sheet 7

Exercises to the Lecture FSVT

Prof. Dr. Klaus Madlener

Exercise 22:

Let $\leq \subseteq \text{Term}(F, V) \times \text{Term}(F, V)$ be defined as:

 $s \lesssim t$ iff. exists a substitution σ with $t \equiv \sigma(s)$ $s \approx t$ iff. $s \lesssim t$ and $t \lesssim s$ s < t iff. $s \lesssim t$ and $s \not\approx t$

Show:

- 1. < is strict part of a well-founded partial order. Which elements is this partial order defined on?
- 2. $s \approx t$ holds iff. a permutation ξ exists with $s \equiv \xi(t)$ (variable renaming).

Exercise 23:

This exercise is on an alternative specification of the integers INTEGER = (sig, E) with

$$sig = (int, 0, succ, pred, add),$$

$$E = \{succ(pred(x)) = x, pred(succ(x)) = x, add(0, y) = y, add(succ(x), y) = succ(add(x, y))\}$$

- 1. Show, that $(\mathbb{Z}, 0, +1, -1, +)$ is initial in Alg(INTEGER).
- 2. Structurize this specification using the specification INT. Show that INTEGER is an enrichment of INT.
- 3. Extend INTEGER by a function **absolute** with the properties of the absolute value function on \mathbb{Z} . Show that this is an enrichment of INT.

Exercise 24:

Let INT2 be the specification of integers from example 7.9 of the lecture. We combine INT2 with BOOL and $((\{\}, \{<\}), E)$ to obtain a specification INT3, where

 $E = \{ < (0, \operatorname{succ}(x)) = \operatorname{true}, < (\operatorname{pred}(x), 0) = \operatorname{true}, < (0, \operatorname{pred}(x)) = \operatorname{false}, < (\operatorname{succ}(x), 0) = \operatorname{false}, < (\operatorname{pred}(x), \operatorname{pred}(y)) = < (x, y), < (\operatorname{succ}(x), \operatorname{succ}(y)) = < (x, y) \}$

- 1. Check, whether $T_{\text{INT3}} \mid_{\text{bool}} \cong$ Bool. Why would this be important? Hint: Look at $\langle (\operatorname{succ}(\operatorname{pred}(x)), \operatorname{pred}(\operatorname{succ}(y))).$
- 2. Show that INT3 can not be fixed by additional equations.
- 3. Find further problems of INT3.

4. Make a suggestion for a specification INT4, such that $T_{\text{INT4}}|_{\text{int}} \cong \mathbb{Z}$, $T_{\text{INT4}}|_{\text{bool}} \cong$ Bool and < is properly defined by its equations. Hint: Consider further function symbols.

Exercise 25:

Let specifications ELEMENT and NAT be given as:

spec	ELEMENT
uses	BOOL
sorts	Ε
opns	$\mathrm{eq}:\mathrm{E},\mathrm{E}\to\mathrm{Bool}$
vars	$x,y,z:\to E$
eqns	eq(x, x) = true
	eq(x, y) = eq(y, x)
	$\mathrm{eq}(\mathbf{x},\mathbf{y})=\mathrm{true}$ and $\mathrm{eq}(\mathbf{y},\mathbf{z})=\mathrm{true}$ implies $\mathrm{eq}(\mathbf{x},\mathbf{z})=\mathrm{true}$
spec	NAT
uses	BOOL
sorts	N
opns	$0:\to N$
	$\mathrm{s}:\mathrm{N}\to\mathrm{N}$
	$equal: N, N \to Bool$
vars	$\mathrm{n,m}: ightarrow\mathrm{N}$
eqns	equal(0,0) = true
	equal(0, s(n) = false
	equal(s(n), 0) = false
	equal(s(n), s(m)) = equal(n, m)

Give a parametrized specification for sets over ELEMENT with the operations INSERT and REMOVE and prove:

- 1. The signature morphism σ : ELEMENT \rightarrow NAT given by $\sigma(E) = N$ and $\sigma(eq = equal)$ is no specification morphism.
- 2. $(T_{\text{NAT}})|\sigma$ is a model of ELEMENT, i.e. it is a correct parameter assignment.
- 3. Does your specification satisfy $(T_{\text{VALUE}})|_{\text{NAT}} \cong T_{\text{NAT}}$, i.e. is VALUE an extension of NAT? Is it an enrichment?

Delivery: until 2009-06-17, Fr: G07 Mo: G02, by EMail to madlener@informatik.uni-kl.de