$
if $t=$ whiteToken then WhiteTokenEvent(next(m)) := true
else
RedTokenEvent(next $(m)):=$ true

Distributed Termination Detection: Procedure
Programs

- RegularMachineProgram =

ReactOnEvents(me)
if $\neg \operatorname{Active}(m e) \wedge$ token $(m e) \neq$ undef then Rule 0
InitializeMachine(me) Rule 5
if $\operatorname{color}(m e)=$ red then
Forward(me, redToken) Rule 2 else

Forward(me,token(me)) Rule 2

- With InitializeMachine (m : MACHINE) $=$

$$
\begin{aligned}
& \text { token }(m):=\text { undef } \\
& \operatorname{color}(m):=\text { white }
\end{aligned}
$$

Distributed Termination Detection: Procedure

Programs

- SupervisorMachineProgram =

```
ReactOnEvents(me)
if }\neg\operatorname{Active(me)}\wedge token(me)\not= undef the
```

if $\operatorname{color}(m e)=$ white \wedge token $(m e)=$ whiteToken then
ReportGlobalTermination
else Rule 3
InitializeMachine(me) Rule 4
Forward(me, whiteToken) Rule 4

Distributed ASM: Goesurey reactivity, time
00.000

Distributed Termination Detection

Initial states
$\exists m_{0} \in$ MACHINE
(program $\left(m_{0}\right)=$ SupervisorMachineProgram \wedge
token $\left(m_{0}\right)=$ redToken \wedge
$(\forall m \in \operatorname{MACHINE})\left(m \neq m_{0} \Rightarrow\right.$

$$
(\operatorname{program}(m)=\text { RegularMachineProgram } \wedge \text { token }(m)=\text { undef })))
$$

Environment constraints For all the executions and all linearizations holds:

G ($\forall m \in$ MACHINE)
(SendMessageEvent $(m)=\operatorname{true} \Rightarrow(\mathbf{P}(\operatorname{Active}(m)) \wedge \operatorname{Active}(m))$
$\wedge((\operatorname{Active}(m)=$ true $\wedge \mathbf{P}(\neg$ Active $(m)) \Rightarrow$
$\left(\exists m^{\prime} \in \operatorname{MACHINE}\right) \quad\left(m^{\prime} \neq m \wedge\right.$ SendMessageEvent $\left.\left.\left.\left(m^{\prime}\right)\right)\right)\right)$

Distributed Termination Detection

Correctness of the abstract version: Dijkstra
Suppositions: The machines constitute a closed system, i.e. messages can only be dispatched among each other (no outside messages). The system in the initial state can have any color and several machines can be active. The token is located in the 0 'th. machine. The given rules describe the transfer of the token and the coloration of the machines upon certain activities.
The task is to determine a state in which all the machines are passive (not active). This is a stable state of the system, because only active machines can dispatch messages and passive machines can only become active by receiving a message.
The invariant: Let t be the position on which the token is, then following invariant holds
$\left(\forall i: t<i<n\right.$ Machine $_{i}$ is passive $) \vee\left(\exists j: 0 \leq j \leq t\right.$ Machine $_{j}$ is red $) \vee$ (Token is red)

Distributed Termination Detection


```
(Token is red)
```

Correctness argument
When the token reaches Machine $_{o}, t=0$ and the invariant holds. If
$\left(\right.$ Machine $_{o}$ is passive $) \wedge\left(\right.$ Machine $_{o}$ is white $) \wedge($ Token is white $)$
then
($\forall i: 0<i<n \quad$ Machine $_{i}$ is passive) must hold, i.e. termination.
Proof of the invariant Induction over t
The case $\mathrm{t}=\mathrm{n}-1$ is easy.
Assume the invariant is valid for $0<t<n$, prove it is valid for $t-1$.

Nextconstraints

Distributed Termination Detection

Is the invariant valid in all the states of all the linearizations of the runs of the DASM ? No

- Problem 1 The red coloration of an active machine (that forwards a message) occurs in a later state. It should occur in the same state in which the message-receiving machine turns active. (Instantaneous message passing)
Solution color is a shared function. Instead of using SendMessageEvent (m) to set the color, it will be set by the environment: $\operatorname{color}(m)=$ red.
- Problem 2 There are states in which none of the machines has the token:: The machine that has the token, initializes itself and sets an event, that leads to a state in which none of the machines has the token.
Solution Instead of using FarbTokenEvent to reset, it is directly properly set: token $(\operatorname{next}(m))$.
- Result More abstract machine. The environment controls the activity of the machines, message passing and coloration.

Algebraic Specitication - Equational Calculus
-00

Algebraic Specification - Equational Logic

Specification techniques' requirements:

- Abstraction (refinement)
- Structuring mechanisms Partition-aggregation, combination, extension-instantiation
- Clear (explicit and plausible) semantics
- Support of the „verify while develop"-principle
- Expressiveness (all the partial recursive functions representable)
- Readability (adequacy) (suitability)
Prof. Dr. K. Madener: Formal Specification and Verification Techniques: Introduction 159

Algebraic Specification - Equational Calculus
$0-00000000$
Algebraic Specification - Algebras

Specification of data types
Question: Is in the termination detection example the given DASM a refinement of the abstracter DASM? \rightsquigarrow

General refinement concepts for ASM's

- Refinements are normally defined for BASM, i.e. the executions are linear ordered runs, this makes the definition of refinements easier.
- Refinements allow abstractions, realization of data and procedures
- ASM refinements are usually problem-oriented: Depending on the application a flexible notion of refinement should be used.
- Proof tasks become structured and easier with help of correct and complete refinements.

See ASM-Buch

Example Shortest Path

Algebras		
heterogeneous	order-sorted	homogeneous
(Many-Sorted)	(Many-Sorted)	(Single-Sorted)

Example 6.1. a) Groups
SORT:: g
SIG:: $\cdot: g, g \rightarrow g \quad 1: \rightarrow g \quad-1: g \rightarrow g$
$E Q N:: x \cdot 1=x \quad x \cdot x^{-1}=1 \quad(x \cdot y) \cdot z=x \cdot(y \cdot z)$
All-quantified equations

Models are groups

Question: Which equations are valid in all groups,
i.e. $E Q N=t_{1}=t_{2}$

$$
1 \cdot x=x \quad x^{-1} \cdot x=1 \quad\left(x^{-1}\right)^{-1}=x
$$

b) Lists over nat-numbers

SIG: BOOL, NAT, LIST Sorts
true, false: $\rightarrow \mathrm{BOOL}$
$0 \rightarrow$ NAT
suc: NAT \rightarrow NAT
$+:$ NAT, NAT \rightarrow NAT
eq: NAT, NAT \rightarrow BOOL
nil: \rightarrow LIST
: NAT, LIST \rightarrow LIST
app: LIST, LIST \rightarrow LIST
rev: LIST \rightarrow LIST

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

```
Algebraic Specification - Equational Calculus
```

 0.000

Single-Sorted Algebras

Equational Logic: Replace ,,equals" with „equals"
Problem: cycles, non-termination
Solution: Directed equations \rightsquigarrow Term rewriting systems
Find R,,convergent" with $E \overline{\bar{Q} N}=\stackrel{*}{\stackrel{\rightharpoonup}{\Longrightarrow}}$

$$
\begin{array}{ll}
x \cdot 1 \rightarrow x & 1 \cdot x \rightarrow x \\
x \cdot x^{-1} \rightarrow 1 & x^{-1} \cdot x \rightarrow 1 \\
1^{-1} \rightarrow 1 & \left(x^{-1}\right)^{-1} \rightarrow x \\
(x \cdot y)^{-1} \rightarrow y^{-1} \cdot x^{-1} & (x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z) \\
x^{-1} \cdot(x \cdot y) \rightarrow y & x \cdot\left(x^{-1} \cdot y\right) \rightarrow y
\end{array}
$$

```
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
Algebraic Specif - Equationa Catel
```


Many-Sorted Algebras

Axioms are all-quantified equations, i.e.
$\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}: \quad t_{1}\left(x_{1}, \ldots, x_{n}\right)=t_{2}\left(y_{1}, \ldots, y_{m}\right)$ where
$t_{1}\left(x_{1}, \ldots, x_{n}\right), t_{2}\left(y_{1}, \ldots, y_{m}\right)$ Terms of the same sort over the signature.
$\mathrm{EQN}: \quad n+0=n \quad n+\operatorname{suc}(m)=\operatorname{suc}(n+m)$
eq $(0,0)=$ true eq $(0, \operatorname{suc}(n))=$ false eq $(\operatorname{suc}(n), 0)=$ false
$\mathrm{eq}(\operatorname{suc}(n), \operatorname{suc}(m))=\mathrm{eq}(n, m)$
$\operatorname{app}($ nil,$I)=I \quad \operatorname{app}\left(n . I_{1}, l_{2}\right)=n \cdot \operatorname{app}\left(I_{1}, l_{2}\right)$
$\operatorname{rev}($ nil $)=\operatorname{nil} \quad \operatorname{rev}(n . l)=\operatorname{app}(\operatorname{rev}(I), n$. nil $)$

Algebraic Specticatia Algebrae

Many-Sorted Algebras

Terms of type BOOL, NAT, LIST as identifiers for elements (standard definition!)
Which algebra is specified? How can we compute in this algebra?
Direct the equations \rightsquigarrow term-rewriting system R. Evidently e.g.

$$
s^{i}(0)+s^{j}(0) \xrightarrow[R]{*} s^{i+j}(0)
$$

$$
\begin{aligned}
& \operatorname{app}(3.1 . n i l, \operatorname{app}(5 . n i l, 1.2 .3 . n i l)) \xrightarrow[R]{*} \text { 3.1.5.1.2.3.nil } \\
& \operatorname{rev}(3.1 . n i l) \rightarrow \operatorname{app}(\operatorname{rev}(1 . n i l), 3 . n i l) \\
& \rightarrow \operatorname{app}(\operatorname{app}(\operatorname{rev}(\text { nil }), 1 . n i l), 3 . n i l) \\
& \rightarrow \operatorname{app}(\operatorname{app}(\text { nil }, 1 . n i l), 3 . n i l) \\
& \rightarrow \operatorname{app}(1 . n i l, 3 . n i l) \xrightarrow{*} 1.3 . \text { nil }
\end{aligned}
$$

Question: Is $\operatorname{app}(x . y . n i l, z . n i l)=e_{E} \operatorname{app}(x . n i l, y . z . n i l)$ true?

Thesis: Data types are Algebras

ADT: Abstract data types. Independent of the data representation.
Specification of abstract data types:
Concepts from Logic/universal Algebra
Objective: common language for specification and implementation.
Methods for proving correctness:
Syntax, L formulae (P-Logic,Hoare, ...)
CI: Consequence closure (e.g. $\models, \operatorname{Th}(A), \ldots$)
Prof. Dr. K. Madener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus
000000000.000000000000000000000000000000000000

Consequence closure

$C l: \mathbb{P}(L) \rightarrow \mathbb{P}(L)$ (subsets of L) with
a) $A \subset L \rightsquigarrow A \subset C I(A)$
b) $A, B \subset L, A \subseteq B \rightsquigarrow C l(A) \subseteq C l(B)$ (Monotonicity)
c) $C l(A)=C l(\overline{C l}(A))$ (Maximality)

Important concepts:
Consistency: $A \subsetneq L \quad A$ is consistent if $\mathrm{Cl}(A) \subsetneq L$ Implementation: A (over L^{\prime}) implements B (over L)
(Refinement)

$$
L \subset L^{\prime}, C l(B) \subseteq C l(A)
$$

Related to implication.

$$
\begin{aligned}
& x+y=y+x:: s^{i} 0+s^{j} 0=s^{j} 0+s^{i} 0 \text { all } i, j \\
& \operatorname{rev}(\operatorname{rev}(x))=x \text { for } x \equiv s^{i_{1}} 0 . s^{i_{2}} 0 \ldots s^{i_{n}} 0 . \text { nil }
\end{aligned}
$$

Definition 6.2. a) Signature is a triple sig $=(S, F, \tau)$ (abbreviated: Σ)

- S finite set of sorts
- F set of operators (function symbols)
- $\tau: F \rightarrow S^{+}$arity function, i.e.
$\tau(f)=s_{1} \cdots s_{n} s, n \geq 0, s_{i}$ argument's sorts, s target sort.
Write: $f: s_{1}, \ldots, s_{n} \rightarrow s$
(Notice that $n=0$) is possible, constants of sort S.

Igebraic Specification - Equational Calcult
00
Signature - Terms
c) $V=\bigcup_{s \in S} V_{s}$ system of variables $V \cap F=\varnothing$.

Each $x \in V_{s}$ has arity $x: \rightarrow s$
Set: $\quad \operatorname{Term}(F, V):=\operatorname{Term}(F \cup V)$.
Quotation: terms over sig in the variables V.
(F and τ extended with the set of variables and their sorts).
Intention: for variables it is allowed to use any object of the same sort, i.e. terms of this sort. "Placeholder" for an arbitrary object of this sort.
Prof. Dr. K. Madener: Formal Specification and Verification Techniques: Introduction cac

Algebraic Specification - Equational Calculus
Strictness - Positions- Subterms

Strictness - Positions- Subterms

Definition 6.3. a) $s \in S$ strict, if $\operatorname{Term}_{s}(F) \neq \varnothing$
If for each sort $s \in S$ there is a constant of sort S or a function
$f: s_{1}, \ldots, s_{n} \rightarrow s$, so that the s_{i} are strict. If all the sorts of the signature
are strict. \rightsquigarrow strict signatures (general assumption)
b) Subterms $(t)=\left\{t_{p} \mid p\right.$ location (position) in p, t_{p} subterm in $\left.p\right\}$

The positions are represented by sequences over \mathbb{N}
(elements of \mathbb{N}^{*}, e the empty sequence).
$O(t)$ Set of positions in t,
For $p \in O(t) t_{p}$ (or $\left.\left.t\right|_{p}\right)$ subterm of t in position p

- t constant or variable: $O(t)=\{e\} \quad t_{e} \equiv t$
- $t \equiv f\left(t_{1}, \ldots, t_{n}\right)$ so
$O(t)=\left\{i p \mid 1 \leq i \leq n, p \in O\left(t_{i}\right)\right\} \cup\{e\}$
$\left.t_{i p} \equiv t_{i}\right|_{p}$ and $t_{e} \equiv t$.

Term replacement

c) Term replacement: $t, r \in \operatorname{Term}(F, V)$
$p \in O(t)$: with $r, t_{p} \in \operatorname{Term}_{s}(F, V)$ for a sort s.
Then
$t[r]_{p}, t[p \leftarrow r]$ respectively t_{p}^{r} is the term, that is obtained from t by replacing subterm t_{p} by r.

So $t[p \leftarrow r]_{q}=t_{q}$ for $q \mid p$ and

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

```
Algebraic Specification - Eq
```

Strictness - Positions- Subterm
Signatures
Representation of signatures (graphical or standardized)

Notations:
sig...
sorts .
ops ...
$\mathrm{op}_{1}, \ldots, \mathrm{op}_{\mathrm{i}}: W \rightarrow S$
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 175

Algebraic Specification - Equational Calculus
$00000000000000000 \bullet 0000000000000000000000000000$
erpretations: sig-algebras
Interpretations: sig-Algebras

Definition 6.5. sig $=(S, F, \tau)$ signature. A sig-Algebra \mathfrak{A} is composed of

1) Set of support $A=\bigcup_{s \in S} A_{s}, A_{s} \neq \varnothing$ set of support of sort s
2) Function system $F_{\mathfrak{A}}=\left\{f_{\mathfrak{A}}: f \in F\right\}$ with
$f_{\mathfrak{A}}: A_{s_{1}} \times \cdots \times A_{s_{n}} \rightarrow A_{s}$ function and $\tau(f)=s_{1} \cdots s_{n} s$.
Notice: The $f_{\mathfrak{A}}$ are total functions.
The precondition $A_{s} \neq \varnothing$ is not mandatory.

Free sig-algebra generated by V

Definition 6.7. $\wedge \mathfrak{A}=\left(A, F_{\mathfrak{A}}\right)$ with: $A=\bigcup_{s \in S} A_{s} A_{s}=\operatorname{Term}_{s}(F, V)$, i.e. $A=\operatorname{Term}(F, V)$ $F \ni f: s_{1}, \ldots, s_{n} \rightarrow s, f_{\mathfrak{A}}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$
\mathfrak{A} is sig-Algebra:: $T_{\text {sig }}(V)$
the free termalgebra in the variables V generated by V

- $V=\varnothing: A_{s}=\operatorname{Term}_{s}(F)$ set of ground terms ($A_{s} \neq \varnothing$, because sig is strict).
\mathfrak{A} ground termalgebra:: $T_{\text {sig }}$

Homomorphisms

Definition 6.8 (sig-homomorphism). $\mathfrak{A}, \mathfrak{A}^{\prime}$ sig-algebras
$h: \mathfrak{A} \rightarrow \mathfrak{A}^{\prime}$ family of functions
$h=\left\{h_{s}: A_{s} \rightarrow A_{s}^{\prime}: s \in S\right\}$ is sig-homomorphism
when

$$
h_{s}\left(f_{\mathfrak{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=f_{\mathfrak{R}^{\prime}}\left(h_{s_{1}}\left(a_{1}\right), \ldots, h_{s_{n}}\left(a_{n}\right)\right)
$$

As always: injective, surjective, bijective, isomorphism

Interpretations: sig-algebras

As alas

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 179

Algebraic Specification - Equation Cala
00
Canonical homomorphisms

Lemma 6.9. \mathfrak{A} sig-Algebra, $T_{\text {sig }}$ ground term algebra

a) The family of canonical interpretation functions
$h_{s}: \operatorname{Term}_{s}(F) \rightarrow A_{s}$ defined through

$$
h_{s}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f_{\mathfrak{A}}\left(h_{s_{1}}\left(t_{1}\right), \ldots, h_{s_{n}}\left(t_{n}\right)\right)
$$

with $h_{s}(c)=c_{\mathfrak{A}}$ is a sig-homomorphism.
b) There is no other sig-homomorphism from $T_{\text {sig }}$ to \mathfrak{A}. Uniqueness!

Proof: Just try!!

Igeeraic Specrication - Equational Calculs

Initial algebras

Definition 6.10 (Initial algebras). A sig-Algebra \mathfrak{A} is called initial in a class C of sig-algebras, if for each sig-Algebra $\mathfrak{A}^{\prime} \in C$ exists exactly one sig-homomorphism $h: \mathfrak{A} \rightarrow \mathfrak{A}^{\prime}$.
Notice: $T_{\text {sig }}$ is initial in the class of all sig-algebras (Lemma 6.9).
Fact: Initial algebras are isomorphic.

Equational specifications

For Specification's formalisms:

Classes of algebras that have initial algebras.

$$
\rightsquigarrow \text { Horn-Logic (See bibliography) }
$$

sig INT sortsint
ops $0: \rightarrow$ int
suc : int \rightarrow int
pred : int \rightarrow int

The final algebras can be defined analogously.
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 181

Algebraic Specification - Equational Calculus

Canonical homomorphisms

\mathfrak{A} sig-Algebra, $h: T_{\text {sig }} \rightarrow \mathfrak{A}$ interpretation homomorphism.
\mathfrak{A} sig-generated (term-generated) iff
$\forall s \in S \quad h_{s}: \operatorname{Term}_{s}(F) \rightarrow A_{s}$ surjective
The ground termalgebra is sig-generated.
ADT requirements:

- Independent of the representation (isomorphism class)
- Generated by the operations (sig-generated)

Often: constructor subset
Thesis: An ADT is the isomorphism class of an initial algebra.

Ground termalgebras as initial algebras are ADT.

Notice by the properties of free termalgebras: functions from V in \mathfrak{A} can be extended to unique homomorphisms from $T_{\text {sig }}(V)$ in \mathfrak{A}.

Models of spec $=(\operatorname{sig}, E)$

Keyword eqn
spec INT

sorts int
ops $0: \rightarrow$ int
suc, pred: int \rightarrow int

implicit
ops $0: \rightarrow$ int All-Quantification
suc, pred: int \rightarrow int often also a declaration
eqns $\operatorname{suc}(\operatorname{pred}(x))=x \quad$ of the sorts $\operatorname{pred}(\operatorname{suc}(x))=x \quad$ of the variables

Semantics::

- loose all models (PL1)
- tight (special model initial, final)
- operational (equational calculus + induction principle)

b) $s=t$ equation over sig, V
$\mathfrak{A}=s=t: \mathfrak{A}$ satisfies $s=t$ with assignment φ iff $\varphi(s)=\varphi(t)$,
equality in A.
c) \mathfrak{A} satisfies $s=t$ or $s=t$ holds in \mathfrak{A}
$\mathfrak{A} \models s=t$: for each assigment φ
$\mathfrak{A} \models s=t$
d) \mathfrak{A} is model of spec $=($ sig, $E)$
iff \mathfrak{A} satisfies each equation of E
$\mathfrak{A} \models E \quad$ ALG(spec) class of the models of spec.

Algebraic Specification - Equational Calculus
艮
Examples

Example 6.13. 1)

$$
\begin{array}{ll}
\text { spec } & \text { NAT } \\
\text { sorts } & \text { nat } \\
\text { ops } & 0: \rightarrow \text { nat } \\
& s: \text { nat } \rightarrow \text { nat } \\
& -+\bar{n} \text { nat, nat } \rightarrow \text { nat } \\
\text { eqns } & x+0=x \\
& x+s(y)=s(x+y)
\end{array}
$$

Examples
sig-algebras
a) $\hat{A}=(\mathbb{N}, \hat{0}, \hat{+}, \hat{s})$

$$
\hat{0}=0 \quad \hat{s}(n)=n+1 \quad n \hat{+} m=n+m
$$

b) $\mathfrak{B}=(\mathbb{Z}, \hat{0}, \hat{+}, \hat{s})$
$0=1 \quad \hat{s}(i)=i \cdot 5 \quad i \hat{+} j=i \cdot j$
c) $\mathfrak{C}=(\{$ true, false $\}, \hat{0}, \hat{+}, \hat{s})$
$0=$ false $\hat{s}($ true $)=$ false $\hat{s}($ false $)=$ true $i \hat{+} j=i \vee j$

Examples

$\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ are models of spec NAT
e.g. $\mathfrak{B}: \quad \varphi(x)=a \quad \varphi(y)=b \quad a, b \in \mathbb{Z}$

$$
\varphi(x+0)=a \hat{+} \hat{0}=a \cdot 1=a=\varphi(x)
$$

$$
\varphi(x+s(y))=a \hat{+} \hat{s}(b)=a \cdot(b \cdot 5)
$$

$$
=(a \cdot b) \cdot 5=\hat{s}(a \hat{+} b)
$$

$$
=\varphi(s(x+y))
$$

Examples

2)

$$
\begin{array}{ll}
\text { spec } & \text { LIST(NAT }) \\
\text { use } & \text { NAT } \\
\text { sorts } & \text { nat, list } \\
\text { ops } & \text { nil }: \rightarrow \text { list } \\
& --\quad: \text { nat, list } \rightarrow \text { list } \\
& \text { app }: \text { list, list } \rightarrow \text { list } \\
\text { eqns } & \text { app }\left(n i l, q_{2}\right)=q_{2} \\
& \text { app }\left(x \cdot q_{1}, q_{2}\right)=x \cdot \operatorname{app}\left(q_{1}, q_{2}\right)
\end{array}
$$

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
Algebraic Specification - Equational Calculus
000
Equational specifications

Examples

spec-Algebra

$$
\begin{aligned}
& \mathfrak{A} \quad \mathbb{N}, \mathbb{N}^{*} \\
& \hat{0}=0 \quad \hat{+}=+\hat{s}=+1 \\
& \text { nil }=e \quad \text { (emptyword) } \\
& \hat{.}(i, z)=i z \\
& \widehat{\operatorname{app}}\left(z_{1}, z_{2}\right)=z_{1} z_{2} \text { (concatenation) }
\end{aligned}
$$

Substitution

```
Definition \(6.14(\operatorname{sig}, \operatorname{Term}(F, V)) . \sigma:: \sigma_{s}: V_{s} \rightarrow \operatorname{Term}_{s}(F, V)\),
\(\sigma_{s}(x) \in \operatorname{Term}_{s}(F, V), x \in V_{s}\)
\(\sigma(x)=x\) for almost every \(x \in V\)
\(D(\sigma)=\{x \mid \sigma(x) \neq x\}\) finite:: domain of \(\sigma\)
```

Write $\sigma=\left\{x_{1} \leftarrow t_{1}, \ldots, x_{n} \leftarrow t_{n}\right\}$
Extension to homomorphism $\sigma: \operatorname{Term}(F, V) \rightarrow \operatorname{Term}(F, V)$

$$
\sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f\left(\sigma\left(t_{1}\right), \ldots, \sigma\left(t_{n}\right)\right)
$$

Ground substitution: $t_{i} \in \operatorname{Term}_{S}(F) \quad x_{i} \in D(\sigma) s$

