Exercises to the Lecture FSVT

Exercise 35: [Completion]

Let $E=\{x+0=x, x+s(y)=s(x+y), x+p(y)=p(x+y), x-0=x, x-s(y)=$ $p(x-y), x-p(y)=s(x-y), s(p(x))=x, p(s(x))=x,((x+y)-x)=y,(x+(y-x))=$ $y,((x-y)+y)=x\}$

1. Complete E using any reduction ordering you like.

Be verbose, write down for at least 5 most general unificators how you determined them when looking for critical pairs. Write down all critical pairs, you have looked at.

Hint: Start with CPs of the last three equations.
2. Show, that completion will not succeed. Make a suggestion, what can be done on this problem.

Exercise 36: [Completion modulo ~]
Let $>$ be a Knuth-Bendix-ordering with weight function φ defined by $\varphi(s)=1$ for $s \in F \cup V$.
Let $E=\{f(x+y) \rightarrow f(x) * f(y), f(0) \rightarrow 1, x+0 \rightarrow x, 0+x \rightarrow x, x * 1 \rightarrow x, 1 * x \rightarrow x\}$ and $G=\{x+y=y+x,(x+y)+z=x+(y+z), x * y=y * x,(x * y) * z=x *(y * z)\}$.
Complete E modulo G with respect to $>$.
Exercise 37: [Implementation by equations]
Let $g: \mathbb{N}^{n+1} \rightarrow \mathbb{N}, h: \mathbb{N}^{n} \rightarrow \mathbb{N}$ be primitivly recursive functions and let $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ be defined by:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\mu_{z \leq h\left(x_{1}, \ldots, x_{n}\right)}\left[g\left(x_{1}, \ldots, x_{n}, z\right)=0\right]
$$

Give an equation set $G_{\hat{f}}$ and a function symbol \hat{f}, such that \hat{f} implements the function f in $G_{\hat{f}}$.

Delivery: until 2009/07/08 FR:G08 Mo:G03, by EMail to madlener@informatik.uni-kl.de

