Exercises to the Lecture FSVT

Exercise 41: [standard combinators]
Prove the following equations to be valid for the standard combinators $I \equiv \lambda x \cdot x, K \equiv$ $\lambda x y \cdot x, B \equiv \lambda x y z . x(y z), K_{*} \equiv \lambda x y . y, S \equiv \lambda x y z . x z(y z):$

1. $I M=M, 2 . K M N=M, 3 . K_{*} M N=N, 4 . S M N L=M L(N L), 5 . B L M N=$ $L(M(N))$

Exercise 42: [Number presentations]
Let the following number presentations in the λ-calculus be given:

1. $c_{0} \equiv \lambda f x . x, c_{n+1} \equiv \lambda f x . f^{n+1}(x)$
2. $d_{0} \equiv I, d_{n+1} \equiv\left[\right.$ false,$\left.d_{n}\right]$
3. $z_{0} \equiv K I, z_{n+1} \equiv S B z_{n}$,
where $F^{0}(M) \equiv M, F^{n+1}(M) \equiv F\left(F^{n}(M)\right)$, true $\equiv K$, false $\equiv K_{*},[M, N] \equiv \lambda z . z M N$.
Prove:
4. There are terms T, T^{-1} with $T c_{n} \equiv d_{n}$ and $T^{-1} d_{n} \equiv c_{n}$ for all n.
5. There are terms R, R^{-1} with $R d_{n} \equiv z_{n}$ and $R^{-1} z_{n} \equiv d_{n}$ for all n.

Exercise 43: [properties of redexes]

1. Make yourself familiar with the notation used in chapter 11 of the lecture. Use the following paper: Bergstra, Klop :: Conditional Rewrite Rules: Confluence and Termination. JCSS 32 (1986)
2. Prove the following Lemma (Lemma 11.5 on slide 361).

Let D be an elementary reduction's diagram for orthogonal systems, $R_{i} \subseteq M_{i}(i=0,2,3)$ redexes with $R_{0}-.-. \rightarrow R_{2}-.-. \rightarrow R_{3}$ i.e R_{2} is Rest of R_{0} and R_{3} is Rest of R_{2}. Then there is a unique redex $R_{1} \subseteq M_{1}$ with $R_{0}-.-\rightarrow R_{1}-.-. \rightarrow R_{3}$, i.e.

Delivery: until 2009/07/22 Fr:G08 Mo: G10, G06, by EMail to madlener@informatik.uni-kl.de