[^2]Algebraic Specification - Equational Calculus Equational specifications

Examples

	4	5	6
$A_{\text {int }}$	$\{a, b\}^{*} \cup \mathbb{Z}$	$\{1\}^{+} \cup\{0\}^{+} \cup\{z\}$!
$0_{\mathfrak{A}_{i}}$	0	z	!
$\operatorname{suC}_{\mathfrak{A}_{i}}$	$\mathrm{SuC}_{\mathbb{Z}}$	$\left\{\begin{array}{c}1^{n} \rightarrow 1^{n+1} \\ z \rightarrow 1 \\ 0^{n+1} \rightarrow 0^{n} \\ 0 \rightarrow z\end{array}\right\}$	id
$\operatorname{pred}_{\mathfrak{A}_{i}}$	$\operatorname{pred}_{\mathbb{Z}}$	$\left\{\begin{array}{c}1^{n+1} \rightarrow 1^{n} \\ 1 \rightarrow z \\ z \rightarrow 0 \\ 0^{n} \rightarrow 0^{n+1}\end{array}\right\}$	id
	-		+

Algebraic Specification - Equational Calculus

Lose semantics
Definition 6.15. $\mathrm{spec}=(\mathrm{sig}, E)$
$A L G($ spec $)=\{\mathfrak{A} \mid$ sig-Algebra, $\mathfrak{A} \mid=E\} \quad$ sometimes alternatively $A L G_{T G}($ spec $)=\{\mathfrak{A} \mid$ term-generated sig-Algebra, $\mathfrak{A} \models E\}$
Find: Characterizations of equations that are valid in ALG(spec) or $\mathrm{ALG}_{\mathrm{TG}}$ (spec).
a) Semantical equality: $E \models s=t$
b) Operational equality: $t_{1} \underset{E}{\underset{E}{\prime}} t_{2}$ iff

There is $p \in 0\left(t_{1}\right)$, $s=t \in E$, substitution σ with
$\left.t_{1}\right|_{p} \equiv \sigma(s), t_{2} \equiv t_{1}[\sigma(t)]_{p}\left(t_{1}[p \leftarrow \sigma(t)]\right)$
or $\left.t_{1}\right|_{p} \equiv \sigma(t), t_{2} \equiv t_{1}[\sigma(s)]_{p}$
$t_{1}=E t_{2}$ iff $t_{1} \stackrel{H}{H} t_{2}$
Formalization of replace equals \leftrightarrow equals

Equality calculus

c) Equality calculus: Inference rules (deductive)

Reflexivity $\overline{t=t}$
Symmetry $\frac{t=t^{\prime}}{t^{\prime}=t}$
Transitivity $\frac{t=t^{\prime}, t^{\prime}=t^{\prime \prime}}{t=t^{\prime \prime}}$
Replacement $\frac{t^{\prime}=t^{\prime \prime}}{s\left[t^{\prime}\right]_{p}=s\left[t^{\prime \prime}\right]_{p}} \quad p \in 0(s)$
(frequently also with substitution σ)

Properties and examples

> Consequence 6.16 (Properties and Examples). a) If either $E \models s=t$ or $s==_{E} t$ or $E \vdash s=t$ holds, then
> i) If σ is a substitution, then also
> $\quad E \models \sigma(s)=\sigma(t) / \sigma(s)=_{E} \sigma(t) / E \models \sigma(s)=\sigma(t)$
> \quad i.e. the induced equivalence relations on Term (F, V) are stable w.r. to substitutions
> ii) $r \in \operatorname{Term}(F, V), p \in 0(r),\left.r\right|_{p}, s, t \in \operatorname{Term}_{s^{\prime}}(F, V)$ then $\quad E \models r[s]_{p}=r[t]_{p} / r[s]_{p}={ }_{E} r[t]_{p} / E \vdash r[s]_{p}=r[t]_{p}$ \quad replacement property (monotonicity)
> \rightsquigarrow Congruence on Term (F, V) which is stable.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction	197
Algebraic Specification - Equational Calculus 000	

Equality calculus
$E \vdash s=t$ iff there is a proof P for $s=t$ out of E, i.e.
$P=$ sequence of equations that ends with $s=t$, such that for $t_{1}=t_{2} \in P$.
i) $t_{1}=t_{2} \in \sigma(E)$ for a Substitution σ :
ii) $t_{1}=t_{2} \ldots$ out of precedent equations in P by application of one of the inference rules.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus
000 •0000

Congruences / Quotient algebras
b) $\mathfrak{A}=\left(A, F_{\mathfrak{A}}\right)$ sig-Algebra. \sim bin. relation on A is congruence relation over \mathfrak{A}, iff
i) $a \sim b \rightsquigarrow \exists s \in S: a, b \in A_{s}$ (sort compatible)
ii) \sim is equivalence relation
iii) $a_{i} \sim b_{i}(i=1, \ldots, n), f_{21}\left(a_{1}, \ldots, a_{n}\right)$ defined

$$
\rightsquigarrow f_{21}\left(a_{1}, \ldots, a_{n}\right) \sim f_{21}\left(b_{1}, \ldots, b_{n}\right) \text { (monotonic) }
$$

\mathfrak{A} / \sim quotient algebra:
$A / \sim=\bigcup_{s \in S}\left(A_{s} / \sim\right)_{s}$ with $\left(A_{s} / \sim\right)_{s}=\left\{[a]_{\sim}: a \in A_{s}\right\}$ and $f_{\mathfrak{A l} / \sim}$
with $f_{\mathfrak{A} / \sim}\left(\left[a_{1}\right], \ldots,\left[a_{n}\right]\right)=\left[f_{\mathfrak{A}}\left(a_{1}, \ldots, a_{n}\right)\right]$
well defined, i.e. \mathfrak{A} / \sim is sig-Algebra. Abbreviated $\mathfrak{A} \sim$
$\varphi: \mathfrak{A} \rightarrow \mathfrak{A} \sim$ with $\varphi_{s}(a)=[a]_{\sim}$ is a surjective homomorphism, the canonical homomorphism.
example
$\operatorname{spec}:: \operatorname{INT}$ with $\operatorname{pred}(\operatorname{suc}(x))=x, \operatorname{suc}(\operatorname{pred}(x))=x$

$$
\begin{aligned}
\left(T_{\text {INT }} /=E\right)_{\text {int }}= & \{[0]=\{0, \operatorname{pred}(\operatorname{suc}(0)), \operatorname{suc}(\operatorname{pred}(0)), \ldots \\
& {[\operatorname{suc}(0)]=\{\operatorname{suc}(0), \operatorname{pred}(\operatorname{suc}(\operatorname{suc}(0))), \ldots} \\
& {[\operatorname{suc}(\operatorname{suc}(0))]=\{\cdots} \\
& {[\operatorname{pred}(0)]=\{\operatorname{pred}(0), \operatorname{suc}(\operatorname{pred}(\operatorname{pred}(0))) \ldots} \\
\operatorname{suc}_{T_{\text {INT }} /=_{E}} & ([\operatorname{pred}(\operatorname{suc}(0))])=[\operatorname{suc}(\operatorname{pred}(\operatorname{suc}(0)))] \\
& =[\operatorname{suc}(0)] \\
& =\operatorname{suc}_{T_{\text {INT }} /=_{E}}([0])
\end{aligned}
$$

Proofs: Don't give up...

Algebraic Specification - Equational Calculus
00000000000000000000000
Connection between $\vDash,==_{E}, \vdash_{E}$
Connections between $\models,={ }_{E}, \vdash_{E}$
f) \mathfrak{A} sig-Algebra, E equational system over (sig, V).
E induces a relation $\underset{E, \mathfrak{A}}{\sim}$ on \mathfrak{A} where
$a \underset{E, \mathfrak{d}, s}{\sim} a^{\prime}\left(a, a^{\prime} \in A_{s}\right)$ iff there is $t=t^{\prime} \in E$ and an assignment
$\varphi: V \rightarrow \mathfrak{A}$ with $\varphi(t)=a, \varphi\left(t^{\prime}\right)=a^{\prime}$
This relation is sort compatible.
Fact: Let \equiv be a congruence over \mathfrak{A} that contains $\underset{E \boldsymbol{A}}{\sim}$, then \mathfrak{A} / \equiv is a spec $=(\operatorname{sig}, E)$-Algebra, i.e. model of E.
g) Existence: $\mathfrak{A}=T_{\text {sig }}$ the (ground) term algebra, then $=_{E}$ is on $T_{\text {sig }}$ the smallest congruence that contains $\underset{E, R}{\sim}$.
In particular $T_{\text {sig }} /=_{E}$ is a term-generated model of E.
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 203

Algebraic Specification - Equational Calculus
000 -

Birkhoff's Theorem

Theorem 6.17 (Birkhoff). For each specification spec $=(\operatorname{sig}, E)$ the following holds

$$
E \models s=t \quad \text { iff } \quad E \vdash s=t \quad\left(\text { i. e. } s={ }_{E} t\right)
$$

Definition 6.18. Initial semantics
Let spec $=($ sig, $E)$, sig strict.
The algebra $T_{\text {sig }} /=_{E}$ (Quotient term algebra)
($=_{E}$ the smallest congruence relation on $T_{\text {sig }}$ generated by E) is defined as initial algebra semantics of spec $=(\operatorname{sig}, E)$.

It is term-generated and initial in $A L G($ spec $)$!

Initial Algebra semantics

Initial Algebra semantics assigns to each equational specification spec the isomorphism class of the (initial) quotient term algebra $T_{\text {sig }} /=E$. Write: $T_{\text {spec }}$ or $I(E)$

$$
\operatorname{sig}=\Sigma, \text { spec }=(\Sigma, E)
$$

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
Initial semantics
Oato
Basic properties

Quotient term algebras

Initial algebra

Questions:

- Is $T_{\text {spec }}$ computable?
- Is the word problem $\left(T_{\text {sig }},=_{E}\right)$ solvable?
- Is there an "operationalization" of $T_{\text {spec }}$?
- Which (PL1-) properties are valid in $T_{\text {spec }}$?
- How can we prove these properties? Are there general methods?
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
Intial semantics
Basic properties

Equational theory / Inductive (equational-) theory

Definition 7.2. Properties of equations

a) $\operatorname{TH}(E)=\{s=t: E \models s=t\}$ Equational theory Equations that are valid in all spec-algebras.
b) $\operatorname{ITH}(E)=\left\{s=t: T_{\text {spec }} \mid=s=t\right\}$ inductive (=)-theory Equations that are valid in all term generated spec-algebras.

Example (Cont.)

```
eqns not(true) = false
    not(false) = true
    and(true, b)=b
    and(false, b)= false
    or(b, b
    impl}(b,\mp@subsup{b}{}{\prime})=\operatorname{or}(\operatorname{not}(b),\mp@subsup{b}{}{\prime}
    eqv}(b,\mp@subsup{b}{}{\prime})=\operatorname{and}(\operatorname{impl}(b,\mp@subsup{b}{}{\prime}),\operatorname{impl}(\mp@subsup{b}{}{\prime},b)
    if true }\mp@subsup{b}{}{\prime}\mathrm{ else }\mp@subsup{b}{}{\prime\prime}=\mp@subsup{b}{}{\prime
    if false }\mp@subsup{b}{}{\prime}\mathrm{ else }\mp@subsup{b}{}{\prime\prime}=\mp@subsup{b}{}{\prime\prime
(}\mp@subsup{T}{\mathrm{ BOOL }}{\mathrm{ bool }}={[\mathrm{ true], [false] }}(\mathrm{ Proof!)
```

\rightsquigarrow Defined- and constructor-functions.
$00000 \bullet 0000$
Basic properties
Intitar semantics
000000000
000000 •

Example (Cont.)

b) spec	SET-OF-CHARACTERS
sorts	char, set
ops	$a, b, c, \cdots: \rightarrow$ char
	$\varnothing: \rightarrow$ set
	insert : char, set \rightarrow set
eqns	$\operatorname{insert}(x, \operatorname{insert}(x, s))=\operatorname{insert}(x, s)$
	$\operatorname{insert}(x, \operatorname{insert}(y, s))=\operatorname{insert}(y, \operatorname{insert}(x, s))$
$\left(T_{\text {soc }}\right)_{\text {char }}$	$=\{a, b, c, \ldots\}$
$\left(T_{\text {soc }}\right)_{\text {set }}$	$\{[\varnothing],[\operatorname{insert}(a, \varnothing)], \ldots$

$\{\varnothing\}\{\operatorname{insert}(a, \operatorname{insert}(a, \ldots, \operatorname{insert}(a, \varnothing)\}$

```
c)
    spec NAT
sorts nat
ops 0:}->\mathrm{ nat
    suc : nat }->\mathrm{ nat
    _+_,_*_ : nat, nat }->\mathrm{ na
eqns }\overline{x}+\overline{0}=
            x+\operatorname{suc}y=\operatorname{suc}(x+y)
            x*0=0
            x*\operatorname{suc}(y)=(x*y)+x
(T}\mp@subsup{T}{\mathrm{ NAT }}{}\mp@subsup{)}{\mathrm{ nat }}{}={[0,0+0,0*0,
            suc 0,0 + suc 0,\ldots
            [suc(suc(0)), ..
```

Continuation of d) binary tree.
eqns $\max (0, n)=n$
$\max (n, 0)=n$
$\max (\operatorname{suc}(m), \operatorname{suc}(n))=\operatorname{suc}(\max (m, n))$
height (leaf) $=0$
height $\left(\operatorname{both}\left(t, t^{\prime}\right)\right)=\operatorname{suc}\left(\max \left(\operatorname{height}(t), \operatorname{height}\left(t^{\prime}\right)\right)\right)$
height $(\operatorname{left}(t))=\operatorname{suc}(\operatorname{height}(t))$
$\operatorname{height}(\operatorname{right}(t))=\operatorname{suc}(\operatorname{height}(t))$
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
Initial semantics
00
Basic properties

Example (Cont.)
d) Binary tree
spec BIN-TREE
sorts nat, tree
ops $0: \rightarrow$ nat
suc : nat \rightarrow nat
max : nat, nat \rightarrow nat
leaf $: \rightarrow$ tree
left: tree \rightarrow tree
right : tree \rightarrow tree
both : tree, tree \rightarrow tree
height : tree \rightarrow nat
dleft : tree \rightarrow tree
dright : tree \rightarrow tree

Definition 7.5. A specification spec $=(\operatorname{sig}, E)$ is
sig-correct for a sig-Algebra \mathfrak{A} iff $T_{\text {spec }} \cong \mathfrak{A}$
(i.e. the unique homomorphism is a bijection).

Example 7.6. Application:
INT correct for $\mathbb{Z}, B O O L$ correct for \mathbb{B}

Note: The concept is restricted to initial semantics!
\qquad

Restrictions/Forgetful functors

Definition 7.7. Restrictions/Forget-images
a) $\operatorname{sig}=(S, F, \tau), \operatorname{sig}^{\prime}=\left(S^{\prime}, F^{\prime}, \tau^{\prime}\right)$ signatures with sig $\subseteq \operatorname{sig}^{\prime}$, i.e. $\left(S \subseteq S^{\prime}, F \subseteq F^{\prime}, \tau \subseteq \tau^{\prime}\right)$.

For each sig'-algebra \mathfrak{A} let the sig-part $\left.\mathfrak{A}\right|_{\text {sig }}$ of \mathfrak{A} be the sig-Algebra with
i) $\left(\left.\mathfrak{A}\right|_{s i g}\right)_{s}=A_{s}$ for $s \in S$
ii) $\left.f_{\mathfrak{A}}\right|_{\text {sig }}=f_{\mathfrak{A}}$ for $f \in F$

Note: $\left.\mathfrak{A}\right|_{\text {sig }}$ is sig - algebra. The restriction of \mathfrak{A} to the signature sig.
$\left.\mathfrak{A}\right|_{\text {sig }}$ is also called forget-image of \mathfrak{A} (with respect to sig).
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction \&ras

Initial semantics

```
0,0000000000000000000000000000000000000000000000
```


Restrictions/Forgetful functors

$\left.\mathfrak{A}\right|_{\text {sig }}$ forget-image of \mathfrak{A} (w.r. to sig). The forget image induces consequently a mapping (functor) between classes of algebras in the following way

Restrictions/Forgetful functor

b) A specification spec $=\left(\operatorname{sig}^{\prime}, E\right)$ with $\operatorname{sig} \subseteq$ sig' $^{\prime}$ is correct for a sig-algebra \mathfrak{A} iff

$$
\left.\left(T_{\text {spec }}\right)\right|_{\text {sig }} \cong \mathfrak{A}
$$

c) A specification spec $=\left(\right.$ sig $\left.^{\prime}, E^{\prime}\right)$ implements a specification $\mathrm{spec}=(\mathrm{sig}, E) \mathrm{iff}$

$$
\operatorname{sig} \subseteq \operatorname{sig}^{\prime} \text { and }\left.\left(T_{\text {spec }}\right)\right|_{\text {sig }} \cong T_{\text {spec }}
$$

Note:

- A consistency-concept is not necessary for $=$-specification. ((initial) models always exist !).
- The general implementation concept $\left(C I(\right.$ spec $) \subseteq C l\left(\right.$ spec $\left.\left.^{\prime}\right)\right)$ reduces here to $=$ of the valid equations in the smaller language. "complete" theories.
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 219

Initial semantics

00

Problems

Verification of $s=t \in \operatorname{Th}(E)$ or $\in I T H(E)$.
For $\operatorname{Th}(E)$ find $=_{E}$ an equivalent, convergent term rewriting system (see group example).

For ITH(E) induction's methods:
s, t induce functions to $T_{\text {spec }}$. If x_{1}, \ldots, x_{n} are the variables in s and t,
types s_{1}, \ldots, s_{n}.
$s:\left(T_{\text {spec }}\right)_{s_{1}} \times \cdots \times\left(T_{\text {spec }}\right)_{s_{n}} \rightarrow\left(T_{\text {spec }}\right)_{s}$
$s=t \in \operatorname{ITh}(E)$ iff s and t induce the same functions \rightsquigarrow prove this by induction on the construction of the ground terms.
NAT 0 , suc, $+x+y=y+x \in I T H$

$$
0+x=x
$$

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Problems

- $0+0=0 \quad$ Ass. : $0+a=a$ $0+S a={ }_{E} S(0+a)=\boldsymbol{l} S(a)$
- $x+0=0+x \quad$ Ass. : $x+a=a+x$ $x+S a={ }_{E} S(x+a)=, S(a+x)={ }_{E} a+S x \stackrel{?}{=} S a+x$
- $x+S y=S x+y$
$x+S 0={ }_{E} S(x+0)={ }_{E} S x={ }_{E} S x+0$
$x+S S a={ }_{E} S(x+S a)=\boldsymbol{r} S(S x+a)={ }_{E} S x+S a$

$\operatorname{spec}(\operatorname{sig}, E)$	$P_{\text {spec }}(\operatorname{sig}, E$, Prop $)$
Equations only often	Properties that should hold!
do not suffice	\rightsquigarrow Verification tasks

BIN-TREE

1) spec NAT
2) spec NAT1
sorts nat
use NAT
ops $0: \rightarrow$ nat
ops $\quad \max :$ nat, nat \rightarrow nat
suc : nat \rightarrow nat
eqns $\max (0, n)=n$
$\max (n, 0)=n$
$\max (s(m), s(n))=s(\max (m, n))$

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics
000000000000
Structuring mechanisms
Structuring mechanisms

Horizontal: - Decomposition, - Combination,

- Extension, - Instantiation

Vertical: - Realisation, - Information hiding,

- Vertical composition

Here:
Combination, Enrichment, Extension, Modularisation, Parametrisation
\rightsquigarrow Reusability.
3) spec BINTREE1 sorts bintree ops leaf : \rightarrow bintree
left, right : bintree \rightarrow bintree both : bintree, bintree
\rightarrow bintree

BIN-TREE (Cont.)
4) spec BINTREE2 use NAT1, BINTREE1 ops height: bintree \rightarrow nat
eqns :

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 223

Initial semantics
$00000000000000000 \cdot 0000000000000000000000000000000000$

Structuring mechanisms

Initial semantics
年

Combination

Definition 7.8 (Combination). Let $\operatorname{spec}_{1}=\left(\operatorname{sig}_{1}, E_{1}\right)$, with
$\operatorname{sig}_{1}=\left(S_{1}, F_{1}, \tau_{1}\right)$ be a signature and $\operatorname{sig}_{2}=\left[S_{2}, F_{2}, \tau_{2}\right]$ a triple, E_{2} set of equations.
comb $=\operatorname{spec}_{1}+\left(\operatorname{sig}_{2}, E_{2}\right)$ is called combination
iff
spec $\left.=\left(\left(S_{1} \cup S_{2}\right),\left(F_{1} \cup F_{2}\right),\left(\tau_{1} \cup \tau_{2}\right)\right), E_{1} \cup E_{2}\right)$ is a specification.
In particular $\left(\left(S_{1} \cup S_{2}\right),\left(F_{1} \cup F_{2}\right),\left(\tau_{1} \cup \tau_{2}\right)\right)$ is a signature and E_{2} contains „syntactically correct" equations.

The semantics of comb: $\quad T_{\text {comb }}:=T_{\text {spec }}$
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 225

$$
\begin{aligned}
& \text { Intitial semantics } \\
& \text { OOOOOOOOOS}
\end{aligned}
$$

000

The semantics of comb

$T_{\text {comb }}:=T_{\text {spec }}$

Typical cases:
$S_{2}=\varnothing, F_{2}$ new function symbols with arities τ_{2} (in old sorts).
S_{2} new sorts, F_{2} new function symbols.
τ_{2} arities in new + old sorts.
E_{2} only „new" equations.
Notations: use, include (protected)

Initial semantics
000

Example

Example 7.9. a) Step-by-step design of integer numbers

spec		semantics
	INT1	
sorts	int	$T_{\text {INT } 1} \cong\left(\mathbb{N}, 0, \operatorname{suc}_{\mathbb{N}}\right)$
ops	$\begin{aligned} & 0: \rightarrow \text { int } \\ & \text { suc }: \text { int } \rightarrow \text { int } \end{aligned}$	
	\cap	\cap
spec	INT2	
use	INT1	$T_{\text {INT2 }} \cong\left(\mathbb{Z}, 0, \mathrm{suc}_{\mathbb{Z}}, \operatorname{pred}_{\mathbb{Z}}\right)$
ops	pred : int \rightarrow int	
eqns	$\operatorname{pred}(\operatorname{suc}(x))=x$	
	$\operatorname{suc}(\operatorname{pred}(x))=x$	

Initial semantics
00000000
$000000000000000 \cdot 000000000000000000000000000000$
Example (Cont.)

Question: Is the INT1-part of $T_{\text {INT2 }}$ equal to $T_{\text {INT1 }}$??
Does INT2 implement INT1?

$$
\left.\left(T_{\text {INT } 2}\right)\right|_{\text {INT1 }} \cong T_{\text {INT1 }}
$$

$\left.\left(\mathbb{Z}, 0, \operatorname{suc}_{\mathbb{Z}}\right.$, pred $\left._{\mathbb{Z}}\right)\right|_{\text {INT1 }}$
$\left(\mathbb{Z}, 0\right.$, suc $\left._{\mathbb{Z}}\right)$
$\neq \quad\left(\mathbb{N}, 0, \operatorname{suc}_{\mathbb{N}}\right)$

Caution: Not always the proper data is specified!
Here new data objects of sort int were introduced.
\qquad

Initial semantics
Structuring mechanisms
Example (Cont.)
b) spec NAT2
use NAT
eqns $\operatorname{suc}(\operatorname{suc}(x))=x$
$\left.\left(T_{\text {NAT } 2}\right)\right|_{\text {NAT }}=\left.(\mathbb{N} \bmod 2)\right|_{\text {NAT }}=\mathbb{N} \bmod 2 \not \approx \mathbb{N}=T_{\text {NAT }}$

Problem: Adding new or identifying old elements.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
 Initial semantics
 00

Problems with the combination
Let

$$
\mathrm{comb}=\mathrm{spec}_{1}+(\operatorname{sig}, E)
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\left.\left(T_{\text {comb })}\right)\right|_{\text {spec }_{1}}{\text { is } \text { spec }_{1} \text { Algebra }} \\
T_{\text {spec }_{1}} \text { is initial } \text { spec }_{1} \text { algebra }
\end{array}\right\} \rightsquigarrow \\
& \exists \text { ! homomorphism } h: T_{\text {spec }_{1}} \rightarrow\left(\left.T_{\text {comb })}\right|_{\text {spec }_{1}}\right.
\end{aligned}
$$

Properties of

$$
h \text { : not injective / not surjective / bijective. }
$$

e.g. $\left(T_{\text {BINTREE } 2}\right)_{\left.\right|_{\text {NAT }}} \cong T_{\text {NAT }}$.
intial semantics
00

Extension and enrichment

Definition 7.10. a) A combination $\operatorname{comb}=\operatorname{spec}_{1}+(\operatorname{sig}, E)$ is an extension iff

$$
\left.\left(T_{\text {comb }}\right)\right|_{\text {spec }_{1}} \cong T_{\text {spec }_{1}}
$$

b) An extension is called enrichment when sig does not include new sorts, i.e. sig $=\left[\varnothing, F_{2}, \tau_{2}\right]$

- Find sufficient conditions (syntactical or semantical) that guarantee that a combination is an extension

Initial semantics
000000000
$00000000000000000000000000 \cdot 00000000000000000000000000$

Parameterisation

Definition 7.11 (Parameterised Specifications). A
parameterised specification Parameter=(Formal, Body) consist of two specifications: formal and body with formal \subseteq body.
i.e. Formal $=\left(\operatorname{sig}_{F}, E_{F}\right)$, Body $=\left(\operatorname{sig}_{B}, E_{B}\right)$, where
$\operatorname{sig}_{F} \subseteq \operatorname{sig}_{B} \quad E_{F} \subseteq E_{B}$.
Notation: Body[Formal]
Syntactically: Body $=$ Formal $+\left(\right.$ sig $\left.^{\prime}, E^{\prime}\right)$ is a combination.
Note: In general it is not required that Formal or Body[Formal] have an initial semantics.
It is not necessary that there exist ground terms for all the sorts in Formal.
Only until a concrete specification is "substituted", this requirement will be fulfilled.

