Exercises to the Lecture FSVT

Prof. Dr. Klaus Madlener

sheet 8

Exercise 26:

Make yourself familiar with the chapter on abstract reduction systems. Use the literature. Make sure you know proofs of lemmata 8.3, 8.5, theorem 8.6, theorem 8.16, lemma 8.18.

Exercise 27:

Consider the mu-calculus with the following rules for arbitrary $X, Y \in \{m, i, u\}^*$:

$$\{\frac{Xi}{Xiu},\frac{mY}{mYY},\frac{XiiiY}{XuY},\frac{XuuY}{XY}\}$$

- 1. Is the reduction system it is based on terminating?
- 2. Do $mi \to mu$, $mu \to mi$ resp. hold? Prove your claim.

Exercise 28: [Confluence and termination of rule sets over ground terms]

Let $R = \{(l_k, r_k) | k = 1, ..., n\}$ be a finite rule set over ground terms. Prove:

- 1. If there is an infinite chain, then there is a rule $(l,r) \in R$ with an infinite chain from r.
- 2. If there is an infinite chain, then there is a j with $1 \le j \le n$ and a ground term t, such that $l_j \stackrel{+}{\Rightarrow} t$ and l_j is a subterm of t.
- 3. Termination of R is decidable. (Termination is often denounced as 'Kettenbedingung' in german literature.)
- 4. Develop sufficient conditions for local confluence.

Exercise 29: [Knuth-Bendix-ordering]

Let $\varphi: F \cup V \to \mathbb{N}$ be a weight function with

$$\varphi(x) = \alpha > 0 \qquad \text{for all } x \in V \tag{1}$$

$$\varphi(f) \ge \alpha$$
 if f 0-ary (2)

$$\varphi(f) > 0$$
 if f 1-ary (3)

$$\varphi(f) \ge 0$$
 else (4)

Extend φ to φ : Term $(F, V) \to \mathbb{N}$ by

$$\varphi(f(t_1,\ldots,t_n)) = \varphi(f) + \sum_{i=1,\ldots,n} \varphi(t_i)$$

Define s > t iff. $\varphi(s) > \varphi(t)$ and $|s|_x \ge |t|_x$ for all $x \in V$. Then > is called a Knuth-Bendix-ordering. Prove for any Knuth-Bendix-ordering >:

- 1. > is strict part of a wellfounded partial ordering
- 2. > is compatible with substitution
- 3. > is compatible with term replacement

Exercise 30:

Let

$$R_1 = \{F(0,1,x) \to F(x,x,x)\}\$$

 $R_2 = \{G(x,y) \to x, G(x,y) \to y\}.$

- 1. Prove: R_1 and R_2 are terminating.
- 2. Prove or disprove: The rule set $R_1 \cup R_2$ is terminating.

Delivery: until 2009-24-06, Fr:G09 Mo:G01, by EMail to madlener@informatik.uni-kl.de