Example

Signature morphisms - Parameter passing

Definition 7.13. a) Let $\operatorname{sig}_{i}=\left(S_{i}, F_{i}, \tau_{i}\right) i=1,2$ be signatures. A pair of functions $\sigma=(g, h)$ with $g: S_{1} \rightarrow S_{2}, h: F_{1} \rightarrow F_{2}$ is a signature morphism, in case that for every $f \in F_{1}$

$$
\tau_{2}(h f)=g\left(\tau_{1} f\right)
$$

(g extended to $g: S_{1}^{*} \rightarrow S_{2}^{*}$).
In the example $g::$ elem \rightarrow nat $\quad h::$ next \rightarrow suc
Also $\sigma: \operatorname{sig}_{\mathrm{BOOL}} \rightarrow \operatorname{sig}_{\text {NAT }}$ with

$$
\begin{array}{llll}
g:: & \text { bool } \rightarrow \text { nat } & & \\
h:: & \text { true } \rightarrow 0 \\
& \text { false } \rightarrow 0
\end{array} \quad \text { not } \rightarrow \text { suc } \quad \begin{aligned}
& \text { and } \rightarrow \text { plus } \\
& \text { or } \rightarrow \text { times }
\end{aligned}
$$

is a signature morphism.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics

Structuring mechanisms

Example (Cont.)

```
eqns concat(s,empty) \(=s\)
    concat(empty, \(s)=s\)
    \(\operatorname{concat}\left(\operatorname{concat}\left(s_{1}, s_{2}\right), s_{3}\right)=\operatorname{concat}\left(s_{1}, \operatorname{concat}\left(s_{2}, s_{3}\right)\right)\)
    \(\operatorname{ladd}(e, s)=\operatorname{concat}(\) unit \((e), s)\)
    \(\operatorname{radd}(s, e)=\operatorname{concat}(s, \operatorname{unit}(e))\)
Parameter passing: ELEM \(\rightarrow\) NAT
\[
\text { STRING }[\text { ELEM }] \rightarrow \text { STRING }[\text { NAT }]
\]
```

Assignment: formal parameter \rightarrow current parameter

$$
\begin{gathered}
S_{F} \rightarrow S_{A} \\
O p \rightarrow O p_{A}
\end{gathered}
$$

Mapping of the sorts and functions, semantics?
Prof. Dr. K. Madener: Formal Specification and Verification Techniques: Introduction 235

Initial semantics
0000000000000000000000.0000000000000000000000

Signature morphisms - Parameter passing
b) spec $=$ Body [Formal] parameterised specification and Actual a standard specification (i.e. with an initial semantics).
A parameter passing is a signature morphism $\sigma: \operatorname{sig}($ Formal $) \rightarrow \operatorname{sig}($ Actual $)$ in which Actual is called the current parameter specification.
(Actual,σ) defines a specification VALUE through the following syntactical changes to Body:

1) Replace Formal with Actual: Body[Actual].
2) Replace in the arities of op: $s_{1} \ldots s_{n} \rightarrow s_{0} \in$ Body, which are not in Formal, $s_{i} \in$ Formal with $\sigma\left(s_{i}\right)$.
3) Replace in each not-formal equation $L=R$ of Body each $O_{P} \in$ Formal with $\sigma\left(o_{P}\right)$.
4) Interprete each variable of a type s with $s \in$ Formal as variable of type $\sigma(s)$.
5) Avoid name conflicts between actual and Body/Formal by renaming properly.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics

Parameter passing

Notation

$$
\text { Value }=\text { Body }[\text { Actual }, \sigma]
$$

Consequently for $\sigma: \operatorname{sig}($ Formal $) \rightarrow \operatorname{sig}($ Actual $)$ we get a a signature morphism
$\sigma^{\prime}: \operatorname{sig}($ Body $[$ Formal $]) \rightarrow \operatorname{sig}($ Body $[$ Actual,$\sigma]$ with

$$
\begin{aligned}
& \text { Formal } \longrightarrow \text { Body } \\
& \qquad \begin{array}{|ll}
\sigma & \vdots \\
\text { Actual } \longrightarrow \text { Value }
\end{array} \quad \sigma^{\prime}(x)= \begin{cases}\sigma(x) & x \in \text { Formal } \\
x^{\prime} & x \notin \text { Formal }\end{cases} \\
&
\end{aligned}
$$

Where x^{\prime} is a renaming, if there are naming conflicts.
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

$$
\begin{aligned}
& \text { Initial semantics } \\
& 000000000
\end{aligned}
$$

Signature morphisms (Cont.)

Definition 7.14. Let $\sigma:$ sig $^{\prime} \rightarrow$ sig be a signature morphism.
Then for each sig-Algebra \mathfrak{A} define $\left.\mathfrak{A}\right|_{\sigma}$ a sig'-Algebra, in which for $\operatorname{sig}^{\prime}=\left(S^{\prime}, F^{\prime}, \tau^{\prime}\right)$
$\left(\left.\mathfrak{A}\right|_{\sigma}\right)_{s}=A_{\sigma(s)} s \in S^{\prime}$ and $f_{\left.\mathfrak{A}\right|_{\sigma}}=\sigma(f)_{\mathfrak{A}} f \in F^{\prime}$.
$\left.\mathfrak{A}\right|_{\sigma}$ is called forget-image of \mathfrak{A} along σ
Hence $\left.\right|_{\sigma}$ is a "mapping" from sig-Algebras into sig'-Algebras.
(Special case: sig' \subseteq sig : \hookrightarrow) $\left.\right|_{\text {sig }}$

Intial semantics
00
Example

Example 7.15. $\mathfrak{A}=T_{\text {NAT }}$ (with 0 , suc, plus, times) $\operatorname{sig}{ }^{\prime}=\operatorname{sig}(\mathrm{BOOL}) \quad \operatorname{sig}=\operatorname{sig}(\mathrm{NAT})$
$\sigma:$ sig $^{\prime} \rightarrow$ sig the one considered previously.
$\left(\left.\left(T_{\text {NAT }}\right)\right|_{\sigma}\right)_{\text {bool }}=\left(T_{\text {NAT }}\right)_{\sigma(\text { bool })}=\left(T_{\text {NAT }}\right)_{\text {nat }}$

$$
=\{[0],[\operatorname{suc}(0)], \ldots\}
$$

$\operatorname{true}_{\left.\left(T_{\text {NAT }}\right)\right|_{\sigma}}=\sigma(\text { true })_{T_{\text {NAT }}}=[0]$
$\mathrm{false}_{\left.\left(T_{\mathrm{NAT}}\right)\right|_{\sigma}}=\sigma\left(\mathrm{false}^{T_{\mathrm{NAT}}}=[0]\right.$
$\operatorname{not}_{\left.\left(T_{\text {NAT }}\right)\right|_{\sigma}}=\sigma(\text { not })_{T_{\text {NAT }}}=\operatorname{suc}_{T_{\text {NAT }}}$
$\operatorname{and}_{\left.\left(T_{\text {NAT }}\right)\right|_{\sigma}}=\sigma(\text { and })_{T_{\text {NAT }}}=\operatorname{plus}_{T_{\text {NAT }}}$
$\operatorname{or}_{\left.\left(T_{\text {NAT }}\right)\right|_{\sigma}}=\sigma(\text { or })_{T_{\mathrm{NAT}}}=\operatorname{times}_{T_{\text {NAT }}}$

Forget images of homomorphisms

Definition 7.16. Let $\sigma: \operatorname{sig}^{\prime} \rightarrow$ sig a signature morphism, $\mathfrak{A}, \mathfrak{B}$ sig-algebras and $h: \mathfrak{A} \rightarrow \mathfrak{B}$ a sig-homomorphism, then
$\left.h\right|_{\sigma}:=\left\{h_{\sigma(s)} \mid s \in S^{\prime}\right\}\left(\right.$ with sig' $\left.=\left(S^{\prime}, F^{\prime}, \tau^{\prime}\right)\right)$ is a sig'-homomorphism from $\left.\left.\mathfrak{A}\right|_{\sigma} \rightarrow \mathfrak{B}\right|_{\sigma}$ by setting

$$
\begin{aligned}
\left(\left.h\right|_{\sigma}\right)_{s}=h_{\sigma(s)}: & A_{\sigma(s)} \\
1 " & \rightarrow B_{\sigma(s)} \\
\left(\left.A\right|_{\sigma}\right)_{s} & \rightarrow\left(\left.B\right|_{\sigma}\right)_{s}
\end{aligned}
$$

$\left.h\right|_{\sigma}$ is called the forget image of h along σ

Forgetful functors

Let $\sigma: \operatorname{sig}^{\prime} \rightarrow \operatorname{sig}, \mathfrak{A}, \mathfrak{B}$, sig-algebras, $h: \mathfrak{A} \rightarrow \mathfrak{B}$, sig-homomorphism.
$\left.h\right|_{\sigma}=\left\{h_{\sigma(s)} \mid s \in S^{\prime}\right\}, \operatorname{sig}^{\prime}=\left(S^{\prime}, F^{\prime}, \tau^{\prime}\right)$, with
$\left.h\right|_{\sigma}:\left.\left.A\right|_{\sigma} \rightarrow B\right|_{\sigma}$ forget image of h along σ

$$
\begin{gathered}
\xrightarrow[\sigma^{\prime} \circ \sigma]{\longrightarrow} \operatorname{sig} \xrightarrow{\sigma^{\prime}} \operatorname{sig}^{\prime \prime} \\
\operatorname{sig}^{\prime} \quad
\end{gathered}
$$

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
Initial semantics
O000
Signature morphisms - Parameter passing

Forgetful functors

Properties of $\left.h\right|_{\sigma}$ (forget image of h along σ)

$$
\begin{array}{cc}
ש & ש \\
\left.\left.\mathfrak{A}\right|_{\sigma} \xrightarrow{\left.h\right|_{\sigma}} \mathfrak{B}\right|_{\sigma} & \mathfrak{A} \xrightarrow{h} \mathfrak{B}
\end{array}
$$

Compatible with identity, composition and homomorphisms.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 243

Initial semantics

Signature morphisms - Parameter passing
Parameter Specification Body [Formal]

Definition 7.17. Let Body[Formal] be a parameterized specification. $\sigma:$ Formal \rightarrow Actual signature morphism.
Semantics of the the "instantiation" i.e. parameter passing [Actual, σ].

$$
\begin{aligned}
& \sigma: \text { Formal } \rightarrow \text { Actual } \\
& \downarrow
\end{aligned}
$$

initial semantics of value. i. e.
$T_{\text {Body }}$ Actual, σ]
Can be seen as a mapping : $\quad S::\left(T_{\text {Actual }}, \sigma\right) \mapsto T_{\text {Body }[\text { Actual }, \sigma]}$
This mapping between initial algebras can be interpreted as correspondence between formal algebras \rightarrow body-algebras.

$$
\left.\left.\left(T_{\text {Actual }}\right)\right|_{\sigma} \mapsto\left(T_{\text {Body }[\text { Actual }, \sigma]}\right)\right|_{\sigma^{\prime}}
$$

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics
1000000000000000000000000000000000.000000000000

Semantics parameter passing

Semantics parameter passing

$\left.\left.\left(T_{\text {Actual }}\right)\right|_{\sigma} \mapsto\left(T_{\text {Body }[\text { Actual }, \sigma]}\right)\right|_{\sigma^{\prime}}$

$h_{\text {init }}: T_{\text {Actual }} \longrightarrow\left(T_{\text {Body }[\text { Actual }, \sigma]}\right)_{\left.\right|_{\text {Actual }}}$

Mapping between initial algebras

Properties of the signature morphism

Initial semantics
200
Semantics parameter passing
Parameter passing (Actual, σ)
Body[Formal]
$\sigma: \operatorname{sig}($ Formal $) \rightarrow \operatorname{sig}($ Actual) signature morphism

Precondition: sig(Actual) and sig(Value) strict.
Prof. Dr. K. Madener: Formal Specification and Verification Techniques: Introduction

> Initial semantics
000.00000000

Parameter passing (Actual, σ)

Forgetful functor: $\left.\right|_{\sigma}: \operatorname{Alg}(\operatorname{sig}) \rightarrow \mathrm{Alg}\left(\right.$ sig $\left.^{\prime}\right)$

$$
\mathfrak{A}_{\sigma} \text { for } \sigma: \operatorname{sig}^{\prime} \rightarrow \operatorname{sig}
$$

$h: \mathfrak{A} \rightarrow \mathfrak{B}$ sig-homomorphism

$$
\left.h\right|_{\sigma}:\left.\left.\mathfrak{A}\right|_{\sigma} \rightarrow \mathfrak{B}\right|_{\sigma}
$$

sig'-homomorphism

Initial semantics
迤

Parameter passing (Actual, σ)

Problems: 1) $\left.\left(T_{\text {Actual }}\right)\right|_{\sigma} \notin \mathrm{Alg}($ Formal $), \quad$ 2) $h_{\text {init }}$ is not a bijection. Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 251

$$
\begin{aligned}
& \text { Initial semantics } \\
& \text { OOOOOOOOS }
\end{aligned}
$$

$00000000000000000000000000000000000000 \bullet 000000$

Specification morphisms

Definition 7.18. Let spec $=\left(s i g^{\prime}, E^{\prime}\right)$, spec $=($ sig, $E)$ (general) specifications.
A signature morphism $\sigma:$ sig $^{\prime} \rightarrow$ sig is called a specification morphism, if $\sigma(s)=\sigma(t) \in \operatorname{Th}(E)$ for every $s=t \in E^{\prime}$ holds.

Write: $\quad \sigma:$ sped $^{\prime} \rightarrow$ spec
Fact: If $\mathfrak{A} \in \operatorname{Alg}($ spec $)$ then $\left.\mathfrak{A}\right|_{\sigma} \in \operatorname{Alg}\left(\right.$ spec' $\left.^{\prime}\right)$
i.e. $\quad \mid \sigma: \operatorname{Alg}($ spec $) \rightarrow \mathrm{Alg}\left(\right.$ sped $\left.^{\prime}\right)$!

Often „only"the weaker condition $\sigma(s)=\sigma(t) \in \operatorname{ITh}(E)$ is demanded in above definition. More spec morphisms!
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction \quad 回

Initial semantics Specification morphisms

Semantically correct parameter passing

Definition 7.19. A parameter passing for Body[Formal] is a pair (Actual, σ): Actual an equational specification and $\sigma:$ Formal \rightarrow Actual a specification morphism.

Hence:: $\left.\left(T_{\text {Actual }}\right)\right|_{\sigma} \in \operatorname{Alg}$ (Formal)

- Demand also $h_{\text {init }}$ bijection. Proof tasks become easier.

There are syntactical restrictions that guarantee this.
Algebraic Specification languages
CLEAR, Act-one, -Cip-C, Affirm, ASL, Aspik, OBJ, ASF, $\rightsquigarrow+$ newer languages: - Spectrum, - Troll.

Example (Cont.)

spec LIST[ELEMENT]

use ELEMENT
sorts list
ops nil $: \rightarrow$ list
: elem, list \rightarrow list
insert : elem, list \rightarrow list
insertsort : list \rightarrow list
case : bool, list, list \rightarrow list
sorted : list \rightarrow bool

Initial semantics
0.0000000
$000 \bullet 0000$

Example

Example 7.20

$$
\text { Formal :: } \begin{cases}\text { spec } & \text { ELEMENT } \\ \text { use } & \text { BOOL } \\ \text { sorts } & \text { elem } \\ \text { ops } & : \leq \text {. elem, elem } \rightarrow \text { bool } \\ \text { eqns } & x \leq x=\text { true } \\ & \operatorname{imp}(x \leq y \text { and } y \leq z, x \leq z)=\text { true } \\ & x \leq y \text { or } y \leq x=\text { true }\end{cases}
$$

253

Property: sorted $($ insertsort $(I))=$ true
\qquad

Example (Cont.)
$A C T U A L \equiv B O O L$
$\sigma:$ elem \rightarrow bool, bool \rightarrow bool
$\leq . \rightarrow \mathrm{impl}$
The equations of ELEMENT are in $\operatorname{Th}(\mathrm{BOOL})$
\rightsquigarrow Specification morphism

Prof. Dr. K. Madener: Formal Specification and Verification Techniques: Introduction

Initial semantics
000000000
Specification morphisms
Example (Cont.)

Abstract Reduction Systems: Fundamental notions and notations

Definition 8.1. $(U, \rightarrow) \cup \neq \varnothing, \rightarrow$ binary relation is called a reduction system.

- Notions:
- $x \in U$ reducible iff $\exists y: x \rightarrow y$ irreducible if not reducible.
- $x \xrightarrow[*]{*} y$ reflexive, transitive closure, $x \xrightarrow{+} y$ transitive closure,
$x \stackrel{*}{\longleftrightarrow} y$ reflexive, symmetrical, transitive closure.
$\triangleright x \xrightarrow{i} y i \in \mathbb{N}$ defined as usual. Notice $x \xrightarrow{*} y=\bigcup_{i \in \mathbb{N}} x \xrightarrow{i} y$.
- $x \xrightarrow{*} y, y$ irreducible, then y is a normal form for $x . A b b:: ~ N F$
$\Delta \Delta(x)=\{y \mid x \rightarrow y\}$, the set of direct successors of x.
- $\Delta^{+}(x)$ proper successors, $\Delta^{*}(x)$ successors.
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 259

Reduction Systems
0.00000000
-00000000000000
Notions and notations

- $\Lambda(x)=\max \{i \mid \exists y: x \xrightarrow{i} y\}$ derivational complexity. $\Lambda: U \rightarrow \mathbb{N}_{\infty}$
$\rightarrow \rightarrow$ noetherian (terminating, satisfies the chain condition), in case there is no infinite chain $x_{1} \rightarrow x_{2} \rightarrow x_{3} \rightarrow \cdots$.
- \rightarrow bounded, in case that $\Lambda: U \rightarrow \mathbb{N}$.
- \rightarrow cycle free $:: \neg \exists x \in U: x \xrightarrow{+} x$
\triangleright locally finite $x \xrightarrow{\nearrow}\}$, i.e. $\Delta(x)$ finite for every x.

is not a specification morphism

not $($ false $)=$ true
not $($ true $)=$ false does not hold!.

Notions and notations

Simple properties:

- \rightarrow cycle free, then $\xrightarrow{*}$ partial ordering.
$\rightarrow \rightarrow$ noetherian, then \rightarrow cycle free.
- \rightarrow bounded, so \rightarrow noetherian
but not the other way around!
$\bullet \rightarrow \subset \stackrel{+}{\Rightarrow}$ and \Rightarrow noetherian, then \rightarrow noetherian.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction		261
Reduction Systems 00000000000000000000000000000	Term Rewriting Systems 000000000000000000000000000000000	
Principle of the Noetherian Induction		

Principle of the Noetherian Induction

Definition 8.2. \rightarrow binary relation on U, P predicate on U.
P is \rightarrow-complete, when

$$
\forall x\left[\left(\forall y \in \Delta^{+}(x): P(y)\right) \supset P(x)\right]
$$

Fact:

PNI: If \rightarrow is noetherian and P is \rightarrow-complete, then $P(x)$ holds for all $x \in U$.

Applications

Lemma 8.3. \rightarrow noetherian, then each $x \in U$ has at least one normal form.

More applications to come.... See e.g. König's lemma.
Definition 8.4. Main properties for (U, \rightarrow)

- \rightarrow confluent iff $\stackrel{*}{\leftarrow} \circ \xrightarrow{*} \subseteq \xrightarrow{*} \circ \stackrel{*}{\leftarrow}$
- \rightarrow Church-Rosser iff $\stackrel{*}{\longleftrightarrow} \subseteq \stackrel{*}{\longrightarrow} 0 \stackrel{*}{\leftarrow}$
\rightarrow locally-confluent iff $\longleftarrow \circ \longrightarrow \subseteq \xrightarrow{*} 0 \stackrel{*}{\leftarrow}$
$\rightarrow \rightarrow$ strong-confluent iff $\longleftarrow \circ \longrightarrow \subseteq \xrightarrow{*} 0 \longleftarrow 1$
- Abbreviation: joinable \downarrow :

$$
\downarrow=\xrightarrow{*} 0 \stackrel{*}{\longleftrightarrow}
$$

Reduction Systems
$0000 \bullet 0000$
Important relations
Important relations

Lemma 8.5. \rightarrow confluent iff \rightarrow Church-Rosser.
Theorem 8.6. (Newmann Lemma) Let \rightarrow be noetherian, then

$$
\rightarrow \text { confluent iff } \rightarrow \text { locally confluent. }
$$

Consequence 8.7. a) Let \rightarrow confluent and $x \stackrel{*}{\longleftrightarrow} y$.
i) If y is irreducible, then $x \xrightarrow{*} y$. In particular, when x, y irreducible, then $x=y$.
ii) $x \stackrel{*}{\longleftrightarrow} y$ iff $\Delta^{*}(x) \cap \Delta^{*}(y) \neq \varnothing$.
iii) If x has a $N F$, then it is unique.
iv) If \rightarrow is noetherian, then each $x \in U$ has exactly one NF: notation $x \downarrow$
b) If in (U, \rightarrow) each $x \in U$ has exactly one $N F$, then \rightarrow is confluent (in general not noetherian).

Reduction Syst
-000
00000000000000000000 \qquad

Sufficient conditions for confluence
Termination: Confluence iff local confluence
Without termination this doesn't hold!
or

Task: Find sufficient computable conditions which guarantee these properties.

Termination and Confluence

Sufficient conditions/techniques
Lemma 8.9. $(U, \rightarrow),(M, \succ), \succ$ well founded (WF) partial ordering. If there is $\varphi: U \rightarrow M$ with $\varphi(x) \succ \varphi(y)$ for $x \rightarrow y$, then \rightarrow is noetherian.

Example 8.10. Often $(\mathbb{N},>),\left(\Sigma^{*},>\right)$ can be used.
For $w \in \Sigma^{*}$ let $|w|$ length, $|w|_{a}$ a-length $a \in \Sigma$.
WF-partial orderings on Σ^{*}

- $x>y$ iff $|x|>|y|$
- $x>y$ iff $|x|_{a}>|y|_{a}$
- $x>y$ iff $|x|>|y|,|x|=|y| \wedge x \succ_{\text {lex }} y$

Notice that pure lex-ordering on Σ^{*} is not noetherian.

Theorem
8.11. \rightarrow is confluent iff for every $u \in U$ holds:

$$
\text { from } u \rightarrow x \text { and } u \xrightarrow{*} y \text { it follows } x \downarrow y .
$$

$>$ one-sided localization of confluence \triangleleft
Theorem 8.12. If \rightarrow is strong confluent, then \rightarrow is confluent.

Not a necessary condition:

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Combination of Relations

Definition 8.13. Two relations $\rightarrow_{1}, \rightarrow_{2}$ on U commute, iff

$$
\stackrel{*}{\leftarrow} \circ \stackrel{*}{\rightarrow}_{2} \subseteq \stackrel{*}{\rightarrow}{ }_{2} \circ \stackrel{*}{\leftarrow}
$$

They commute locally iff $1 \leftarrow \circ \rightarrow_{2} \subseteq \xrightarrow{*}_{2} \circ_{1} \stackrel{*}{\leftarrow}$.

commutating locally commutating

Reduction Systems
0000000000
00000000000000000 \qquad Term Rewriting Systems

Combination of Relations

Lemma 8.14. Let $\rightarrow=\rightarrow_{1} \cup \rightarrow_{2}$
(1) If \rightarrow_{1} and \rightarrow_{2} commute locally and \rightarrow is noetherian, then \rightarrow_{1} and $\rightarrow 2$ commute.
(2) If \rightarrow_{1} and \rightarrow_{2} are confluent and commute, then \rightarrow is also confluent.

Problem: Non-Orientability:
(a) $x+0=x, x+s(y)=s(x+y)$
(b) $x+y=y+x,(x+y)+z=x+(y+z)$
\triangleright Problem: permutative rules like (b) \triangleleft

Non-Orientability

Definition 8.15. Let (U, \rightarrow, H) with \rightarrow a binary relation, H a symmetrical relation.

$$
\text { Let } \begin{aligned}
H & =\leftrightarrow \cup H, \quad \sim=\stackrel{*}{H}, \quad \approx=\stackrel{*}{H}, \\
\rightarrow \sim & =\sim 0 \rightarrow 0 \sim, \quad \downarrow \sim=\stackrel{*}{\rightarrow} \circ \sim 0 \stackrel{*}{\leftarrow} .
\end{aligned}
$$

If $x \downarrow \sim y$ holds, then $x, y \in U$ are called joinable modulo \sim.
\rightarrow is called Church-Rosser modulo \sim iff $\approx \subseteq \downarrow_{\sim}$
\rightarrow is called locally confluent modulo \sim iff $\leftarrow \circ \rightarrow \subseteq \downarrow_{\sim}$
\rightarrow is called locally coherent modulo \sim iff $\leftarrow \circ \mapsto \subseteq \downarrow_{\sim}$

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction		271
Reduction Systems 00000000000000000000000000000	Term Rewriting Systems 000000000000000000000000000000000	
Sufficient conditions for confluence		
Non-Orientability -	Modulo	

Theorem 8.16. Let \rightarrow ~ be terminating. Then \rightarrow is Church-Rosser modulo \sim iff \sim is local confluent modulo \sim and local coherent modulo \sim.

[^3]Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 272

Representation of equivalence relations by convergent reduction relations

Situation: Given: (U, H) and a noetherian $\mathrm{PO}>$ on U, find: (U, \rightarrow) with
(i) $\rightarrow \subseteq>, \rightarrow$ convergent on U and
(ii) $\stackrel{*}{\longleftrightarrow}=\sim$ with $\sim=\stackrel{*}{\vdash}$

Idea: Approximation of \rightarrow by stepwise transformations

$$
(H, \emptyset)=\left(\vdash_{0}, \rightarrow_{0}\right) \vdash\left(\vdash_{1}, \rightarrow_{1}\right) \vdash\left(\vdash_{2}, \rightarrow_{2}\right) \vdash \ldots
$$

Invariant in i-th. step:
(i) $\sim=\left(H_{i} \cup \leftrightarrow_{i}\right)^{*}$ and
(ii) $\rightarrow_{i} \subseteq>$

Goal: $H_{i}=\emptyset$ for an i and \rightarrow_{i} convergent

Representation of equivalence relations by convergent reduction relations

Allowed operations in i-th. step:
(1) Orient:: $u \rightarrow_{i+1} v$, if $u>v$ and $u H_{i} v$
(2) New equivalences:: $u \vdash_{i+1} v$, if $u{ }_{i} \leftarrow w \rightarrow_{i} v$
(3) Simplify:: $u H_{i} v$ to $u H_{i+1} w$, if $v \rightarrow_{i} w$

Goal: Limit system

$$
\rightarrow=\rightarrow_{\infty}=\bigcup\left\{\rightarrow_{i} \mid i \in \mathbb{N}\right\} \text { with } H_{\infty}=\emptyset
$$

Hence:
$-\longrightarrow_{\infty} \subseteq>$, i.e. noetherian
$-\stackrel{*}{\longleftrightarrow}=\sim$
$-\longrightarrow \infty$ convergent

Grafical representation of an equivalence relation

00000000000000000000000000000 \qquad Term Rewriting Systems
00000000000000

Transformation of an equivalence relation

(a)
(b)

Inference system for the transformation of an equivalence relation

Definition 8.17. Let $>$ be a noetherian $P O$ on U. The inference system \mathcal{P} on objects (\mapsto, \rightarrow) contains the following rules:
(1) Orient

$$
\frac{(H \cup\{u \mapsto v\}, \rightarrow)}{(H, \rightarrow \cup\{u \rightarrow v\})} \text { if } u>v
$$

(2) Introduce new consequence

$$
\frac{(\mapsto, \rightarrow)}{(\mapsto \cup\{u \mapsto v\}, \rightarrow)} \text { if } u \leftarrow \circ \rightarrow v
$$

(3) Simplify

$$
\frac{(H \cup\{u \mapsto v\}, \rightarrow)}{(H \cup\{u \mapsto w\}, \rightarrow)} \text { if } v \rightarrow w
$$

$\begin{array}{ll}\text { Reduction Systems } & \text { Term Rewriting Systems } \\ 000000000000000000000000000 \\ 00000000000\end{array}$
Equivalence relations and reduction relations
Inference system (Cont.)
(4) Eliminate identities

$$
\frac{(\mapsto \cup\{u \mapsto u\}, \rightarrow)}{(\mapsto, \rightarrow)}
$$

$(\mapsto, \rightarrow) \vdash_{\mathcal{P}}\left(\vdash^{\prime}, \rightarrow^{\prime}\right)$ if
(\mapsto, \rightarrow) can be transformed in one step with a rule \mathcal{P} into $\left(\vdash^{\prime}, \rightarrow^{\prime}\right)$.
$\vdash_{\mathcal{P}}^{*}$ transformation relation in finite number of steps with \mathcal{P}.
A sequence $\left(\left(\vdash_{i}, \rightarrow_{i}\right)\right)_{i \in \mathbb{N}}$ is called \mathcal{P}-derivation, if

$$
\left(\vdash_{i}, \rightarrow_{i}\right) \vdash_{\mathcal{P}}\left(\vdash_{i+1}, \rightarrow_{i+1}\right) \text { for every } i \in \mathbb{N}
$$

$00000000000000000000 \bullet 000000000$ \qquad

Transformation with the inference system

[^4]Properties of the inference system

Lemma 8.18. Let $(\mapsto, \rightarrow) \vdash_{\mathcal{P}}\left(\vdash^{\prime}, \rightarrow^{\prime}\right)$
(a) If $\rightarrow \subseteq>$, then $\rightarrow^{\prime} \subseteq>$
(b) $\quad(\mapsto \cup \leftrightarrow)^{*}=\left(\vdash^{\prime} \cup \leftrightarrow^{\prime}\right)^{*}$

Problem:
When does \mathcal{P} deliver a convergent reduction relation \rightarrow ?
How to measure progress of the transformation?
Idea: Define an ordering $>_{\mathcal{P}}$ on equivalence-proofs, and prove that the inference system \mathcal{P} decreases proofs with respect to $>_{\mathcal{P}}$!
In the proof ordering $\xrightarrow{*} 0 \stackrel{*}{\leftarrow^{*}}$ proofs should be minimal.

Equivalence Proofs

Definition 8.19. Let (\mapsto, \rightarrow) be given and $>$ a noetherian $P O$ on U.
Furthermore let $(\mapsto \cup \leftrightarrow)^{*}=\sim$.
A proof for $u \sim v$ is a sequence $u_{0} *_{1} u_{1} *_{2} \cdots *_{n} u_{n}$ with $*_{i} \in\{H, \leftarrow, \rightarrow\}$
$u_{i} \in U, u_{0}=u, u_{n}=v$ and for every $i u_{i} *_{i+1} u_{i+1}$ holds.
$P(u)=u$ is proof for $u \sim u$.
A proof of the form $u \xrightarrow{*} z \stackrel{*}{\leftarrow} v$ is called V-proof.

$$
\begin{gathered}
\text { Proofs for } a \sim e \text { : } \\
P_{1}(a, e)=a \mapsto b \rightarrow c \mapsto d \leftarrow e \quad P_{2}(a, e)=a \mapsto b \rightarrow c \leftarrow e
\end{gathered}
$$

Reduction Systems
00000000000000•000000 \qquad Term Rewriting Systems

Proof orderings

Two proofs in (H, \rightarrow) are called equivalent, if they prove the equivalence of the same pair (u, v). Hence e.g. $P_{1}(a, e)$ and $P_{2}(a, e)$ are equivalent.

Notice: If $P_{1}(u, v), P_{2}(v, w)$ and $P_{3}(w, z)$ are proofs, then $P(u, z)=P_{1}(u, v) P_{2}(v, w) P_{3}(w, z)$ is also a proof.

Definition 8.20. A proof ordering $>_{B}$ is a $P O$ on the set of proofs that is monotonic, i.e.. $P>_{B} Q$ for each subproof, and if $P>_{B} Q$ then $P_{1} P P_{2}>_{B} P_{1} Q P_{2}$.

Lemma 8.21. Let $>$ be noetherian $P O$ on U and (\mapsto, \rightarrow), then there exist noetherian proof orderings on the set of equivalence proofs.

Proof: Using multiset orderings.

Transformation with the if
Multisets and the multiset ordering

Instruments: Multiset ordering

Objects: $U, \operatorname{Mult}(U)$ Multisets over U
$A \in \operatorname{Mult}(U)$ iff $A: U \rightarrow \mathbb{N}$ with $\{u \mid A(u)>0\}$ finite.
Operations: $\cup, \cap,-$

$$
\begin{gathered}
(A \cup B)(u):=A(u)+B(u) \\
(A \cap B)(u):=\min \{A(u), B(u)\} \\
(A-B)(u):=\max \{0, A(u)-B(u)\}
\end{gathered}
$$

Explicit notation:

$$
U=\{a, b, c\} \text { e.g. } A=\{\{a, a, a, b, c, c\}\}, B=\{\{c, c, c\}\}
$$

$$
\begin{array}{ll}
\text { Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction } & 283 \\
\begin{array}{ll}
\text { Reduction Systems } & \text { Term Rewriting Systems } \\
00000000000000000000000 \bullet 0000 & 0000000000000000000000000000000 \\
\hline \text { Transformation with the inference system } &
\end{array}
\end{array}
$$

Multiset ordering

Definition 8.22. Extension of $(U,>)$ to $(\operatorname{Mult}(U), \gg)$

$$
\begin{gathered}
A \gg B \text { iff there are } X, Y \in M u l t(U) \text { with } \emptyset \neq X \subseteq A \text { and } \\
B=(A-X) \cup Y, \text { so that } \forall y \in Y \quad \exists x \in X x>y
\end{gathered}
$$

Properties:
(1) $>\mathrm{PO} \rightsquigarrow \gg \mathrm{PO}$
(2) $\left\{m_{1}\right\} \gg\left\{m_{2}\right\}$ iff $m_{1}>m_{2}$
(3) $>$ total $\rightsquigarrow \gg$ total
(4) $A \gg B \rightsquigarrow A \cup C \gg B \cup C$
(5) $B \subset A \rightsquigarrow A \gg B$
(6) $>$ noetherian iff \gg noetherian

Example: $a<b<c$ then $B \gg A$
\qquad

Construction of the proof ordering

Let (H, \rightarrow) be given and $>$ a noetherian PO on U with $\rightarrow \subset>$
Assign to each ,,atomic" proof a complexity
$c(u * v)= \begin{cases}\{u\} & \text { if } u \rightarrow v \\ \{v\} & \text { if } u \leftarrow v \\ \{\{u, v\}\} & \text { if } u \mapsto v\end{cases}$
Extend this complexity to "composed" proofs through
$c(P(u))=\emptyset$
$c(P(u, v))=\left\{\left\{c\left(u_{i} *_{i+1} u_{i+1}\right) \mid i=0, \ldots n-1\right\}\right\}$
Notice: $c(P(u, v)) \in \operatorname{Mult}(\operatorname{Mult}(U))$
Define ordering on proofs through

$$
P>_{\mathcal{P}} Q \text { iff } c(P) \ggg c(Q)
$$

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
 Term Rewriting Systems
 Reduction Systems
 \qquad Term Rewriting Systems 00000000000000

Construction of the proof ordering

Fact : $>_{\mathcal{P}}$ is notherian proof ordering!
Which proof steps are large and which small?
Consider:
(a) $P_{1}=x \leftarrow u \rightarrow y, P_{2}=x \mapsto y$
$c\left(P_{1}\right)=\{\{\{u\},\{u\}\}\} \ggg\{\{x, y\}\}=c\left(P_{2}\right)$ since $u>x$ and $u>y$ $\rightsquigarrow P_{1}>_{\mathcal{P}} P_{2}$
analogously for
(b) $P_{1}=x H y, P_{2}=x \rightarrow y$
(c) $P_{1}=u \mapsto v, P_{2}=u \mapsto w \leftarrow v$
(d) $P_{1}=u \mapsto v, P_{2}=u \rightarrow w \leftarrow v$

Fair Deductions in \mathcal{P}

Definition 8.23 (Fair deduction). Let $\left(H_{i}, \rightarrow_{i}\right)_{i \in \mathbb{N}}$ be a \mathcal{P}-deduction. Let

$$
H^{\infty}=\bigcup_{i \geq 0} \bigcap_{j \geq i} H_{i} \text { and } \rightarrow^{\infty}=\bigcup_{i \geq 0} \rightarrow_{i}
$$

The \mathcal{P}-Deduction is called fair, in case
(1) $H^{\infty}=\emptyset$ and
(2) If $x{ }^{\infty} \leftarrow u \rightarrow^{\infty} y$, then there exists $k \in \mathbb{N}$ with $x \vdash_{k} y$.

Lemma 8.24. Let $\left(\vdash_{i}, \rightarrow_{i}\right)_{i \in \mathbb{N}}$ be a fair \mathcal{P}-deduction
(a) For each proof P in $\left(\vdash_{i}, \rightarrow_{i}\right)$ there is an equivalent proof P^{\prime} in $\left(H_{i+1}, \rightarrow_{i+1}\right)$ with $P \geq_{\mathcal{P}} P^{\prime}$.
(b) Let $i \in \mathbb{N}$ and P proof in $\left(\vdash_{i}, \rightarrow_{i}\right)$ which is not a V-proof. Then there exists a $j>i$ and an equivalent proof P^{\prime} in $\left(H_{j}, \rightarrow_{j}\right)$ with $P>_{\mathcal{P}} P^{\prime}$.

Main result

Theorem 8.25. Let $\left(\vdash_{i}, \rightarrow_{i}\right)_{i \in \mathbb{N}}$ a fair \mathcal{P}-Deduction and $\rightarrow=\rightarrow^{\infty}$. Then
(a) If $u \sim v$, then there exists an $i \in \mathbb{N}$ with $u \xrightarrow{*}_{i} \circ_{i}{ }_{i}^{*} v$
(b) \rightarrow is convergent and $\stackrel{*}{\leftrightarrow}=\sim$

Prof. Dr. K. Madener: Formal Specification and Verification Techniques: Introduction 288

Term Rewriting Systems

Goal: Transform E in R, so that $=_{E}=\stackrel{*}{\longleftrightarrow} R$ holds and \rightarrow_{R} has "sufficiently"good termination and confluence properties. For instance convergent or confluent. Often it is enough when these properties hold "only" on the set of ground terms.

Notice:

- The condition $V(r) \subseteq V(I)$ in the rule $I \rightarrow r$ is necessary for the termination.
If neither $V(r) \subseteq V(I)$ nor $V(I) \subseteq V(r)$ in an equation $I=r$ of a specification, we have used superfluous variables in some function's definition.
- \rightarrow_{R} is compatible with substitutions and term replacement. i.e. From $s \rightarrow_{R} t$ also $\sigma(s) \rightarrow_{R} \sigma(t)$ and $u[s]_{p} \rightarrow_{R} u[t]_{P}$
- In particular: $\quad={ }_{R}=\stackrel{*}{\longleftrightarrow} R$

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{n}\right):\left(\left(T_{\text {spec }}\right)_{s_{1}} \times \ldots\left(T_{\text {spec }}\right)_{s_{n}}\right) \rightarrow\left(T_{\text {spec }}\right)_{s} \\
& f\left(\left[r_{1}\right], \ldots,\left[r_{n}\right]\right):=\left[\operatorname { r e p } \left(f\left(\operatorname{rep}\left(r_{1}\right), \ldots,\left(\operatorname{rep}\left(r_{n}\right)\right)\right]\right.\right.
\end{aligned}
$$

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction Systems
0000000000 Principles

Term Rewriting Systems

Term Rewriting Systems

Definition 9.1. Rules, rule sets, reduction relation

- Sets of variables in terms: For $t \in \operatorname{Term}_{s}(F, V)$ let $V(t)$ be the set of the variables in t (Recursive definition! always finite)
Notice: $V(t)=\emptyset$ iff t is ground term.
- A rule is a pair
$(I, r), I, r \in \operatorname{Term}_{s}(F, V)(s \in S)$ with $\operatorname{Var}(r) \subseteq \operatorname{Var}(I)$ Write: $l \rightarrow r$
- A rule system R is a set of rules
R defines a reduction relation \rightarrow_{R} over $\operatorname{Term}(F, V)$ by: $t_{1} \rightarrow_{R} t_{2} \quad$ iff $\exists I \rightarrow r \in R, p \in O\left(t_{1}\right), \sigma$ substitution :

$$
\left.t_{1}\right|_{p}=\sigma(I) \wedge t_{2}=t_{1}[\sigma(r)]_{p}
$$

- Let $\left(\operatorname{Term}(F, V), \rightarrow_{R}\right)$ be the reduction system defined by R (term rewriting system).
- A rule system R defines a congruence $=R_{R}$ on $\operatorname{Term}(F, V)$ just by considering the rules as equations.

Definition 9.2. Let $I, t \in \operatorname{Term}_{s}(F, V)$. A substitution σ is called a match (matching substitution) of I on t, if $\sigma(I)=t$.

Consequence 9.3. Properties

- $\forall \sigma$ substitution $O(I) \subseteq O(\sigma(I))$.
- $\exists \sigma: \sigma(I)=t$ iff for σ defined through
$\forall u O(I): \|_{u}=x \in V \rightsquigarrow u \in O(t) \wedge \sigma(x)=\left.t\right|_{u}$
σ is a substitution $\wedge \sigma(I)=t$.
- If there is such a substitution, then it is unique on $V(I)$. The existence and if possible calculation are effective.
- It is decidable whether t is reducible with rule $I \rightarrow r$.
- If R is finite, then $\Delta(s)=\left\{t: s \rightarrow_{R} t\right\}$ is finite and computable.

Examples

Example 9.4. Integer numbers

sig $: 0: \rightarrow$ int	eqns $: 1:: p(0)=0$
$s, p:$ int \rightarrow int	$2:: p(s(x))=x$
if0 $:$ int, int, int \rightarrow int	$3::$ if $0(0, x, y)=x$
$F:$ int, int \rightarrow int	$4::$ if $0(s(z), x, y)=y$
	$5:: F(x, y)=$ if $0(x, 0, F(p(x), F(x, y)))$

Interpretation: $\langle\mathbb{N}, \ldots$,$\rangle spec- Algebra with functions$
$O_{\mathbb{N}}=0, s_{\mathbb{N}}=\lambda n . n+1$,
$p_{\mathbb{N}}=\lambda n$. if $n=0$ then 0 else $n-1$ fi
if $0_{\mathbb{N}}=\lambda i, j, k$. if $i=0$ then j else k fi
$F_{\mathbb{N}}=\lambda m, n .0$
Orient the equations from left to right \rightsquigarrow rules R (variable condition is fulfilled).
Is R terminating? Not with a syntactical ordering, since the left side is contained in the right side.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction	293
Reduction Systems Term Rewriting Systems 000000000000000000000000000 000000000000000000000000000000	
Principles	

Example (Cont.)

Reduction sequence

Equivalence

Definition 9.5. Let spec $=(\operatorname{sig}, E)$, spec ${ }^{\prime}=\left(\operatorname{sig}, E^{\prime}\right)$ be specifications.
They are equivalent in case $=_{E}==_{E^{\prime}}$, i.e.. $T_{\text {spec }}=T_{\text {spec }}$.
A rule system R over sig is equivalent to E, in case $=_{E}=\stackrel{*}{\longleftrightarrow} R$.
Notice: If R is finite, convergent, equivalent to E, then $=_{E}$ is decidable

$$
s={ }_{E} t \text { iff } s \downarrow=t \downarrow \text { i.e.. identical NF }
$$

For functional programs and computations in $T_{\text {spec }}$ ground convergence is suficient, i.e.. convergence on ground terms.
Problems: Decide whether

- R noetherian (ground noetherian)
- R confluent (ground confluent)
- How can we transform E in an equivalent R with these properties?

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction	
	Term Rewriting Systems
Reduction Systems	
0000000000000000000000000000	000000000000000000000000000000

Decidability questions

For finite ground term-rewriting-systems the problems are decidable.
For terminating systems deciding local confluence is sufficient, i.e.. out of $t_{1} \leftarrow t \rightarrow t_{2}$ prove $t_{1} \downarrow t_{2} \rightsquigarrow$ confluent.

\rightsquigarrow Critical pairs

Unification, Most General Unifier

Definition 9.8. Let $V^{\prime} \subseteq V, \sigma, \tau$ be substitutions.

- $\sigma \preceq \tau\left(V^{\prime}\right)$ iff $\exists \rho$ substitution : $\left.\rho \circ \sigma\right|_{V^{\prime}}=\tau \mid V^{\prime}$

Quote: σ is more general than τ over V^{\prime}

- $\sigma \approx \tau\left(V^{\prime}\right)$ iff $\sigma \preceq \tau\left(V^{\prime}\right) \wedge \tau \preceq \sigma\left(V^{\prime}\right)$
- $\sigma \prec \tau\left(V^{\prime}\right)$ iff $\tau \preceq \sigma\left(V^{\prime}\right) \wedge \neg\left(\sigma \preceq \tau\left(V^{\prime}\right)\right)$
- Notice: \prec is noetherian partial ordering on the substitutions.

Question: Let s, t be unifiable. Is there a most general unifier mgu (s, t) over $V=\operatorname{Var}(s) \cup \operatorname{Var}(t)$?
i.e.. for any unifier σ of s, t always $m g u(s, t) \preceq \sigma(V)$ holds.

Is mgu(s, t) unique? (up to variable renaming).
$\sigma::\left\{x^{\prime} \leftarrow x, y^{\prime} \leftarrow x^{-1}, x \leftarrow x\right\} \rightsquigarrow \sigma\left(\left.l_{1}\right|_{1}\right)=\sigma\left(I_{2}\right)$

- I_{1} "unifiable" with I_{2} with substitution
$\sigma::\left\{x^{\prime} \leftarrow x, y^{\prime} \leftarrow y, z \leftarrow(x \cdot y)^{-1}, x \leftarrow x \cdot y\right\} \rightsquigarrow \sigma\left(I_{1}\right)=\sigma\left(I_{2}\right)$

Subsumption, unification
Definition 9.6. Subsumption ordering on terms:
$s \preceq t$ iff $\exists \sigma$ substitution : $\sigma(s)$ subterm of t
$s \approx t$ iff $\quad(s \preceq t \wedge t \preceq s)$
$s \succ t$ iff $\quad(t \preceq s \wedge \neg(s \preceq t))$
\succeq is noetherian partial ordering over Term (F, V) Proof!.
Notice:
$O(\sigma(t))=O(t) \cup \bigcup_{w \in O(t):\left.t\right|_{w=x \in V}\{w v: v \in O(\sigma(x))\}, ~}$
Compatibility properties:
$\left.t\right|_{u}=\left.t^{\prime} \rightsquigarrow \sigma(t)\right|_{u}=\sigma\left(t^{\prime}\right)$
$\left.t\right|_{u}=\left.x \in V \rightsquigarrow \sigma(t)\right|_{u v}=\left.\sigma(x)\right|_{v} \quad(v \in O(\sigma(x)))$
$\sigma(t)\left[\sigma\left(t^{\prime}\right)\right]_{u}=\sigma\left(t\left[t^{\prime}\right]_{u}\right)$ for $u \in O(t)$
Definition 9.7. $s, t \in \operatorname{Term}(F, V)$ are unifiable iff there is a substitution σ with $\sigma(s)=\sigma(t)$. σ is called a unifier of s and t.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction		299
Reduction Systems 000000000000000000000000000000	Term Rewriting Systems 000000000000000000000000000000000	

Unification's problem and its solution

Definition 9.9. \quad A unification's problem is given by a set $E=\left\{s_{i} \stackrel{?}{=} t_{i}: i=1, \ldots, n\right\}$ of equations.

- σ is called a solution (or a unifier) in case that $\sigma\left(s_{i}\right)=\sigma\left(t_{i}\right)$ for $i=1, \ldots, n$.
- If $\tau \succeq \sigma(\operatorname{Var}(E))$ holds for each solution τ of E, then $\operatorname{mgu}(E):=\sigma$ most general solution or most general unifier.
- Let $\operatorname{Sol}(E)$ be the set of the solutions of E. E and E^{\prime} are equivalent, if $\operatorname{Sol}(E)=\operatorname{Sol}\left(E^{\prime}\right)$.
- E^{\prime} is in solved form, in case that $E^{\prime}=\left\{x_{j} \stackrel{?}{=} t_{j}: x_{i} \neq x_{j}(i \neq j), x_{i} \notin \operatorname{Var}\left(t_{j}\right)(1 \leq i \leq j \leq m)\right\}$
- E^{\prime} is a solved form for E, if E^{\prime} is in solved form and equivalent to E with $\operatorname{Var}\left(E^{\prime}\right) \subseteq \operatorname{Var}(E)$.
\qquad

Examples

Example 9.10. Consider

$$
\begin{array}{lll}
\rightsquigarrow s=f(x, g(x, a)) & \stackrel{?}{=} & f(g(y, y), z)=t \\
& \rightsquigarrow x \stackrel{?}{=} g(y, y) & g(x, a) \stackrel{?}{=} z
\end{array} \quad \text { split } \quad \begin{array}{lll}
\rightsquigarrow x \stackrel{?}{=} g(y, y) & g(g(y, y), a) \stackrel{?}{=} z & \text { merge } \\
\rightsquigarrow \sigma:: x \leftarrow g(y, y) & z \leftarrow g(g(y, y), a) & y \leftarrow y
\end{array}
$$

- $f(x, a) \stackrel{?}{=} g(a, z) \quad$ unsolvable (not unifiable).
- $x \stackrel{?}{=} f(x, y) \quad$ unsolvable, since $f(x, y)$ not x free.
- $x \stackrel{?}{=} f(a, y) \rightsquigarrow$ solution $\sigma:: x \leftarrow f(a, y)$ is the most general solution.

Inference system for the unification

Definition 9.11. Calculus UNIFY. Let $\sigma=$ be the binding set.
(1) Erase $\frac{(E \cup\{s \stackrel{?}{=} s\}, \sigma)}{(E, \sigma)}$
(2) Split (Decompose) $\frac{\left(E \cup\left\{f\left(s_{1}, \ldots, s_{m}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right)\right\}, \sigma\right)}{z \text { (unsolvable) }}$ if $f \neq g$

$$
\frac{\left(E \cup\left\{f\left(s_{1}, \ldots, s_{m}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{m}\right)\right\}, \sigma\right)}{\left(E \cup\left\{s_{i} \stackrel{?}{=} t_{i}: i=1, \ldots, m\right\}, \sigma\right)}
$$

(3) Merge (Solve) $\frac{(E \cup\{x \stackrel{?}{=} t\}, \sigma)}{(\tau(E), \sigma \cup \tau)}$ if $x \notin \operatorname{Var}(t), \tau=\{x \stackrel{?}{=} t\}$ "occur check" $\frac{(E \cup\{x \stackrel{?}{=} t\}, \sigma)}{\text { \& (unsolvable) }}$ if $x \in \operatorname{Var}(t) \wedge x \neq t$

Reduction Systems
00000000000000000000
Critical pairs, unificatio

Unification algorithms

Unification algorithms based on UNIFY start always with $\left(E_{0}, S_{0}\right):=$ (E, \emptyset) and return a sequence $\left(E_{0}, S_{0}\right) \vdash$ UNIFY $\ldots \vdash$ UNIFY $\left(E_{n}, S_{n}\right)$
They are successful in case they end with $E_{n}=\emptyset$, unsuccessful in case they end with $S_{n}=$ 々. S_{n} defines a substitution σ which represents $\operatorname{Sol}\left(S_{n}\right)$ and consequently also $\operatorname{Sol}(E)$.

Lemma 9.12. Correctness.
Each sequence $\left(E_{0}, S_{0}\right) \vdash_{\text {UNIFY }} \ldots \vdash$ UNIFY $\left(E_{n}, S_{n}\right)$ terminates: either with
\& (unsolvable, not unifiable) or with (\emptyset, S) and S is a solved form for E
Notice: Representations in solved form can be quite different
(Complexity!!)

$$
\begin{aligned}
& s \stackrel{?}{=} f\left(x_{1}, \ldots, x_{n}\right) \quad t \stackrel{?}{=} f\left(g\left(x_{0}, x_{0}\right), \ldots, g\left(x_{n-1}, x_{n-1}\right)\right) \\
& S=\left\{x_{i} \stackrel{?}{=} g\left(x_{i-1}, x_{i-1}\right): i=1, \ldots, n\right\} \text { and } \\
& S_{1}=\left\{x_{i+1} \stackrel{?}{=} t_{i}: t_{0}=g\left(x_{0}, x_{0}\right), t_{i+1}=g\left(t_{i}, t_{i}\right) i=0, \ldots, n-1\right\} \\
& \text { are both in solved form. The size of } t_{i} \text { grows exponentialy with } i .
\end{aligned}
$$

Prof. Dr. K. Madener: Formal Specification and Verification Techniques: Introduction has

Reduction Systems
0000000000
00000000000000000000
Term Rewriting Systems
Critical pairs, unification
$000000000000000 \bullet 00000000000000000$

Example

Example 9.13. Execution:

$$
f(x, g(a, b)) \stackrel{?}{=} f(g(y, b), x)
$$

E_{i}	S_{i}	rule
$f(x, g(a, b)) \stackrel{?}{=} f(g(y, b), x)$	\emptyset	
$x \stackrel{?}{=} g(y, b), x \stackrel{?}{=} g(a, b)$	\emptyset	split
$g(y, b) \stackrel{?}{=} g(a, b)$	$x \stackrel{?}{=} g(a, b)$	solve
$y \stackrel{?}{=} a, b \stackrel{?}{=} b$	$x \stackrel{?}{=} g(a, b)$	split
$b \stackrel{?}{=} b$	$x \stackrel{?}{=} g(a, b), y \stackrel{?}{=} a$	solve
	$x \stackrel{?}{=} g(a, b), y \stackrel{?}{=} a$	delete

Solution: $m g u=\sigma=\{x \leftarrow g(a, b), y \leftarrow a\}$

Critical pairs - Local confluence

Definition 9.14. Let R be a rule system and $I_{1} \rightarrow r_{1}, l_{2} \rightarrow r_{2} \in R$ with $V\left(I_{1}\right) \cap V\left(I_{2}\right)=\emptyset$ (renaming of variables if necessary,
$I_{1} \approx I_{2}$ resp. $I_{1} \rightarrow r_{1} \approx I_{2} \rightarrow r_{2}$ are allowed $)$.
Let $u \in O\left(I_{1}\right)$ with $\left.I_{1}\right|_{u} \notin V$ s.t. $\sigma=m g u\left(\left.I_{1}\right|_{u}, l_{2}\right)$ exists.
$\sigma\left(I_{1}\right)$ is called then a overlap (superposition) of $I_{2} \rightarrow r_{2}$ in $I_{1} \rightarrow r_{1}$ and $\left(\sigma\left(r_{1}\right), \sigma\left(l_{1}\left[r_{2}\right]_{u}\right)\right)$ is the associated critical pair to the overlap $I_{1} \rightarrow r_{1}, l_{2} \rightarrow r_{2}, u \in O\left(l_{1}\right)$, provided that $\sigma\left(r_{1}\right) \neq \sigma\left(l_{1}\left[r_{2}\right]_{u}\right)$.
Let $C P(R)$ be the set of all the critical pairs that can be constructed with rules of R.

Notice: The overlaps and consequently the set of critical pairs is unique up to renaming of the variables.

Properties

- Let σ, τ be substitutions, $x \in V, \sigma(y)=\tau(y)$ for $y \neq x$ and $\sigma(x) \rightarrow_{R} \tau(x)$. Then for each term t holds:

$$
\sigma(t) \xrightarrow{*}_{R} \tau(t)
$$

- Let $I_{1} \rightarrow r_{1}, I_{2} \rightarrow r_{2}$ be rules, $u \in O\left(I_{1}\right),\left.I_{1}\right|_{u}=x \in V$. Let $\left.\sigma(x)\right|_{w}=\sigma\left(l_{2}\right)$, i.e.. $\sigma\left(l_{2}\right)$ is introduced by $\sigma(x)$.
Then $\quad t_{1} \downarrow_{R} t_{2}$ holds for

$$
t_{1}:=\sigma\left(r_{1}\right) \leftarrow \sigma\left(l_{1}\right) \rightarrow \sigma\left(l_{1}\right)\left[\sigma\left(r_{2}\right)\right]_{u w}=: t_{2}
$$

Lemma 9.16. Critical-Pair Lemma of Knuth/Bendix Let R be a rule system. Then the following holds:
from $t_{1} \leftarrow_{R} t \rightarrow_{R} t_{2}$ either $t_{1} \downarrow_{R} t_{2}$ or $t_{1} \leftrightarrow C P(R) t_{2}$ hold.

Proofs

- $t=f(x, g(x, a)) \rightarrow h(x) \quad h\left(x^{\prime}\right) \rightarrow g\left(x^{\prime}, x^{\prime}\right),\left.t\right|_{1}=\left.t\right|_{21}=x$ no critical pairs. Consider variable overlaps:

$$
f(h(z), g(h(z), a)))
$$

$$
t_{1}=h(h(z))
$$

$$
\begin{array}{r}
f(g(z, z), g(h(z), a))=t_{2} \\
\quad f(g(z, z), g(g(z, z), a))
\end{array}
$$

$h(g(z, z))$

Confluence test

Theorem 9.17. Main result: Let R be a rule system.

- R is locally confluent iff all the pairs $\left(t_{1}, t_{2}\right) \in C P(R)$ are joinable
- If R is terminating, then:
R confluent iff $\left(t_{1}, t_{2}\right) \in C P(R) \rightsquigarrow t_{1} \downarrow t_{2}$.
- Let R be linear (i.e.. for $I, r \in I \rightarrow r \in R$ variables appear at most once). If $C P(R)=\emptyset$, then R is confluent.

Example 9.18. \vee Let $R=\{f(x, x) \rightarrow a, f(x, s(x)) \rightarrow b, a \rightarrow s(a)\}$ R is locally confluent, but not confluent:

$$
a \leftarrow f(a, a) \rightarrow f(a, s(a)) \rightarrow b
$$

but not $a \downarrow b$. R is neither terminating nor left-linear.

Confluence without Termination

$$
\text { Definition 9.19. } \epsilon-\epsilon \text { - Properties. Let } \xrightarrow{\epsilon}=\quad \xrightarrow{0} \cup \xrightarrow{1} \text {. }
$$

- R is called $\epsilon-\epsilon$ closed, in case that for each critical pair $\left(t_{1}, t_{2}\right) \in C P(R)$ there exists a t with $t_{1} \underset{R}{\stackrel{\epsilon}{\leftrightarrows}} t \underset{R}{\stackrel{\epsilon}{\epsilon}} t_{2}$
- R is called $\epsilon-\epsilon$ confluent iff $\underset{R}{\leftarrow} \circ \underset{R}{\rightarrow} \subseteq \underset{R}{\epsilon} \circ \stackrel{\epsilon}{\underset{R}{~}}$

Consequence 9.20. $\rightarrow \epsilon-\epsilon$ confluent $\rightsquigarrow \quad \rightarrow$ strong-confluent.

- $R \in-\epsilon$ closed $\Rightarrow R \epsilon-\epsilon$ confluent $R=\{f(x, x) \rightarrow a, f(x, g(x)) \rightarrow b, c \rightarrow g(c)\} . C P(R)=\emptyset$, i.e. $R \epsilon-\epsilon$ closed but $a \leftarrow f(c, c) \rightarrow f(c, g(c)) \rightarrow$ b, i.e.. R not confluent \downarrow.
- If R is linear and $\epsilon-\epsilon$ closed, then R is strong-confluent, thus confluent (prove that R is $\epsilon-\epsilon$ confluent).
These conditions are unfortunately too restricting for programming.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction	
	Term Rewriting Systems
Reduction Systems 0.000000000000000000000000000 0000000000000000000000000000000	
Confluence without Termination	

Example

Example 9.21. R left linear $\epsilon-\epsilon$ closed is not sufficient:
$R=\left\{f(a, a) \rightarrow g(b, b), a \rightarrow a^{\prime}, f\left(a^{\prime}, x\right) \rightarrow f(x, x), f\left(x, a^{\prime}\right) \rightarrow f(x, x)\right.$,

$$
\left.g(b, b) \rightarrow f(a, a), b \rightarrow b^{\prime}, g\left(b^{\prime}, x\right) \rightarrow g(x, x), g\left(x, b^{‘}\right) \rightarrow g(x, x)\right\}
$$

It holds $f\left(a^{\prime}, a^{\prime}\right) \stackrel{*}{\stackrel{*}{\longleftrightarrow}} g\left(b^{\prime}, b^{\prime}\right)$ but not $f\left(a^{\prime}, a^{\prime}\right) \downarrow_{R} g\left(b^{\prime}, b^{\prime}\right)$.
R left linear $\epsilon-\epsilon$ closed

Parallel reduction

Notice: Let \rightarrow, \Rightarrow with $\xrightarrow{*}=\stackrel{*}{\Rightarrow}$. (Often: $\rightarrow \subseteq \Rightarrow \subseteq \xrightarrow{*}$). Then \rightarrow is confluent iff \Rightarrow confluent.
Definition 9.22. Let R be a rule system.

- The parallel reduction, \mapsto_{R}, is defined through $t \mapsto_{R} t^{\prime}$ iff $\exists U \subset O(t): \forall u_{i}, u_{j}\left(u_{i} \neq u_{j} \rightsquigarrow u_{i} \mid u_{j}\right) \quad \exists l_{i} \rightarrow r_{i} \in R, \sigma_{i}$ with $\left.t\right|_{u_{i}}=$ $\sigma_{i}\left(l_{i}\right):: t^{\prime}=t\left[\sigma_{i}\left(r_{i}\right)\right]_{u_{i}}\left(u_{i} \in U\right) \quad\left(t\left[u_{1} \leftarrow \sigma_{1}\left(r_{1}\right)\right] \ldots t\left[u_{n} \leftarrow \sigma_{1}\left(r_{n}\right)\right]\right)$.
- A critical pair of $R:\left(\sigma\left(r_{1}\right), \sigma\left(l_{1}\left[r_{2}\right]_{u}\right)\right.$ is parallel 0 -joinable in case that $\sigma\left(l_{1}\left[r_{2}\right]_{u}\right) \mapsto_{R} \sigma\left(r_{1}\right)$.
- R is parallel 0 -closed in case that each critical pair of R is parallel 0 -joinable.
Properties: \mapsto_{R} is stable and monotone. It holds $\stackrel{*}{\mapsto} R=\stackrel{*}{\rightarrow}_{R}$ and consequently, if \mapsto_{R} is confluent then \rightarrow_{R} too.
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 313

Reduction Systems
000000000000000000000000000000
Term Rewriting Systems
ce without Termination

Parallel reduction

Theorem 9.23. If R is left-linear and parallel 0 -closed, then \mapsto_{R} is strong-confluent, thus confluent, and consequently R is also confluent.

Consequence 9.24. - If R fulfills the O'Donnel condition, then R is confluent. O'Donnel's condition: R left-linear, $C P(R)=\emptyset, R$ left-sequential (Redexes are unambiguous when reading the terms from left to right: $f(g(x, a), y) \rightarrow 0, g(b, c) \rightarrow 1$ has not this property).
By regrouping of the arguments, the property can frequently be achieved, for instance $f(g(a, x), y) \rightarrow 0, g(b, c) \rightarrow 1$

- Orthogonal systems:: R left-linear and $C P(R)=\emptyset$, so R confluent. (In the literature denominated also as regular systems).
- Variations: R is strongly-closed, in case that for each critical pair (s, t) there are terms u, v with $s \xrightarrow{*} u \stackrel{\leq 1}{\leftrightarrows} t$ and $s \stackrel{\leq 1}{\rightrightarrows} v \stackrel{*}{\leftarrow} t$. R linear and strongly-closed, so R strong-confluent.

Consequences

- Does confluence follow from $C P(R)=\emptyset$? No.
$R=\{f(x, x) \rightarrow a, g(x) \rightarrow f(x, g(x)), b \rightarrow g(b)\}$.
Consider $g(b) \rightarrow f(b, g(b)) \rightarrow f(g(b), g(b)) \rightarrow a$
"Outermost" reduction.
$g(b) \rightarrow g(g(b)) \xrightarrow{*} g(a) \rightarrow f(a, g(a))$ not joinable.
- Regular systems can be non terminating:
$\{f(x, b) \rightarrow d, a \rightarrow b, c \rightarrow c\}$. Evidently $C P=\emptyset$.
$f(c, a) \rightarrow f(c, b) \rightarrow d$
$\stackrel{\downarrow}{ }{ }^{\downarrow}$
$f(c, a) \rightarrow f(c, b)$. Notice that $f(c, a)$ has a normal form. \rightsquigarrow Reduction strategies that are normalizing or that deliver shortest reduction sequences.
- A context is a term with "holes" \square, e.g. $f(g(\square, s(0)), \square, h(\square))$ as "tree pattern" (pattern) for rule $f(g(x, s(0)), y, h(z)) \rightarrow x$. The holes can be filled freely. Sequentiality is defined using this notion.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction		315
Reduction Systems 000000000000000000000000000000	Term Rewriting Systems $000000000000000000000000000 \bullet 00000$	
Confluence without Termination		

Termination-Criteria

Theorem 9.25. R is terminating iff there is a noetherian partial ordering \succ over the ground terms Term (F), that is monotone, so that $\sigma(I) \succ \sigma(r)$ holds for each rule $I \rightarrow r \in R$ and ground substitution σ.

Proof: \curvearrowright Define $s \succ t$ iff $s \xrightarrow{+} t(s, t \in \operatorname{Term}(F))$
\curvearrowleft Asume that \rightarrow_{R} not terminating, $t_{0} \rightarrow t_{1} \rightarrow \ldots\left(V\left(t_{i}\right) \subseteq V\left(t_{0}\right)\right)$.
Let σ be a ground substitution with $V\left(t_{0}\right) \subset D(\sigma)$, then
$\sigma\left(t_{0}\right) \succ \sigma\left(t_{1}\right) \succ \ldots \downarrow$.
Problem: infinite test.
Definition 9.26. A reduction ordering is partial ordering \succ over $\operatorname{Term}(F, V)$ with
(i) \succ is noetherian (ii) \succ is stable and (iii) \succ is monotone.

Theorem 9.27. R is noetherian iff there exists a reduction ordering \succ with $I \succ r$ for every $I \rightarrow r \in R$

Examples for Knuth-Bendix-Procedure
Notice: There are no total reduction orderings for terms with variables..
$x \succ y$? $\rightsquigarrow \sigma(x) \succ \sigma(y)$
$f(x, y) \succ f(y, x)$? commutativity cannot be oriented.
Examples for reduction orderings:
Knuth-Bendix ordering: Weight for each function symbol and precedence
over F.
Recursive path ordering (RPO): precedence over F is recursively extended to paths (words) in the terms that are to be compared.
Lexicographic path ordering(LPO), polynomial interpretations, etc.

| $f(f(g(x)))$ | $=f(h(x)) \quad f(f(x))$ | $=g(h(g(x)))$ | $f(h(x))$ | $=h(g(x)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| KB | $\rightarrow I(f)=3 \quad I(g)=2$ | $\rightarrow I(h)=$ | 1 | \rightarrow |

$\rightarrow \quad \rightarrow \quad(f)=3 \quad l(g)=2 \quad \rightarrow \quad l(h)=\quad 1 \quad \rightarrow$
$\underset{\mathrm{RPO}}{\text { Confluence modulo equivalence relation }} \stackrel{\leftarrow}{\leftarrow} \stackrel{\mathrm{e} . \mathrm{g} . \mathrm{AC} \text {): }}{\leftarrow}$
$R:: f(x, x) \rightarrow g(x) \quad G::\{(a, b)\} \quad g(a) \leftarrow f(a, a) \sim f(a, b)$ but not
$g(a) \downarrow_{\sim} f(a, b)$.
Prof. Dr. K. Madener: Formal Specification and Verification Techniques: Introduction \quad ace

Knuth-Bendix Completion method

Input: E set of equations, \succ reduction ordering, $R=\emptyset$.
Repeat while E not empty
(1) Remove $t=s$ of E with $t \succ s, R:=R \cup\{t \rightarrow s\}$ else abort
(2) Bring the right side of the rules to normal form with R
(3) Extend E with every normalized critical pair generated by $t \rightarrow s$ with R
(4) Remove all the rules from R, whose left side is properly larger than t w.r. to the subsumption ordering.
(5) Use R to normalize both sides of equations of E. Remove identities.

Output: 1) Termination with R convergent, equivalent to E. 2) Abortion 3) not termination (it runs infinitely).

Example 9.28. ${ }^{-}$SRS:: $\Sigma=\{a, b, c\}, E=\left\{a^{2}=\lambda, b^{2}=\lambda, a b=c\right\}$
$u<v$ iff $|u|<|v|$ or $|u|=|v|$ and $u<_{\text {lex }} v$ with $a<_{\text {lex }} b<_{\text {lex }} c$
$E_{0}=\left\{a^{2}=\lambda, b^{2}=\lambda, a b=c\right\}, R_{0}=\emptyset$
$E_{1}=\left\{b^{2}=\lambda, a b=c\right\}, R_{1}=\left\{a^{2} \rightarrow \lambda\right\}, C P_{1}=\emptyset$
$E_{2}=\{a b=c\}, R_{2}=\left\{a^{2} \rightarrow \lambda, b^{2} \rightarrow \lambda\right\}, C P_{2}=\emptyset$
$R_{3}=\left\{a^{2} \rightarrow \lambda, b^{2} \rightarrow \lambda, a b \rightarrow c\right\}, N C P_{3}=\{(b, a c),(a, c b)\}$
$E_{3}=\{b=a c, a=c b\}$
$R_{4}=\left\{a^{2} \rightarrow \lambda, b^{2} \rightarrow \lambda, a b \rightarrow c, a c \rightarrow b\right\}, N C P_{4}=\emptyset, E_{4}=\{a=c b\}$
$R_{5}=\left\{a^{2} \rightarrow \lambda, b^{2} \rightarrow \lambda, a b \rightarrow c, a c \rightarrow b, c b \rightarrow a\right\}, N C P_{5}=\emptyset, E_{5}=\emptyset$

Examples for Knuth-Bendix-Completion

- $E=\{f f g(x)=h(x), f f(x)=x, f h(x)=g(x)\} \quad>: K B O(3,2,1)$
$R_{0}=\emptyset, E_{0}=E$
$R_{1}=\{f f g(x) \rightarrow h(x)\}, K P_{1}=\emptyset \cdot E_{1}=\{f f(x)=x, f h(x)=g(x)\}$
$R_{2}=\{f f g(x) \rightarrow h(x), f f(x) \rightarrow x\}, N K P_{2}=\{(g(x), h(x))\}$,
$E_{2}=\{f h(x)=g(x), g(x)=h(x)\}, R_{2}=\{f f(x) \rightarrow x\}$
$R_{3}=\{f f(x) \rightarrow x, f h(x) \rightarrow g(x)\}, N K P_{3}=\{(h(x), f g(x))\}, E_{3}=$
$\{g(x)=h(x), h(x)=f g(x)\}$
$\stackrel{R}{4}=\{f f(x) \rightarrow x, f h(x) \rightarrow h(x), g(x) \rightarrow h(x)\}, N K P_{3}=\emptyset, E_{4}=\emptyset$
- $E=\{f g f(x)=g f g(x)\} \quad>: L L:: f>g$
$R_{0}=\emptyset, E_{0}=E$
$R_{1}=\{f g f(x) \rightarrow \operatorname{gfg}(x)\}, N K P_{1}=\{(g f g g f(x), f g g f g(x))\}, E_{1}=$ $\{g f g g f(x)=\operatorname{fggfg}(x)\}$
$R_{1}=\{\operatorname{fgf}(x) \rightarrow \operatorname{gfg}(x), \operatorname{fggfg}(x) \rightarrow \operatorname{gfggf}(x)\}, N K P_{2}=$
$\{(\operatorname{gfggfggfg}(x), f g g g f g g f g(x), ..\} \ldots$

Reduction Systems
ouocooostoo

Refined Inference system for Completion

Definition 9.29. Let $>$ be a noetherian $P O$ over $\operatorname{Term}(F, V)$. The inference system $\mathcal{P}_{\text {TES }}$ is composed by the following rules:
(1) Orientate $\quad \frac{(E \cup\{s \doteq t\}, R)}{(E, R \cup\{s \rightarrow t\})}$ in case that $s>t$
(2) Generate

$$
\frac{(E, R)}{(E \cup\{s \doteq t\}, R)} \text { in case that } s \leftarrow_{R} \circ \rightarrow_{R} t
$$

(3) Simplify $E Q \frac{(E \cup\{s \doteq t\}, R)}{(E \cup\{u \doteq t\}, R)}$ in case that $s \rightarrow_{R} u$
(4) Simplify $R S \frac{(E, R \cup\{s \rightarrow t\})}{(E, R \cup\{s \rightarrow u))}$ in case that $t \rightarrow R u$
(5) Simplify $L S \frac{(E, R \cup\{s \rightarrow t\})}{(E \cup\{u \doteq t\}, R)}$ in case that $s \rightarrow_{R} u$ with $I \rightarrow r$ and

$$
s \succ I \text { (SubSumOrd.) }
$$

(6) Delete identities

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
321

Equational calculus and Computability
-00000000000000
Implementations

Equational implementations

Programming $=$ Description of algorithms in a formal system
Definition 10.1. Let $f: M_{1} \times \ldots \times M_{n} \rightsquigarrow M_{n+1}$ be a (partial) function.
Let $T_{i}, 1=1 \ldots n+1$ be decidable sets of ground terms over Σ,
$\hat{f} n$-ary function symbol, E set of equations.
A data interpretation \mathfrak{I} is a function $\mathfrak{I}: T_{i} \rightarrow M_{i}$.
\hat{f} implements f under the interpretation \mathfrak{I} in E iff

1) $\mathfrak{I}\left(T_{i}\right)=M_{i} \quad(i=1 \ldots n+1)$
2) $f\left(\mathfrak{I}\left(t_{1}\right), \ldots, \mathfrak{J}\left(t_{n}\right)\right)=\mathfrak{I}\left(t_{n+1}\right)$ iff $\hat{f}\left(t_{1}, \ldots, t_{n}\right)={ }_{E} t_{n+1}\left(\forall t_{i} \in T_{i}\right)$

$$
\begin{array}{ccc}
T_{1} \times \ldots \times T_{n} & \xrightarrow{\hat{f}} & T_{n+1} \\
\mathfrak{I} \downarrow & \mathfrak{I} \downarrow & \\
M_{1} \downarrow \ldots \times M_{n} & \xrightarrow{f} & M_{n+1}
\end{array}
$$

Abbreviation: $(\hat{f}, E, \mathfrak{I})$ implements f.

Equational implementations

Theorem 10.2. Let E be set of equations or rules (same notations).
For every $i=1, \ldots, n+1$ assume

1) $\mathfrak{I}\left(T_{i}\right)=M_{i}$

2a) $f\left(\mathfrak{I}\left(t_{1}\right), \ldots, \Im\left(t_{n}\right)\right)=\mathfrak{I}\left(t_{n+1}\right) \rightsquigarrow \hat{f}\left(t_{1}, \ldots, t_{n}\right)=E t_{n+1}\left(\forall t_{i} \in T_{i}\right)$
\hat{f} implements the total function f under \mathfrak{I} in E when one of the following conditions holds:
a) $\forall t, t^{\prime} \in T_{n+1}: t={ }_{E} t^{\prime} \rightsquigarrow \Im(t)=\Im\left(t^{\prime}\right)$
b) E confluent and $\forall t \in T_{n+1}: t \rightarrow_{E} t^{\prime} \rightsquigarrow t^{\prime} \in T_{n+1} \wedge \mathfrak{I}(t)=\Im\left(t^{\prime}\right)$
c) E confluent and T_{n+1} contains only E-irreducible terms.

Application: Assume $(\hat{f}, E, \mathfrak{I})$ implements the total function f. If E is extended by E_{0} under retention of \mathfrak{I}, then 1 and 2 a still hold. If one of the criteria a, b, c are fullfiled for $E \cup E_{0}$, then $\left(\hat{f}, E \cup E_{0}, \mathfrak{I}\right)$ implements also the function f. This holds specially when $E \cup E_{0}$ is confluent and T_{n+1} contains only $E \cup E_{0}$ irreducible terms.
Prof. Dr. K. Madener: Formal Specification and Verification Techniques: Introduction
Equational calculus and Computability
O.e0000000000000000000
Implementations

Equational implementations

Theorem 10.3. Let (\hat{f}, E, \mathfrak{I}) implement the (partial) function f. Then
a) $\forall t, t^{\prime} \in T_{n+1}:: \mathfrak{I}(t)=\mathfrak{I}\left(t^{\prime}\right) \wedge \mathfrak{I}(t) \in \operatorname{Image}(f) \rightsquigarrow t=E t^{\prime}$
b) Let E be confluent and T_{n+1} contains only normal forms of E. Then \mathfrak{I}
is injective on $\left\{t \in T_{n+1}: \mathfrak{I}(t) \in \operatorname{Image}(f)\right\}$.
Theorem 10.4. Criterion for the implementation of total functions. Assume

1) $\mathfrak{\Im}\left(T_{i}\right)=M_{i} \quad(i=1, \ldots, n+1)$
2) $\forall t, t^{\prime} \in T_{n+1}:: \Im(t)=\mathfrak{I}\left(t^{\prime}\right)$ iff $t={ }_{E} t^{\prime}$
3) $\forall_{1 \leq i \leq n} \quad t_{i} \in T_{i} \quad \exists t_{n+1} \in T_{n+1}::$

$$
\hat{f}\left(t_{1}, \ldots, t_{n}\right)={ }_{E} t_{n+1} \wedge f\left(\Im\left(t_{1}\right), \ldots \Im\left(t_{n}\right)\right)=\Im\left(t_{n+1}\right)
$$

Then \hat{f} implements the function f under \mathfrak{I} in E and f is total.
Notice: If T_{n+1} contains only normal forms and E is confluent, so 2) is fulfilled, in case \mathfrak{I} is injective on T_{n+1}.

Examples: Propositional logic

According to theorem 10.4, we must prove the conditions (1), (2), (3):
$\forall t, t^{\prime} \in$ Bool $\exists \bar{t} \in$ Bool $:: ~ \mathfrak{I}(t) \vee \mathfrak{I}\left(t^{\prime}\right)=\mathfrak{I}(\bar{t}) \wedge t$ vel $t^{\prime}=E_{E} \bar{t}$
For $t=t t\left(*_{1}\right)$ and $t=f f(2)$ since ff vel $t^{\prime} \rightarrow_{E}$ cond $\left(f f, t t, t^{\prime}\right) \rightarrow_{E} t^{\prime}$
Thus x vel $t t \neq E$ tt but $t t$ vel $t t=_{E} t t, \quad f f$ vel $t t=_{E} t t$.
MC Carthy's rules for cond:
(1) $\operatorname{cond}(t t, x, y)=x$ (2) $\operatorname{cond}(f f, x, y)=y\left({ }^{*}\right) \operatorname{cond}(x, t t, t t)=t t$

Notice Not identical with cond in Lisp. Difference: Evaluation strategy.
Consider
$(* *) \operatorname{cond}(x, \operatorname{cond}(x, y, z), u) \rightarrow \operatorname{cond}(x, y, u)$
$\rightsquigarrow E^{\prime}=\{(1),(2),(3),(*),(* *)\}$ is terminating and confluent.
Conventions: Sets of equations contain always (1), (2), (3) and x et $y \rightarrow \operatorname{cond}(x, y, f f)$
Notation: cond $(x, y, z)::[x \rightarrow y, z]$ or
$\left[x \rightarrow y_{1}, x_{2} \rightarrow y_{2}, \ldots, x_{n} \rightarrow y_{n}, z\right]$ for $[x \rightarrow[\ldots] \ldots, z]$
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
quational calculus and Computability
Equational Calcul
$000000 \bullet 0$
Examples: Semantical arguments

Properties of the implementing functions:
(vel, E, \mathfrak{I}) implements \vee of BOOL.
Statement: vel is associative on Bool
Prove: $\forall t_{1}, t_{2}, t_{3} \in$ Bool $: t_{1}$ vel $\left(t_{2}\right.$ vel $\left.t_{3}\right)=_{E}\left(t_{1}\right.$ vel $\left.t_{2}\right)$ vel t_{3}
There exist $t, t^{\prime}, T, T^{\prime} \in B o o l$ with
$\mathfrak{I}\left(t_{2}\right) \vee \mathfrak{I}\left(t_{3}\right)=\Im(t)$ and $\mathfrak{I}\left(t_{1}\right) \vee \mathfrak{I}\left(t_{2}\right)=\Im\left(t^{\prime}\right)$ as well as
$\mathfrak{I}\left(t_{1}\right) \vee \Im(t)=\Im(T)$ and $\Im\left(t^{\prime}\right) \vee \Im\left(t_{3}\right)=\Im\left(T^{\prime}\right)$
Because of the semantical valid associativity of \vee
$\mathfrak{I}(T)=\mathfrak{I}\left(t_{1}\right) \vee \Im\left(t_{2}\right) \vee \Im\left(t_{3}\right)=\Im\left(T^{\prime}\right)$ holds.
Since vel implements \vee it follows:
t_{1} vel $\left(t_{2}\right.$ vel $\left.t_{3}\right)=E t_{1}$ vel $t=_{E} T=E T^{\prime}=_{E} t^{\prime}$ vel $t_{3}=_{E}\left(t_{1}\right.$ vel $\left.t_{2}\right)$ vel t_{3}
vel $t t=t t$ cannot be deduced out of E.
However vel implements the function \vee with E

Examples: Natural numbers

Function symbols: $\hat{0}, \hat{s} \quad$ Ground terms: $\left\{\hat{s}^{n}(\hat{0})(n \geq 0)\right\}$
\mathfrak{I} Interpretation $\mathfrak{I}(\hat{0})=0, \mathfrak{I}(\hat{s})=\lambda x . x+1$, i.e. $\mathfrak{J}\left(\hat{s}^{n}(\hat{0})\right)=n(n \geq 0)$
Abbreviation: $n \hat{+} 1:=\hat{s}(\hat{n})(n \geq 0)$
Number terms. NAT $=\{\hat{n}: n \geq 0\}$ normal forms (Theorem 10.2 c holds).
Important help functions over NAT:
Let $E=\{$ is_null $(\hat{0}) \rightarrow t t$, is_null $(\hat{s}(x)) \rightarrow f f\}$.
is_null implements the predicate Is_Null : $\mathbb{N} \rightarrow\{$ true, false $\}$ Zero-test.
Extend E with (non terminating rules)

$$
\hat{\mathrm{g}}(x) \rightarrow[\text { is_null }(x) \rightarrow \hat{0}, \hat{g}(x)], \quad \hat{f}(x) \rightarrow[\text { is_null }(x) \rightarrow \hat{\mathrm{g}}(x), \hat{0}]
$$

Statement:It holds under the standard interpretation \mathfrak{I}
\hat{f} implements the null function $f(x)=0 \quad(x \in \mathbb{N})$ and
\hat{g} implements the function $g(0)=0$ else undefined.
Because of $\hat{f}(\hat{0}) \rightarrow\left[i s _n u l l(\hat{0}) \rightarrow \hat{g}(\hat{0}), \hat{0}\right] \xrightarrow{*} \hat{g}(\hat{0}) \rightarrow[\ldots] \xrightarrow{*} \hat{0}$ and
$\hat{f}(\hat{s}(x)) \rightarrow[$ is_null $(\hat{s}(x)) \rightarrow \hat{g}(\hat{s}(x)), \hat{0}] \xrightarrow{*} \hat{0}$ (follows from theorem 10.4).

Representation of primitive recursive functions

The class \mathfrak{P} contains the functions

$s=\lambda x \cdot x+1, \pi_{i}^{n}=\lambda x_{1}, \ldots, x_{n} \cdot x_{i}$, as well as $c=\lambda x .0$ on \mathbb{N} and
is closed w.r. to composition and primitive recursion, i.e.
$f\left(x_{1}, \ldots, x_{n}\right)=g\left(h_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, h_{r}\left(x_{1}, \ldots, x_{n}\right)\right) \quad$ resp.
$f\left(x_{1}, \ldots, x_{n}, 0\right)=g\left(x_{1}, \ldots, x_{n}\right)$
$f\left(x_{1}, \ldots, x_{n}, y+1\right)=h\left(x_{1}, \ldots, x_{n}, y, f\left(x_{1}, \ldots, x_{n}, y\right)\right)$
Statement: $f \in \mathfrak{P}$ is implementable by $\left(\hat{f}, E_{\hat{f}}, \mathfrak{I}\right)$
Idea: Show for suitable $E_{\hat{f}}$:
$\hat{f}\left(\hat{k_{1}}, \ldots, \hat{k_{n}}\right) \xrightarrow{*} E_{\hat{f}} f\left(k_{1}, \hat{\ldots}, k_{n}\right)$ with $E_{\hat{f}}$ confluent and terminating
Assumption: FUNKT (signature) contains for every $n \in \mathbb{N}$ a countable number of function symbols of arity n.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Equational calculus and Computability
$00000000 \bullet 00000000$
Implementation of primitive recursive functions
Theorem 10.8. For each finite set $A \subset F U N K T \backslash\{\hat{0}, \hat{s}\}$ the exception set, and each function $f: \mathbb{N}^{n} \rightarrow \mathbb{N}, f \in \mathfrak{P}$ there exist $\hat{f} \in F U N K T$ and $E_{\hat{f}}$ finite, confluent and terminating such that $\left(\hat{f}, E_{\hat{f}}, \mathfrak{I}\right)$ implements f and none of the equations in $E_{\hat{f}}$ contains function symbols from A.
Proof: Induction over construction of $\mathfrak{P}: \hat{0}, \hat{s} \notin A$. Set $A^{\prime}=A \cup\{\hat{0}, \hat{s}\}$

- \hat{s} implements s with $E_{\hat{s}}=\emptyset$
- $\hat{\pi}_{i}^{n} \in F U N K T^{n} \backslash A^{\prime}$ implem. π_{i}^{n} with $E_{\hat{\pi}_{i}^{n}}=\left\{\hat{\pi}_{i}^{n}\left(x_{1}, \ldots, x_{n}\right) \rightarrow x_{i}\right\}$
- $\hat{c} \in F U N K T^{1} \backslash A^{\prime}$ implements c with $E_{\hat{c}}=\{\hat{c}(x) \rightarrow 0\}$
- Composition: $\left[\hat{g}, E_{\hat{g}}, A_{0}\right], \quad\left[\hat{h}_{i}, E_{\hat{h}_{i}}, A_{i}\right]$ with
$A_{i}=A_{i-1} \cup\left\{f \in F U N K T: f \in E_{\hat{h}_{-1}}\right\} \backslash\{\hat{0}, \hat{s}\}$. Let $\hat{f} \in F U N K T \backslash A_{r}^{\prime}$ and $E_{\hat{f}}=E_{\hat{g}} \cup \bigcup_{1}^{r} E_{\hat{h}_{i}} \cup\left\{\hat{f}\left(x_{1}, \ldots, x_{n}\right) \rightarrow \hat{g}\left(\hat{h_{1}}(\ldots), \ldots, \hat{h_{r}}(\ldots)\right)\right\}$
- Primitive recursion: Analogously with the defining equations.

Implementation of primitive recursive functions

All the rules are left-linear without overlappings \rightsquigarrow confluence.
Termination criteria: Let $\mathfrak{J}: F U N K T \rightarrow\left(\mathbb{N}^{*} \rightarrow \mathbb{N}\right)$, i.e
$\mathfrak{J}(f): \mathbb{N}^{s t(f)} \rightarrow \mathbb{N}$, strictly monotonous in all the arguments. If E is a rule system, $I \rightarrow r \in E, b: V A R \rightarrow \mathbb{N}$ (assignment), if $\mathfrak{J}[b](I)>\mathfrak{J}[b](r)$ holds then E terminates.
Idea: Use the Ackermann function as bound:
$A(0, y)=y+1, A(x+1,0)=A(x, 1), A(x+1, y+1)=A(x, A(x+1, y))$
A is strictly monotonic,
$A(1, x)=x+2, A(x, y+1) \leq A(x+1, y), A(2, x)=2 x+3$
For each $n \in \mathbb{N}$ there is a β_{n} with $\quad \sum_{1}^{n} A\left(x_{i}, x\right) \leq A\left(\beta_{n}\left(x_{1}, \ldots, x_{n}\right), x\right)$
Define \mathfrak{J} through $\mathfrak{J}(\hat{f})\left(k_{1}, \ldots, k_{n}\right)=A\left(p_{\hat{f}}, \sum k_{i}\right)$ with suitable $p_{\hat{f}} \in \mathbb{N}$.

- $p_{\hat{s}}:=1:: \mathfrak{J}[b](\hat{s}(x))=A(1, b(x))=b(x)+2>b(x)+1=$
$\mathfrak{J}[b](x+1)$
- $p_{\hat{\pi}_{i}^{n}}:=1:: \mathfrak{J}[b]\left(\hat{\pi}_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)\right)=A\left(1, \sum_{1}^{n} b\left(x_{i}\right)\right)>b\left(x_{i}\right)=\mathfrak{J}[b]\left(x_{i}\right)$
- $p_{\hat{c}}:=1:: \mathfrak{J}[b](\hat{c}(x))=A(1, b(x))>0=\mathfrak{J}[b](\hat{0})$

Representation of recursive functions

Minimization:: μ-Operator $\mu_{y}\left[g\left(x_{1}, \ldots, x_{n}, y\right)=0\right]=z$ iff
i) $g\left(x_{1}, \ldots, x_{n}, i\right)$ defined $\neq 0$ for $0 \leq i<z \quad$ ii) $g\left(x_{1}, \ldots, x_{n}, z\right)=0$

Regular minimization: μ is applied to total functions for which
$\forall x_{1}, \ldots, x_{n} \exists y: g\left(x_{1}, \ldots, x_{n}, y\right)=0$
\mathfrak{R} is closed w.r. to composition, primitive recursion and regular minimization.

Show that: regular minimization is implementable with exception set A.
Assume $\hat{g}, E_{\hat{g}}$ implement g where $\hat{g}\left(\hat{k}_{1}, \ldots, \hat{k}_{n+1}\right) \xrightarrow{*} E_{\hat{g}} g\left(k_{1}, \ldots, k_{n+1}\right)$
Let $\hat{f}, \hat{f}^{+}, \hat{f}^{*}$ be new and $\quad E_{\hat{f}}:=E_{\hat{\mathrm{g}}} \cup\left\{\hat{f}\left(x_{1}, \ldots, x_{n}\right) \rightarrow \hat{f}^{*}\left(x_{1}, \ldots, x_{n}, \hat{0}\right)\right.$,

$$
\hat{f}^{*}\left(x_{1}, \ldots, x_{n}, y\right) \rightarrow \hat{f}^{+}\left(\hat{g}\left(x_{1}, \ldots, x_{n}, y\right), x_{1}, \ldots, x_{n}, y\right),
$$

$\left.\hat{f}^{+}\left(\hat{0}, x_{1}, \ldots, x_{n}, y\right) \rightarrow y, \hat{f}^{+}\left(\hat{s}(x), x_{1}, \ldots, x_{n}, y\right) \rightarrow \hat{f}^{*}\left(x_{1}, \ldots, x_{n}, \hat{s}(y)\right)\right\}$
Claim: $\left(\hat{f}, E_{\hat{f}}\right)$ implements the minimization of g
Prof. Dr. K. Madener. Foral Snecificationd Verification Techniques: Introduction

Equational calculus and Computability
$0000000000000 \cdot 00000000000$

Implementation of recursive functions

Assumption: For each $k_{1}, \ldots, k_{n} \in \mathbb{N}$ there is a smallest $k \in \mathbb{N}$ with $g\left(k_{1}, \ldots, k_{n}, k\right)=0$
Claim: For every $i \in \mathbb{N}, i \leq k \quad \hat{f}^{*}\left(\hat{k}_{1}, \ldots, \hat{k}_{n},(k \hat{-} i)\right) \rightarrow_{E_{f}}^{*} \hat{k}$ holds
Proof: induction over i :

- $i=0:: \hat{f}^{*}\left(\hat{k}_{1}, \ldots, \hat{k}_{n}, \hat{k}\right) \rightarrow \hat{f}^{+}\left(\hat{g}\left(\hat{k}_{1}, \ldots, \hat{k}_{n}, \hat{k}\right), \hat{k}_{1}, \ldots, \hat{k}_{n}, \hat{k}\right) \xrightarrow{*} E_{\hat{g}}$ $\hat{f}^{+}\left(g\left(k_{1}, \ldots, k_{n}, k\right), \hat{k}_{1}, \ldots, \hat{k}_{n}, \hat{k}\right) \rightarrow \hat{k}$
- $i>0:: \hat{f}^{*}\left(\hat{k}_{1}, \ldots, \hat{k}_{n}, k-(\hat{i}+1)\right) \rightarrow$ $\left.\hat{f}^{+}\left(\hat{g}\left(\hat{k}_{1}, \ldots, \hat{k}_{n}, k-(\hat{i}+1)\right), \hat{k}_{1}, \ldots, \hat{k}_{n}, k-\hat{(i}+1\right)\right){\xrightarrow{*} E_{E}}^{\text {b }}$ $\hat{f}^{+}\left(\hat{s}(\hat{x}), \hat{k}_{1}, \ldots, \hat{k}_{n}, k-\hat{(i}+1\right) \rightarrow \hat{f}^{*}\left(\hat{k}_{1}, \ldots, \hat{k}_{n}, \hat{s}(k-(\hat{i}+1))\right)=$ $\left.\hat{f}^{*}\left(\hat{k}_{1}, \ldots, \hat{k}_{n}, k \hat{-} i\right)\right) \xrightarrow{*} E_{\underline{g}} \hat{k}$
For appropiate x and Induction hypothesis.
- $E_{\hat{f}}$ is confluent and according to Theorem 10.4, $\left(\hat{f}, E_{\hat{f}}\right)$ implements the total function f.
- $E_{\hat{f}}$ is not terminating. $g(k, m)=\delta_{k, m} \rightsquigarrow \hat{f}^{*}(\hat{k}, k \hat{+} 1)$ leads to NT-chain. Termination is achievable!.

Representation of partial recursive functions

Problem: Recursion equations (Kleene's normal form) cannot be directly used. Arguments must have "number" as value. (See example). Some arguments can be saved:

Example 10.9.

$f(x, y)=g\left(h_{1}(x, y), h_{2}(x, y), h_{3}(x, y)\right)$. Let g, h_{1}, h_{2}, h_{3} be implementable by sets of equations as partial functions.
Claim: f is implementable. Let $\hat{f}, \hat{f}_{1}, \hat{f}_{2}$ be new and set:
$\hat{f}(x, y)=$
$\hat{f}_{1}\left(\hat{h}_{1}(x, y), \hat{h}_{2}(x, y), \hat{h}_{3}(x, y), \hat{f}_{2}\left(\hat{h}_{1}(x, y)\right), \hat{f}_{2}\left(\hat{h}_{2}(x, y)\right), \hat{f}_{2}\left(\hat{h}_{3}(x, y)\right)\right)$
$\hat{f}_{1}\left(x_{1}, x_{2}, x_{3}, \hat{0}, \hat{0}, \hat{0}\right)=\hat{g}\left(x_{1}, x_{2}, x_{3}\right), \quad \hat{f}_{2}(\hat{0})=\hat{0}, \quad \hat{f}_{2}(\hat{s}(x))=\hat{f}_{2}(x)$
$\left(\hat{f}, E_{\hat{g}}, E_{\hat{h}_{1}}, E_{\hat{h}_{2}}, E_{\hat{h}_{3}} \cup R E S T\right)$ implements f.
Theorem 10.4 cannot be applied!!.
$\left(\hat{f}, E_{\hat{g}}, E_{\hat{h}_{1}}, E_{\hat{h}_{2}}, E_{\hat{h}_{3}} \cup R E S T\right)$ implements f .
Apply definition 10.1:
\curvearrowright For number-terms let $f\left(\mathfrak{I}\left(t_{1}\right), \mathfrak{I}\left(t_{2}\right)\right)=\mathfrak{I}(t)$. There are number-terms $T_{i}(i=1,2,3)$ with
$g\left(\Im\left(T_{1}\right), \mathfrak{I}\left(T_{2}\right), \mathfrak{I}\left(T_{3}\right)\right)=\mathfrak{I}(t)$ and $h_{i}\left(\Im\left(t_{1}\right), \mathfrak{I}\left(t_{2}\right)\right)=\mathfrak{I}\left(T_{i}\right)$.
Assumption: $\hat{g}\left(T_{1}, T_{2}, T_{3}\right)=E_{\hat{f}} t$ and $\hat{h}_{i}\left(t_{1}, t_{2}\right)=E_{E_{\hat{f}}} T_{i}(i=1,2,3)$. The
T_{i} are number-terms:: $\hat{f}_{2}\left(T_{i}\right)=E_{\hat{f}} \hat{0}$ i.e. $\hat{f}_{2}\left(\hat{h}_{i}\left(t_{1}, t_{2}\right)\right)=E_{\hat{f}} \hat{O} \quad(i=1,2,3)$. Hence
$\hat{f}\left(t_{1}, t_{2}\right)=E_{\hat{f}} \hat{f}_{1}\left(T_{1}, T_{2}, T_{3}, \hat{0}, \hat{0}, \hat{0}\right) \rightsquigarrow \hat{f}\left(t_{1}, t_{2}\right)=E_{\hat{f}} t\left(=E_{\hat{f}} \hat{g}\left(T_{1}, T_{2}, T_{3}\right)\right)$
\curvearrowleft For number-terms t_{1}, t_{2}, t let $\hat{f}\left(t_{1}, t_{2}\right)=E_{f} t$, so
$\hat{f}_{1}\left(\hat{h}_{1}\left(t_{1}, t_{2}\right), \hat{h}_{2}\left(t_{1}, t_{2}\right), \hat{h}_{3}\left(t_{1}, t_{2}\right), \hat{f}_{2}\left(\hat{h}_{1}\left(t_{1}, t_{2}\right), \ldots.\right)=E_{f} t\right.$. If for an
$i=1,2,3 \quad \hat{f}_{2}\left(\hat{h}_{i}\left(t_{1}, t_{2}\right)\right)$ would not be $E_{\hat{f}}$ equal to $\hat{0}$, then the $E_{\hat{f}}$
equivalence class contains only \hat{f}_{1} terms. So there are number-terms
T_{1}, T_{2}, T_{3} with $\hat{h}_{i}\left(t_{1}, t_{2}\right)=E_{E_{f}}=T_{i}(i=1,2,3)$ (Otherwise only \hat{f}_{2} terms
equivalent to $\hat{f}_{2}\left(\hat{h}_{i}\left(t_{1}, t_{2}\right)\right)$. From Assumption:
$\rightsquigarrow h_{i}\left(\Im\left(T_{1}\right), \mathfrak{I}\left(T_{2}\right)\right)=\mathfrak{I}\left(T_{i}\right), \quad g\left(\Im\left(T_{1}\right), \mathfrak{I}\left(T_{2}\right), \mathfrak{I}\left(T_{3}\right)\right)=\mathfrak{I}(t)$
\Re_{p} and normalized register machines
Definition 10.10. Program terms for $R M$: $P_{n}(n \in \mathbb{N})$ Let $0 \leq i \leq n$
Function symbols: a_{i}, s_{i} constants,\circ binary,W^{i} unary
Intended interpretation:
$a_{i}::$ Increase in one the value of the contents on register i.
$s_{i}::$ Decrease in one the value of the contents on register i. $(\dot{-}-1)$
$\circ\left(M_{1}, M_{2}\right)::$ Concatenation $M_{1} M_{2}$ (First M_{1}, then M_{2})
$W^{i}(M)::$ While contents of register i not 0 , execute M Abbr.: (M)
Note: $P_{n} \subseteq P_{m}$ for $n \leq m$
Semantics through partial functions: $M_{e}: P_{n} \times \mathbb{N}^{n} \rightarrow \mathbb{N}^{n}$

- $M_{e}\left(a_{i},\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)=\left\langle\ldots x_{i-1}, x_{i}+1, x_{i+1} \ldots\right\rangle\left(s_{i}:: x_{i}-1\right)$
- $M_{e}\left(M_{1} M_{2},\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)=M_{e}\left(M_{2}, M_{e}\left(M_{1},\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)\right)$
- $M_{e}\left((M)_{i},\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)= \begin{cases}\left\langle x_{1}, \ldots, x_{n}\right\rangle & x_{i}=0 \\ M_{e}\left((M)_{i}, M_{e}\left(M,\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)\right) & \text { otherwise }\end{cases}$
quational calculus and Computabilit
P00000000000000000•00000000
Implementation of normalized register machines
Lemma 10.11. M_{e} can be implemented by a system of equations.
Proof: Let $t u p_{n}$ be n -ary function symbol. For $t_{i} \in \mathbb{N}(0<i \leq n)$ let $\left\langle t_{1}, \ldots, t_{n}\right\rangle$ be the interpretation for $\operatorname{tup}_{n}\left(\hat{t}_{1}, \ldots, \hat{t}_{n}\right)$. Program terms are interpreted by themselves (since they are terms). For $m \geq n::$
$P_{n} \quad \operatorname{tup}_{m}\left(\hat{t}_{1}, \ldots, \hat{t}_{m}\right)$ syntactical level
$\mathfrak{I} \downarrow \quad \mathfrak{I} \downarrow$
$P_{n} \quad\left\langle t_{1}, \ldots, t_{m}\right\rangle \quad$ Interpretation
Let eval be a binary function symbol for the implementation of M_{e} and $i \leq n$. Define $E_{n}:=$
$\operatorname{eval}\left(a_{i}, \operatorname{tup}_{n}\left(x_{1}, \ldots, x_{n}\right)\right) \rightarrow \operatorname{tup}_{n}\left(x_{1}, \ldots, x_{i-1}, \hat{s}\left(x_{i}\right), x_{i+1}, \ldots, x_{n}\right)$
$\operatorname{eval}\left(s_{i}, \operatorname{tup}_{n}\left(\ldots, x_{i-1}, \hat{0}, x_{i+1} \ldots\right)\right) \rightarrow \operatorname{tup}_{n}\left(\ldots, x_{i-1}, \hat{0}, x_{i+1} \ldots\right)$
$\operatorname{eval}\left(s_{i}, \operatorname{tup}_{n}\left(\ldots, x_{i-1}, \hat{s}(x), x_{i+1} \ldots\right)\right) \rightarrow \operatorname{tup}_{n}\left(\ldots, x_{i-1}, x, x_{i+1} \ldots\right)$
eval $\left(x_{1} x_{2}, t\right) \rightarrow \operatorname{eval}\left(x_{2}\right.$, eval $\left.\left(x_{1}, t\right)\right)$
$\operatorname{eval}\left((x)_{i}, \operatorname{tup}_{n}\left(\ldots, x_{i-1}, \hat{0}, x_{i+1} \ldots\right)\right) \rightarrow \operatorname{tup}_{n}\left(\ldots, x_{i-1}, \hat{0}, x_{i+1} \ldots\right)$
$\operatorname{eval}\left((x)_{i}, \operatorname{tup}_{n}\left(\ldots, x_{i-1}, \hat{s}(y), x_{i+1} \ldots\right) \rightarrow\right.$
$\operatorname{eval}\left((x)_{i}, \operatorname{eval}\left(x, \operatorname{tup}_{n}\left(\ldots, x_{i-1}, \hat{s}(y), x_{i+1} \ldots\right)\right)\right\}$

(eval, E_{n}, \mathfrak{I}) implements M_{e}

Consider program terms that contain at most registers with $1 \leq i \leq n$.

- E_{n} is confluent (left-linear, without critical pairs).
- Theorem 10.4 not applicable, since M_{e} is not total.

Prove conditions of the Definition 10.1.
(1) $\mathfrak{I}\left(T_{i}\right)=M_{i}$ according to the definition.
(2) $M_{e}\left(p,\left\langle k_{1}, \ldots, k_{n}\right\rangle\right)=\left\langle m_{1}, \ldots, m_{n}\right\rangle \quad$ iff

$$
\operatorname{eval}\left(p, \operatorname{tup}_{n}\left(\hat{k}_{1}, \ldots, \hat{k}_{n}\right)\right)=E_{n} \operatorname{tup}_{n}\left(\hat{m}_{1}, \ldots, \hat{m}_{n}\right)
$$

\curvearrowright out of the def. of M_{e} res. E_{n}. induction on construction of p.
\curvearrowleft Structural induction on p :

1. $p=a_{i}\left(s_{i}\right):: \hat{k}_{j}=\hat{m}_{j}(j \neq i), \hat{s}\left(\hat{k}_{i}\right)=\hat{m}_{i}$ res. $\hat{k}_{i}=\hat{m}_{i}=\hat{0}$

$$
\left(\hat{k}_{i}=\hat{s}\left(\hat{m}_{i}\right)\right) \text { for } s_{i}
$$

2. Let $p=p_{1} p_{2}$ and
$\operatorname{eval}\left(p_{2}, \operatorname{eval}\left(p_{1}, \operatorname{tup}_{n}\left(\hat{k}_{1}, \ldots, \hat{k}_{n}\right)\right)\right) \xrightarrow{*} E_{n} \operatorname{tup}_{n}\left(\hat{m}_{1}, \ldots, \hat{m}_{n}\right)$
Because of the rules in E_{n} it holds:

Implementation of \Re_{p}

For $f \in \mathfrak{R}_{p}^{n, 1}$ there are $r \in \mathbb{N}$, program term p with at most r-registers
($n+1 \leq r$), so that for every $k_{1}, \ldots, k_{n}, k \in \mathbb{N}$ holds:

```
\(f\left(k_{1}, \ldots, k_{n}\right)=k \quad\) iff \(\quad \forall m \geq 0\)
    \(\operatorname{eval}\left(p, \operatorname{tup}_{r+m}\left(\hat{k}_{1}, \ldots, \hat{k}_{n}, \hat{0}, \hat{0}, \ldots, \hat{0}, \hat{x}_{1}, \ldots, \hat{x}_{m}\right)\right)=E_{E_{r+m}}\)
    \(\operatorname{tup}_{r+m}\left(\hat{k}_{1}, \ldots, \hat{k}_{n}, \hat{k}, \hat{0}, \ldots, \hat{0}, \hat{x}_{1}, \ldots, \hat{x}_{m}\right) \quad\) iff
    \(\operatorname{eval}\left(p, \operatorname{tup}_{r}\left(\hat{k}_{1}, \ldots, \hat{k}_{n}, \hat{0}, \hat{0}, \ldots, \hat{0}\right)\right)=E_{r} \operatorname{tup}_{r}\left(\hat{k}_{1}, \ldots, \hat{k}_{n}, \hat{k}, \hat{0}, \ldots, \hat{0}\right)\)
Note: \(E_{r} \sqsubset E_{r+m}\) via \(\operatorname{tup}_{r}(\ldots) \downarrow \operatorname{tup}_{r+m}(\ldots, \hat{0}, \ldots, \hat{0})\).
Let \(\hat{f}, \hat{R}\) be new function symbols, \(p\) program for \(f\). Extend \(E_{r}\) by
\(\hat{f}\left(y_{1}, \ldots, y_{n}\right) \rightarrow \hat{R}\left(\operatorname{eval}\left(p, \operatorname{tup}_{r}\left(y_{1}, \ldots, y_{n}\right), \hat{0}, \ldots, \hat{0}\right)\right) \quad\) and
\(\hat{R}\left(\operatorname{tup}_{r}\left(y_{1}, \ldots, y_{r}\right)\right)=y_{n+1}\) to \(\left.E_{\text {ext }(f)}\right)\).
Theorem 10.12. \(f \in \mathfrak{R}_{p}^{n, 1}\) is implemented by \(\left(\hat{f}, E_{\text {ext }(f)}, \mathfrak{I}\right)\).
```

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
Equational calculus and Computability
Cquo000000000000000000
Partial recursive functions and register machines

Non computable functions

Let E be recursive, T_{i} recursive. Then the predicate

$$
P\left(t_{1}, \ldots, t_{n}, t_{n+1}\right) \text { iff } \hat{f}\left(t_{1}, \ldots, t_{n}\right)=_{E} t_{n+1}
$$

is a r.a. predicate on $T_{1} \times \ldots \times T_{n} \times T_{n+1}$
If the function \hat{f} implements f, then P represents the graph of the function $f \rightsquigarrow f \in \mathfrak{R}_{p}$.
Kleene's normal form theorem:
$f\left(x_{1}, \ldots, x_{n}\right)=U\left(\mu\left[T_{n}\left(p, x_{1}, \ldots, x_{n}, y\right)=0\right]\right)$
Let h be the total non recursive function, defined by:
$h(x)= \begin{cases}\mu\left[T_{1}(x, x, y)=0\right] & \text { in case that } \exists y: T_{1}(x, x, y)=0 \\ 0 & \text { otherwise }\end{cases}$
h is uniquely defined through the following predicate:
(1) $\left(T_{1}(x, x, y)=0 \wedge \forall z\left(z<y \rightsquigarrow T_{1}(x, x, z) \neq 0\right)\right) \rightsquigarrow h(x)=y$
(2) $\left(\forall z\left(z<y \wedge T_{1}(x, x, z) \neq 0\right)\right) \rightsquigarrow(h(x)=0 \vee h(x) \geq y)$

If $h(x)$ is replaced by u, then these are prim. rec. predicates in x, y, u.

Non computable functions

There are primitive recursive functions P_{1}, P_{2} in x, y, u, so that

$$
\left(1^{‘}\right) \quad P_{1}(x, y, h(x))=0 \text { and }\left(2^{\prime}\right) \quad P_{2}(x, y, h(x))=0
$$

represent (1) and (2).
Hence there are an equational system E and function symbols \hat{P}_{1}, \hat{P}_{2},
that implement P_{1}, P_{2} under the standard interpretation.
(As prim. rec. functions in the Var. x, y, u)
Let h be fresh. Add to E the equations

$$
\hat{P}_{1}(x, y, \hat{h}(x))=\hat{0} \text { and } \hat{P}_{2}(x, y, \hat{h}(x))=\hat{0}
$$

The equational system is consistent (there are models) and \hat{h} is interpreted by the function h on the natural numbers. \rightsquigarrow
It is possible to specify non recursive functions implicitly with a finite set of equations, in case arbitrary models are accepted as interpretations.
Through non recursive sets of equations any function can be
implemented by a confluent, terminating ground system :
$E=\left\{\hat{h}(\hat{t})=\hat{t}^{\prime}: t, t^{\prime} \in \mathbb{N}, h(t)=t^{\prime}\right\}$ (Rule application is not effective).

Equational calculus and Computability
Computable algebrae

Computable algebras

Definition 10.13. \downarrow A sig-Algebra \mathfrak{A} is recursive (effective, computable), if the base sets are recursive and all operations are recursive functions.

- A specification spec $=(\operatorname{sig}, E)$ is recursive, if $T_{\text {spec }}$ is recursive. Example 10.14. Let sig $=(\{$ nat, even $\}$, odd $: \rightarrow$ even, $0: \rightarrow$ nat, $s: n a t \rightarrow$ nat, red : nat \rightarrow even).
As sig-Algebra \mathfrak{A} choose: $A_{\text {even }}=\{2 n: n \in \mathbb{N}\} \cup\{1\}, A_{\text {nat }}=\mathbb{N}$ with odd as 1 , red as λx.if x even then x else 1 , s successor Claim: There is no finite (init-Algebra) specification for \mathfrak{A}
- No equations of the sort nat.
- odd, $\operatorname{red}\left(s^{n}(0)\right), \operatorname{red}\left(s^{n}(x)\right)(n \geq 0)$ terms of sort even. No equations of the form $\operatorname{red}\left(s^{n}(x)\right)=\operatorname{red}\left(s^{m}(x)(n \neq m)\right.$ are possible.
- Infinite number of ground equations are needed.

Computable algebras

Solution: Enrichment of the signature with:
even : nat \rightarrow nat and cond : nat even even \rightarrow even with
interpretation
λx. if x even then 0 else $1, \quad \lambda x, y, z$. if $x=0$ then y else z
Equations:
even $(0)=0, \quad$ even $(s(0))=s(0), \quad$ even $(s(s(x))=\operatorname{even}(x)$
$\operatorname{cond}(0, y, z)=y, \quad$ cond $(s(x), y, z)=z$
$\operatorname{red}(x)=\operatorname{cond}(\operatorname{even}(x), \operatorname{red}(x)$, odd $)$
Alternative: Conditional equations:
$\operatorname{red}(s(0))=$ odd, $\operatorname{red}(s(s(x))=$ odd if $\operatorname{red}(x)=$ odd
Conditional equational systems (term replacement systems) are more "expressive" as pure equational systems. They also define reduction relations. Confluence and termination criteria can be derived. Negated equations in the conditions lead to problems with the initial semantics (non Horn-clause specifications).

Equational calculus and Computability
Computable algebrae
Computable algebras: Results

Theorem 10.15. Let \mathfrak{A} be a recursive term generated sig- Algebra. Then there is a finite enrichment sig' of sig and a finite specification $\operatorname{spec}^{\prime}=\left(s^{\prime} g^{\prime}, E\right)$ with $\left.T_{\text {spec }}\right|_{\text {sig }} \cong \mathfrak{A}$.

Theorem 10.16. Let \mathfrak{A} be a term generated sig- Algebra. Then there are equivalent:

- \mathfrak{A} is recursive.
- There is a finite enrichment (without new sorts) sig' of sig and a finite convergent rule system R, so that
$\left.\mathfrak{A} \cong T_{\text {spec }}\right|_{\text {sig }}$ for spec $^{\prime}=\left(s i g^{\prime}, R\right)$
See Bergstra, Tucker: Characterization of Computable Data Types (Math. Center Amsterdam 79).

Attention: Does not hold for signatures with only unary function symbols.

λ-Calculus und Combinator Calculus: Informal

Basic operations:

- Application:: For "expressions" $F, A:$: $F . A$ or (FA)
F as program term is "applied" on A as argument term.
- Abstraction:: For an "expression" M, Variable $x:: \quad \lambda x . M$ Denotes a function which maps x into M, M can "depend"on x
Example: $(\lambda x .2 * x+1) .3$ should give as result $2 * 3+1$, hence 7 .
- β-Equation:: $\quad(\lambda x \cdot M[x]) N=M[x:=N]$
"Free" occurrences of x in M are "replaced" by N. β-Conversion

$$
(y x(\lambda x \cdot x))[x:=N] \equiv(y N(\lambda x \cdot x))
$$

Notice: Free occurrences of variables in N remain free. Renaming of (bound) variables if necessary

$$
(\lambda x \cdot y)[y:=x x] \equiv \lambda z \cdot x x \quad z \text { "new" }
$$

Reduction strategies
000000
λ-Calculus und Combinator Calculus: Informal

- α-Equation:: $\quad \lambda x \cdot M=\lambda y \cdot M[x:=y]$ with y "new" $\lambda x . x=\lambda y . y$. Same effect as "Functions" α-Conversion
- Set of λ - terms in C and $V::$

$$
\Lambda(C, V)=C|V|(\Lambda \Lambda) \mid(\lambda V . \Lambda)
$$

- Set of free variables of $M:: F V(M)$
- M is closed (Combinator) if $F V(M)=\emptyset$
- Standard Combinators:: $\quad I \equiv \lambda x \cdot x \quad K \equiv \lambda x y . x \equiv \lambda x .(\lambda y . x)$

$$
B \equiv \lambda x y z \cdot x(y z) \quad K_{*} \equiv \lambda x y \cdot y \quad S \equiv \lambda x y z \cdot x z(y z)
$$

- Following equalities hold:
$I M=M \quad K M N=M \quad K_{*} M N=N \quad S M N L=M L(N L)$
$B L M N=L(M(N)) \quad$ left parenthesis !
- Fixpoint Theorem:: $\forall F \exists X \quad F X=X$ with e.g.
$X \equiv W W$ and $W \equiv \lambda x . F(x x)$

Known reduction strategies

- Representation of functions, numbers $c_{n} \equiv \lambda f x . f^{n}(x)$ F combinator represents f iff $F z_{n 1} \ldots z_{n k}=z_{f(n 1, \ldots, n k)}$
- f is partial recursive iff f is represented by a combinator.
- Theorem of Scott: Let $A \subset \Lambda, A$ non trivial and closed under $=$, then A not recursively decidable.
- β-Reduction:: $\quad(\lambda x . M) N \rightarrow_{\beta} M[x:=N]$
- $N F=$ Set of terms which have a normal form is not recursive.
- $(\lambda x . x x) y$ is not in normal form, $y y$ is in normal form.
- $(\lambda x . x x)(\lambda x . x x)$ has no normal form.
- Church Rosser Theorem:: \rightarrow_{β} ist confluent
- Theorem of Curry If M has a normal form then $M \rightarrow{ }_{i}^{*} N$, i.e. Leftmost Reduction is normalizing

Definition 11.2. Reduction strategies:

- Leftmost-Innermost (Call-by-Value). One-step-RS, the redex that appears most left in the term and that contains no proper redex is reduced.
- Paralell-Innermost. Multiple-step-RS. PI $(t)=\bar{t}$, at which $t \mapsto \bar{t}$ (All the innermost redexes are reduced).
- Leftmost-Outermost (Call-by-Name). One-step-RS.
- Parallel-Outermost. Multiple-step-RS. $P O(t)=\bar{t}$, at which $t \mapsto \bar{t}$ (All the disjoint outermost redexes are reduced).
- Fair-LMOM. A left-most outermost redex in a red-sequence is eventually reduced. (A LMOR in such a strategy doesn't remain unreduced for ever). (Lazy strategy).
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 353

Reduction strategies

Generalities

Reduction strategies for replacement systems

Definition 11.1. Let R be a TES

- A one-step reduction strategy \mathfrak{S} for R is a mapping $\mathfrak{S}: \operatorname{term}(R, V) \rightarrow \operatorname{term}(R, V)$ with $t=\mathfrak{S}(t)$ in case that t is in normal form and $t \rightarrow_{R} \mathfrak{S}(t)$ otherwise.
- \mathfrak{S} is a multiple-step-reduction strategy for R if $t=\mathfrak{S}(t)$ in case that t is in normal form and $t \xrightarrow{+}_{R} \mathfrak{S}(t)$ otherwise.
- A reduction strategy \mathfrak{S} is called normalizing for R, if for each term t with a R - normal form, the sequence $\left(\mathfrak{S}^{n}(t)\right)_{n \geq 0}$ contains a normal form. (Contains in particular a finite number of terms).
- A reduction strategy \mathfrak{S} is called cofinal for R, if for each t and $r \in \Delta^{*}(t)$ there is a $n \in \mathbb{N}$ with $r \xrightarrow{*}_{R} \mathfrak{S}^{n}(t)$.
Cofinal reduction strategies are optimal in the following sense: they deliver maximal information gain.
Assuming that normal forms contain always maximal information.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction strategies
00000000000
Known reduction strategies

- Full-substitution-rule. (Only for orthogonal systems). Multiple-step-RS. $G K(t):: t \xrightarrow{+} G K(t)$ all the redexes in t are reduced, in case they're not disjunct, then the residuals of the redexes are also reduced.
- Call-By-Need. One-step-RS. It reduces always a necessary redex. A redex in t is necessary, when it must be reduced in order to compute the normal form. (Only for certain TES e.g. LMOM for SKI calculus) Problem: How can one decide whether a redex is necessary or not?
- Variable-Delay-Strategy: One-step-RS. Reduce redex, that doesn't appear as redex in the instance of a variable of another redex.

Examples

- $\Sigma=\left\{a, b_{i}, c, d: i \in \mathbb{N}\right\}$. Non confluent SRS: $R=\left\{a b_{0} c \rightarrow a c b_{0}, a b_{0} d \rightarrow a d, c \rightarrow d, c b_{i} \rightarrow d, b_{i} \rightarrow b_{i+1}(i \geq 1)\right\}$ $a b_{0} c \rightarrow{ }_{11} a b_{0} d \rightarrow a d$
$a b_{0} c \rightarrow 0 a c b_{0} \rightarrow_{11} a c b_{1} \rightarrow a d b_{1} \rightarrow \ldots$
- $\Sigma=\{f, a, b, c, d\} R=\{f(x, b) \rightarrow d, a \rightarrow b, c \rightarrow c\}$ Orthogonal LMOM must not be normalizing:
$f(c, a) \rightarrow f(c, a) \rightarrow \ldots$ but $f(c, a) \rightarrow f(c, b) \rightarrow d$
- $f(a, f(x, y)) \rightarrow f(x, f(x, f(b, b)))$ left linear with overlaps. $f(a, f(a, f(b, b))) \rightarrow$ OUT $f(a, f(a, f(b, b))) \rightarrow$ OUT \ldots.

\downarrow INN

$f(a, f(b, f(b, f(b, b)))) \rightarrow f(b, f(b, f(b, b)))$

- $R=\{f(g(x), c) \rightarrow h(x, d), b \rightarrow c\}$
$f(g(f(a, f(a, \underline{b}))), c) \rightarrow v D h(f(a, f(a, \underline{b})), d) \rightarrow v D$ $h(f(a, f(a, c)), d)$

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction strategies
0000000000
Generalities
Examples

- $\Sigma=\{0, s, p, i f 0, F\}, R=\{p(0) \rightarrow 0, p(s(x)) \rightarrow x, i f 0(0, x, y) \rightarrow$ x, if0 $(s(z), x, y) \rightarrow y, F(x, y) \rightarrow i f 0(x, 0, F(p(x), F(x, y)))\}$ Left-linear, without overlaps. (orthogonal).
$F(0,0) \rightarrow i f 0(0,0, F(p(0), F(0,0))) \xrightarrow{O M} 0$ if $0(0,0, F(0$, if $0(0,0, F(p(0), F(0,0)))))$
No IM-strategy is for all orthogonal systems normalizing or cofinal
- FSR (Full-Substitution-Rule): Choose all the redexes in the term and reduce them from innermost to outermost (notice no redex is destroyed). Cofinal for orthogonal systems.
- $\Sigma=\left\{a, b, c, d_{i}: i \in \mathbb{N}\right\}$
$R:=\left\{a \rightarrow b, d_{k}(x) \rightarrow d_{k+1}(x), c\left(d_{k}(b)\right) \rightarrow b\right.$
confluent (left linear parallel 0 -closed).
$c\left(d_{0}(a)\right) \rightarrow_{1} c\left(d_{1}(a)\right) \rightarrow_{1} \ldots$. not normalizing (POM)
$c\left(d_{0}(a)\right) \rightarrow_{1,1} c\left(d_{0}(b)\right) \rightarrow_{0} b$

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction strategies
thogonal syste

Strategies for orthogonal systems

Theorem 11.4. For orthogonal systems the following holds:

- Full-Substitution-Rule is a cofinal reduction strategy.
- POM is a normalizing reduction strategy.
- LMOM is normalizing for λ-calculus and CL-calculus.
- Every fair-outermost strategy is normalizing

- Main tools.

Elementary reduction diagrams, residuals and reduction diagrams

Reduction strategles
Orthogonal systems

Composition of E-reduction diagrams

Reduction diagrams and projections:

Let $R_{1}:: t \xrightarrow{+} t^{\prime}$ and $R_{2}:: t \xrightarrow{+} t^{\prime}$ be two reduction sequences of r from t to t^{\prime}. They are equivalent $\quad R_{1} \cong R_{2} \quad$ iff $\quad R_{1} / R_{2}=R_{2} / R_{1}=\emptyset$.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction strategies

000000
Strategies for orthogonal systems
Lemma 11.5. Let D be an elementary reduction diagram for orthogonal systems, $R_{i} \subseteq M_{i}(i=0,2,3)$ redexes with $R_{0}-.-. \rightarrow R_{2}-.-. \xrightarrow{*} R_{3}$ i.e. R_{2} is residual of R_{0} and R_{3} is residual of R_{2}. Then there is a unique redex $R_{1} \subseteq M_{1}$ with $R_{0}-.-. \rightarrow R_{1}-.-. \xrightarrow{*} R_{3}$, i.e.

Notice, that in the reduction sequences $M_{1} \xrightarrow{*} M_{3}$ and $M_{2} \xrightarrow{*} M_{3}$ only residuals of the corresponding used redex in the reduction in M_{0} are reduced.
Property of elementary reduction diagrams!

Strategies for orthogonal systems

Definition 11.6. Let Π be a predicate over term pairs M, R so that
$R \subseteq M$ and R is redex (e.g. LMOM, LMIM, ...).
i) Π has property I when for a D like in the lemma it holds:

$$
\Pi\left(M_{0}, R_{0}\right) \wedge \Pi\left(M_{2}, R_{2}\right) \wedge \Pi\left(M_{3}, R_{3}\right) \rightsquigarrow \Pi\left(M_{1}, R_{1}\right)
$$

ii) Π has property II if in each reduction step $M \rightarrow^{R} M^{\prime}$ with $\neg \Pi(M, R)$, each redex $S^{\prime} \subseteq M^{\prime}$ with $\Pi\left(M^{\prime}, S^{\prime}\right)$ has an ancestor-redex $S \subseteq M$ with $\Pi(M, S)$. (i.e. $\neg \Pi$ steps introduce no new Π-redexes).

Lemma 11.7. Separability of developments. Assume Π has property II. Then each development $\mathfrak{R}:: M_{0} \rightarrow \ldots \rightarrow M_{n}$ can be partitioned in a
Π-part followed by a $\neg \Pi$-part.
More precisely: There are reduction sequences
$\mathfrak{R}_{\Pi}:: M_{0}=N_{0} \rightarrow^{R_{0}} \ldots \rightarrow^{R_{k-1}} N_{k}$ with $\Pi\left(N_{i}, R_{i}\right)(i<k)$ and $\Re_{\neg \Pi}:: N_{k} \rightarrow^{R_{k}} \ldots \rightarrow^{R_{k+l-1}} N_{k+1}$ with $\neg \Pi\left(N_{j}, R_{j}\right)(k \leq j<k+I)$ and \mathfrak{R}
is equivalent to $\mathfrak{R}_{\Pi} \times \mathfrak{R}_{\neg \Pi}$.

[^5]
Reduction strategies

Orthogonal systems

Example 11.8. $\quad \Pi(M, R)$ iff R is redex in $M . I$ and $/ /$ hold.

- $\Pi(M, R)$ iff R is an outermost redex in M. Then properties I and II hold: To I

R_{0}, R_{2}, R_{3} outermost redexes Let S_{i} be the redex in $M_{0} \rightarrow M_{i}$ Assuming that is not $O M \rightsquigarrow \ln M_{1}$ a redex (P) is generated by the reduction of S_{1}, that contains R_{1}

In $M_{1} \rightarrow>M_{3} R_{1}$ becomes again outermost. i.e. P is reduced: But in $M_{1} \rightarrow>M_{3}$ only residuals of S_{2} are reduced and P is not residual, since was newly introduced.亡. II is clear.

- $\Pi(M, R)$ iff R is left-most redex in M. I holds. II not always: $F(x, b) \rightarrow d, a \rightarrow b, c \rightarrow c:: F(c, a) \rightarrow F(c, b)$

Reduction strategies
Orthogonal systems

Descendants of redexes (residuals)

Definition 11.9. Traces in reduction sequences:

- Let $\Re:: M_{0} \rightarrow M_{1} \rightarrow \ldots$ be a reduction sequence. Let M_{j} be fixed and $L_{i} \subseteq M_{i}(i \geq j)$ (provided that M_{i} exists) redexes with $L_{j}-.-. \rightarrow L_{j+1}-.-. \rightarrow \ldots$
The sequence $\mathfrak{L}=\left(L_{j+i}\right)_{i \geq 0}$ is a trace of descendants (residuals) of redexes in M_{j}.
- \mathfrak{L} is called Π-trace, in case that $\forall i \geq j \Pi\left(M_{i}, L_{i}\right)$.
- Let R be a reduction sequence, Π a predicate. R is Π-fair, if R has no infinite П-Traces.

Results from Bergstra, Klop :: Conditional Rewrite Rules:
Confluence and Termination. JCSS 32 (1986)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction strategies

onal systems

Properties of Traces

Lemma 11.10. Let Π be a predicate with property I.

- Let \mathfrak{D} be a reduction diagram with $R_{i} \subseteq M_{i}, R_{0}-.-. \rightarrow>R_{2}-.-. \rightarrow>R_{3}$ is Π trace

Then $R_{0}-.-. \rightarrow>R_{1}-.-. \rightarrow>R_{3}$ via M_{1} also a Π trace

- Let $\mathfrak{R}, \mathfrak{R}^{\prime}$ be equivalent reduction sequences from M_{0} to M. $S \subseteq M_{0}, S^{\prime} \subseteq M$ redexes, so that a Π-trace $S-.-\rightarrow>S^{\prime}$ via \Re exists. Then there is a unique Π-trace $S-.-\rightarrow>S^{\prime}$ via \mathfrak{R}^{\prime}.

Main Theorem of O'Donnell 77

Theorem 11.11. Let Π be a predicate with properties I,II. Then the class of Π-fair reduction sequences is closed w.r. to projections.

Proof Idea:

Let $\mathfrak{R}:: M_{0} \rightarrow \ldots$ be Π-fair and $\mathfrak{R}^{\prime}:: N_{0} \xrightarrow{*}$ a projection.
$\forall k \exists M_{k} \xrightarrow{\Pi}>A_{k} \xrightarrow{\neg \Pi}>N_{k}$ equivalent to the complete development $M_{k} \rightarrow>N_{k}$. In the resulting rearrangement both derivations between N_{k} and N_{k+1} are equivalent. In particular the Π-Traces remain the same.

Reduction strategies
00000000000
$00000000000000 \cdot 0000000000000000000$
Main Theorem: Proof

This echelon reaches \mathfrak{R} after a finite number of steps, let's say in M_{1} : If not \Re would have an infinite trace of S residuals with property Π.

Let's assume that \mathfrak{R}^{\prime} is not Π fair. Hence it contains an infinite Π-trace $R_{k}, \ldots, R_{k+1} \ldots$ that starts from N_{k}.

There are Π-ancestors $P_{k} \subseteq A_{k}$ from the Π-redex $R_{k} \subseteq N_{k}$, i.e with $\Pi\left(A_{k}, P_{k}\right)$. Then the Π-trace $P_{k}-.-. \rightarrow>R_{k}-.-. \rightarrow>R_{k+1}$ can be lifted via B_{k+1} to the Π-trace $P_{k}-.-. \rightarrow>Q_{k+1}-.-. \rightarrow>R_{k+1}$.

Iterating this construction until M_{l}, a redex P_{l} that is predecessor of R_{l} with $\Pi\left(M_{l}, P_{l}\right)$ is obtained. This argument can be now continued with R_{l+1}.
Consequently \mathfrak{R} is not Π-fair. $\&$.

Reduction strategies
Orthogonal systen

Consequences

Lemma 11.12. Let $\Re:: M_{0} \rightarrow M_{1} \rightarrow \ldots$ be an infinite sequence of reductions with infinitely outermost redex-reductions. Let $S \subseteq M_{0}$ be a redex. Then $\mathfrak{R}^{\prime}=\mathfrak{R} /\{S\}$ is also infinite.

Proof: Assume that \mathfrak{R}^{\prime} is finite with length k. Let $I \geq k$ and $R_{/}$be the redex in the reduction of $M_{l} \rightarrow M_{l+1}$ and let \Re_{l} the reduction sequence from M_{l} to M_{l}^{\prime}

- If R_{l} is outermost, then $M_{l}^{\prime} \xrightarrow{*} M_{l+1}^{\prime}$ can only be empty if R_{l} is one of the residuals of S which are reduced in $\mathfrak{R}_{/ /}$. Thus \Re_{l+1} has one step less than $\mathfrak{R}_{\text {/ }}$.
- Otherwise R_{l} is properly contained in the residual of S reduced in $\Re_{/}$.

However given that \mathfrak{R} must contain infinitely many outermost
redex-reductions then \mathfrak{R}_{q} would become empty. Consequently \mathfrak{R}^{\prime} must coincide with \mathfrak{R} from some position on, hence it is also infinite.

Consequences for orthogonal systems

Definition 11.14. Let R be orthogonal, $I \rightarrow r \in R$ is called left normal, if in I all the function symbols appear left of the variables. R is left normal, if all the rules in R are left normal.

Consequence 11.15. Let R be left normal. Then the following holds:

- Fair leftmost reduction sequences are terminating for terms with a normal form.
- The LMOM-strategy is normalizing.

Proof: Let $\Pi(M, L)$ iff L is LMO-redex in M. Then the properties I and II hold. For II left normal is needed.
According to theorem 11.11 the Π-fair reduction sequences are closed under projections. From Lemma 11.12 the statement follows.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction strategies

$000000000000000000 \bullet 000000000000000$
Summary

A strategy is called perpetual if it can induce infinite reduction sequences.

Strategy	Orthogonal	LN-Ortogonal	Orthogonal-
LMIM	p	p	$p n$
PIM	p	p	$p n$
LMOM		n	$p n$
POM	n	n	$p n$
FSR	$n c$	$n c$	$p n c$

Classification of TES according to appearances of variables

Definition 11.16. Let R be $T E S, \operatorname{Var}(r) \subseteq \operatorname{Var}(I)$ for
$I \rightarrow r \in R, x \in \operatorname{Var}(I)$.

- R is called variable reducing, if for every $I \rightarrow r \in R,\left|\left|\left.\right|_{x}>|r|_{x}\right.\right.$ R is called variable preserving, if for every $I \rightarrow r \in R,\left|\left|\left.\right|_{x}=|r|_{x}\right.\right.$ R is called variable augmenting, if for every $I \rightarrow r \in R,\left|\left|\left.\right|_{x} \leq|r|_{x}\right.\right.$
- Let $D\left[t, t^{\prime}\right]$ be a derivation from t to t^{\prime}. Let $\left|D\left[t, t^{\prime}\right]\right|$ the length of the reduction sequence. $D\left[t, t^{\prime}\right]$ is optimal if it has the minimal length among all the derivations from t to t^{\prime}.

Lemma 11.17. Let R be orthogonal, variable preserving. Then every redex remains in each reduction sequence, unless it is reduced. Each derivation sequence is optimal.

Proof: Exchange technique: residuals remain as residuals, as long as they are not reduced, i.e. the reduction steps can be interchanged.

Prof. Dr. K. Madlener: Formal Specification and Verfication Techniques: Introduction

Reduction strategies
$0000000000000000000000000 \bullet 0000000000000$
Examples

Example 11.18. Lengths of derivations:

- Variable preserving:
$R:: f(x, y) \rightarrow g(h(x), y)), g(x, y) \rightarrow I(x, y), a \rightarrow c, b \rightarrow d$
Consider the term $f(a, b)$ and its derivations.
All derivation sequences to the normal form are of the same length (4).
- Variable augmenting (non erasing):
$R:: f(x, b) \rightarrow g(x, x), a \rightarrow b, c \rightarrow d$. Consider the term $f(c, a)$ and its derivations.
Innermost derivation sequences are shorter than the outermost ones.

Further Results

Lemma 11.19. Let R be overlap free, variable augmenting. Then an innermost redex remains until it is reduced.

Theorem 11.20. Let R be orthogonal variable augmenting (ne). Let $D\left[t, t^{\prime}\right]$ be a derivation sequence from t to its normal form t^{\prime}, which is non-innermost. Then there is an innermost derivation $D^{\prime}\left[t, t^{\prime}\right]$ with $\left|D^{\prime}\right| \leq|D|$.

Proof: Let $L(D)=$ derivation length from the first non-innermost reduction in D to t^{\prime}.
Induction over $L(D):: t \rightarrow t_{1} \rightarrow \ldots \rightarrow t_{i} \xrightarrow{S} \ldots \rightarrow t_{j} \xrightarrow{*} t^{\prime}$
Let i be this position.
S is non-innermost in t_{i}, hence it contains an innermost redex S_{i} that must be reduced later on, let's say in the reduction of t_{j}. Consider the
reduction sequence $\quad D^{\prime}:: t \rightarrow t_{1} \rightarrow \ldots \rightarrow t_{i} \xrightarrow{s_{i}} t_{i+1}^{\prime} \xrightarrow{s} \ldots t_{j}^{\prime} \xrightarrow{\stackrel{<}{\longrightarrow}} t^{\prime}$
$\left|D^{\prime}\right| \leq|D|, L\left(D^{\prime}\right)<L(D) \rightsquigarrow$ there is a derivation D^{\prime} with $L\left(D^{\prime}\right)=0$.

Reduction strategies

000000000000000000000•00000000000

Further Results

Theorem 11.21. Let R be overlap free, variable augmenting. Every two innermost derivations to a normal form are equally long.
Sure! given that innermost redexes are disjoint and remain preserved as long as they are not reduced.
Consequence:Let R be left linear, variable augmenting. Then innermost derivations are optimal. Especially LMIM is optimal.
Example 11.22. If there are several outermost redexes, then the length of the derivation sequences depend on the choice of the redexes. Consider:
$f(x, c) \rightarrow d, a \rightarrow d, b \rightarrow c$ and the derivations:
$f(\underline{a}, b) \rightarrow f(d, \underline{b}) \rightarrow \underline{f(d, c)} \rightarrow d$ and respectively $f(a, \underline{b}) \rightarrow \underline{f(a, c)} \rightarrow d$
\rightsquigarrow variable delay strategy. If an outermost redex after a reduction step is no longer outermost, then it is located below a variable of a redex originated in the reduction. If this rule deletes this variable, then the redex must not be reduced.

Further Results

Theorem 11.23. Let R be overlap free.

- Let D be an outermost derivation and L a non-variable outermost redex in D. Then L remains a non-variable outermost redex until it is reduced.
- Let R be linear. For each outermost derivation $D\left[t, t^{\prime}\right], t^{\prime}$ normal form, exists a variable delaying derivation $D^{\prime}\left[t, t^{\prime}\right]$ with $\left|D^{\prime}\right| \leq|D|$. Consequently the variable delaying derivations are optimal.

Theorem 11.24. Ke Li. The following problem is NP-complete:
Input: A convergent TES R, term t and $D[t, t \downarrow]$.

$$
\text { Question: Is there a derivation } D^{\prime}[t, t \downarrow] \text { with }\left|D^{\prime}\right|<|D|
$$

Proof Idea: Reduce 3-SAT to this problem.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Computable Strategies: Counterexample

Example 11.27. Signature: Constants: $S, K, S^{\prime}, K^{\prime}, C, 0,1$

$$
\text { unary: } A \text {, activate binary: ap, ap } \quad \text { ternary: } B
$$

Rules:
$a p(a p(a p(S, x), y), z) \rightarrow a p(a p(x, y), a p(y, z))$
$\operatorname{ap}(a p(K, x), y) \rightarrow x$
$\operatorname{activate}\left(S^{\prime}\right) \rightarrow S, \quad \operatorname{activate}\left(K^{\prime}\right) \rightarrow K$
activate $\left(a p^{\prime}(x, y)\right) \rightarrow$ ap(activate (x), activate $\left.(y)\right)$
$A(x) \rightarrow B(0, x$, activate $(x)), \quad A(x) \rightarrow B(1, x, \operatorname{activate}(x))$
$B(0, x, S) \rightarrow C, \quad B(1, x, K) \rightarrow C, \quad B(x, y, z) \rightarrow A(y)$
Terms: Starting with terms of form $A(t)$ where t is constructed from S^{\prime}, K^{\prime} and $a p^{\prime}$

Claim: R is confluent and has no computable one step strategy which is normalizing.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introductio

Computable Strategies

Definition 11.25. A reduction strategy \mathfrak{S} is computable, if the mapping $\mathfrak{S}:$ Term \rightarrow Term with $t \xrightarrow{*} \mathfrak{S}(t)$ is recursive.

Observe that: The strategies LMIM, PIM, LMOM, POM, FSR are polynomially computable.

Question: Is there a one-step computable normalizing strategy for orthogonal systems?.

Example 11.26. (Berry) CL-calculus extended by rules
$F A B x \rightarrow C, F B x A \rightarrow C, F x A B \rightarrow C$ is orthogonal, non-left-normal. Which argument does one choose for the reduction of FMNL? Each argument can be evaluated to A resp. B, however this is undecidable in CL.

- Consider or $($ true,$x) \rightarrow$ true, or $(x$, true $) \rightarrow$ true $+C L$

Parallel evaluation seems to be necessary!

Reduction strategies

$00000000000000000000000000 \cdot 0000000$

A sequential Strategy for paror Systems

Example 11.28. Let $f, g: \mathbb{N}^{+} \rightarrow \mathbb{N}$ recursive functions. Define a "term rewriting system" R on $\mathbb{N} \times \mathbb{N}$ with rules:

- $(x, y) \rightarrow(f(x), y)$ if $x, y>0$
- $(x, y) \rightarrow(x, g(y))$ if $x, y>0$
- $(x, 0) \rightarrow(0,0)$ if $x>0$
- $(0, y) \rightarrow(0,0)$ if $y>0$

Obviously R is confluent. Unique normal form is $(0,0)$ and for $x, y>0$,

$$
(x, y) \text { has a normal form iff } \exists n . f^{n}(x)=0 \vee g^{n}(x)=0
$$

A one step reductions strategy must choose among the application of f res. g in the first res. second argument.
Such a reduction strategy cannot compute first the zeros of $f^{n}(x)$ res. $g^{n}(y)$ in order to choose the corresponding argument. One could expect, that there are appropriate functions f and g for which no computable one step strategy exists. But this is not the case!!

A sequential strategy for paror systems

There exists a computable one step reduction strategy which is normalizing.

Lemma 11.29. Let $(x, y) \in \mathbb{N} \times \mathbb{N}$. Then:

- $x<y$:: For n either $f^{n}(x)=0$ or $f^{n}(x) \geq y$ or there exists an $i<n$ with $f^{n}(x)=f^{i}(x) \neq 0$ holds. Choose n minimal with this property. The three alternatives are mutually excluding.
If one of the first two holds then $\mathfrak{S}(x, y)=L$ else R
- $x \geq y$:: For n either $g^{n}(y)=0$ or $g^{n}(y)>x$ or there exists an $i<n$ with $g^{n}(y)=g^{i}(y) \neq 0$. Choose n minimal with this property. The three alternatives are mutually excluding. If one of the first two holds then $\mathfrak{S}(x, y)=R$ else L
- Claim: \mathfrak{S} is a computable one step reduction strategy for R which is normalizing. (Proof: Exercise)

Sequential Orthogonal TES

Example 11.33. For applicative TES:: $P x Q \rightarrow x x, R \rightarrow S, I x \rightarrow x$ Consider $\mathfrak{R}:: P R(\underline{I Q}) \rightarrow \underline{P R Q} \rightarrow \underline{R} R \rightarrow S R$
There exists no standard reduction sequence from $P R(I Q)$ to $S R$
Fact: λ-Calculus and CL-Calculus are sequential, i.e. always needed redexes are reduced for computing the normal form.

Definition 11.34. Let R be orthogonal, $t \in \operatorname{Term}(R)$ with normal form $t \downarrow$. A redex $s \subseteq t$ is a needed redex, if in every reduction sequence $t \rightarrow \ldots \rightarrow t \downarrow$ some residual of s is reduced (contracted).

```
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

\section*{Reduction strategies}
```

$0000000000000000000 \bullet 000$

```

\section*{Sequential Orthogonal TES: Call-by-need}

Theorem 11.35. Huet- Levy (1979) Let \(R\) be orthogonal
- Let \(t\) with a normal form but reducible, then \(t\) contains a needed redex
- "Call-by-need" Strategy (needed redexes are contracted) is normalizing
- Fair needed-redex reduction sequences are terminating for terms with a normal form.
Lemma 11.36. Let \(R\) be orthogonal, \(t \in \operatorname{Term}(R), s, s^{\prime}\) redexes in \(t\) s.t. \(s \subseteq s^{\prime}\). If \(s\) is needed, then also \(s^{\prime}\) is.
In particular:: If \(t\) is not in normal form, then a outermost redex is a needed redex.

Let \(C[\ldots, \ldots, \ldots]\) be a context with \(n\)-places (holes), \(\sigma\) a substitution of the redexes \(s_{1}, \ldots, s_{n}\) in places \(1, \ldots, n\). The Lemma implies the following property:
\(\forall C[\ldots, \ldots, \ldots]\) in normal form, \(\forall \sigma \exists i . s_{i}\) needed in \(C\left[s_{1}, \ldots, s_{n}\right]\).
Which one of the \(s_{i}\) is needed, depends on \(\sigma\).
```

00000000000
00000000000000000000000000000000000

```
    Sequential Orthogonal TES

Definition 11.37. Let \(R\) be orthogonal.
- \(R\) is sequential* iff \(\forall C[\ldots, \ldots, \ldots]\) in normal form \(\exists i \forall \sigma . s_{i}\) is needed in \(C\left[s_{1}, \ldots, s_{n}\right]\) Unfortunately this property is undecidable
- Let \(C[. .\).\(] context. The reduction relation \rightarrow\) ? (possible reduction) is defined by
\[
C[s] \rightarrow \text { ? } C[r] \text { for each redex } s \text { and arbitrary term } r
\] \(\rightarrow\) ? and residuals defined in analogy
- A redex \(s\) in \(t\) is called strongly needed if in every reduction sequence \(t \rightarrow\) ? \(\ldots \rightarrow\) ? \(t^{\prime}\), where \(t^{\prime}\) is a normal form, some descendant of \(s\) gets reduced.
- \(R\) is strongly sequential if \(\forall C[\ldots, \ldots, .\).\(] in normal form \exists i \forall \sigma . s_{i}\) is strongly needed.
Prof. Dr. K. Madener: Formal Specification and Verifiction Techniques: Introduction 385
```

Reduction strategies
*)

```
Sequential Orthogonal TES: Call by Need

Example


\section*{Lemma 11.38. Let \(R\) be orthogonal.}
- The property of being strongly sequential is decidable. The needed index \(i\) is computable.
Proof: See e.g. Huet-Levy
- Call-by-need is a computable one step reduction strategy for such systems.
\begin{tabular}{l} 
Prof. Dr. K. Madener: Formal Specification and Verification Techniques: Introduction \\
\begin{tabular}{l} 
Summary \\
Cooooo \\
Summary
\end{tabular} \\
\hline
\end{tabular}

Summary: Formal Specification and Verification Techniques
- What have we learned? \(\rightsquigarrow\) See contents of lecture.
- Which were the important notions about FSVT?
- Are formal methods helpful for better software development?
- Can formal methods be integrated in SD-Process models?
- What is needed in order to understand and use formal methods?
- Are there criteria for evaluating formal methods?
- The importance of knowing what one does....

Principles to make a formal method a useful tool in system development
- formal syntax
- formal semantics
- clear conceptual system model
- uniform notion of an interface
- sufficient expressiveness and descriptive power
- concept of development techniques with a proper notion of refinement and implementation

Property oriented specification techniques
- Algebraic Specification Techniques (equational logic)
- Logical Specification Techniques (Prolog, temporal- and modal logics)
- Hybrids
- LARCH, OBJ, MAUDE,....
- Tools: http://rewriting.loria.fr/
- ....

Interesting reading:
http://www.comp.lancs.ac.uk/computing/resources/lanS/SE6/Slides/PDF/ch9. http://libra.msra.cn/ConferenceDetail.aspx?id=1618
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
```

Summary

```

Model oriented specification techniques
- ASM
- VDM
- Z and B-Methods
- SDL
- STATECHARTS
- CSP, Petri-Nets (concurrent)
-
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction \(\quad\) のQc

Summary
\(0000 \bullet\)
\(0000 \cdot 0\)
Verification techniques

Important: What and where should something hold...
What to do when it does not hold?
Use the proper tools depending on the abstraction level.
- Equational Logic (Term Rewriting ...)
- Equational properties in a single model (Induction methods....)
- First order Logics (General theorem provers...)
- First order properties of single models (Inductive methods...)
- Temporal and modal logics (Propositional part...Model checking)
- Propositional logics (Sat solvers, Davis Putman, tableaux,...)

\footnotetext{
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction
}
- Thanks for your attention

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 393```


[^0]:    Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

    Abstract State Machines: ASM- Specifietion's method
    Abstract State Machines: ASM-Specification 's method
    000000000000000000000000000000000000000000000000000000000000000000 Sequential algorithms

[^1]:    Copyright © 2002 Robert F. Statk, Computer Science Department, ETH Zuirch, Swizerelne

[^2]:    Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

[^3]:    Most frequent application: Modulo AC (Associativity + Commutativity)

[^4]:    Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 279

    Reduction Systems
    
    $\qquad$ Term Rewriting Systems
    $000000000000000000000 \cdot 00000000$ 000000000000000000000000000000000

[^5]:    Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introductio

