Exercises to the Lecture Computer Algebra

Sheet

Prof. Dr. Klaus Madlener

Exercise 1: [Rings and fields]
We want to show some Theorems:
a) Let R be an integral domain and $a, b \in R^{*}$ (the set of non- 0 -elements of R). a and b are associated iff there is a $u \in E(R)$ (the unit group of R) with $a=u b$.
b) Let R be a Euclidean Ring and I an ideal of R. If $0 \neq a \in I$, then $I=a R$ iff $v(a) \leq v(b)$ for all $b \in I \backslash\{0\}$ (where v is the euclidean function of R).
Show further, that R is a principal ideal domain (i.e., that all ideals of R are principal ideals).
c) If K is a field, then $K[x]$ is an Euclidean ring.
d) If K is a field and L is an extension of K (i.e. a field containing K as a subfield), and if furthermore $f \in K[x]$ and $\ell \in L$ a root of f, then f is divisible by $x-\ell$ in $L[x]$.

Exercise 2: [Polynomial division]

We examine the run-time of the classical polynomial division. Consider the following algorithm:

Function: PolyQuoRem (a, b)
Input: $\quad a, b \in \mathbb{R}[x]$,
$a=\sum_{0 \leq i \leq n} a_{i} x^{i}, b=\sum_{0 \leq i \leq m} b_{i} x^{i}$,
R is a commutative ring with 1 , all $a_{i}, b_{i} \in R$,
b_{m} is a unit in R and $n \geq m \geq 0$.
Output: $\quad q, r \in R[x]$ with $a=q b+r$ and $\operatorname{deg} r<m$ or $r=0$
$r \leftarrow a$
for $i \leftarrow n-m$ to 0 do
if $\operatorname{deg}(r)=m+i$ then
$q_{i} \leftarrow \operatorname{lc}(r) / b_{m} ; r \leftarrow r-q_{i} x^{i} b$
else
$q_{i} \leftarrow 0$
end if
end for
return $q=\sum_{0 \leq i \leq n-m} q_{i} x^{i}$ und r
Assume that a polynomial $p=\sum_{0 \leq i \leq k} p_{i} x^{i}$ of degree k is given in dense representation, i.e. it is represented by a coefficient vector $\vec{p}=\left(p_{0}, \ldots, p_{k}\right)$. Calculate the worst-case-run-time, measured in the number of ring operations in R, depending on n and m. Are q and r unique?

Exercise 3: [Diophantische Gleichungen]
Are there $s, t \in \mathbb{Z}$, such that $24 s+14 t=1$ resp. $61 s+37 t=56$? Find all possible solutions.
Show: The linear diophantine Equation $a x+b y=c$ with $a, b, c \in \mathbb{Z}$ has a solution in \mathbb{Z} iff $d \mid c$ for $d=\operatorname{gcd}(a, b)$. If $\left(x_{0}, y_{0}\right)$ is a given solution, then

$$
\left\{\left(x_{0}+k \cdot \frac{b}{d}, \left.y_{0}-k \cdot \frac{a}{d} \right\rvert\, k \in \mathbb{Z}\right\}\right.
$$

is the set of all solutions. What does the term $\frac{a}{d}$ mean in this context?)
Exercise 4: [GCD]
a) Calculate greatest common divisors of $f=x^{5}+x^{4}+x^{3}-x^{2}-x+1$ and $g=$ $x^{3}+x^{2}+x+1\left(f, g \in \mathbb{Z}_{p}[x]\right)$ for $p=3$ and $p=5$. Calculate polynomials s and t with $\operatorname{gcd}(f, g)=s f+t g$.
b) We consider the following gcd-Algorithm after J. Stein (possibly known in ancient China):

```
Function: BinaryGCD \(\left(u, v \in \mathbb{N}^{+}\right)\)
\{Returns the g.c.d of \(u\) and \(v\) \}
\(g \leftarrow 1\)
while \((u \bmod 2=0) \wedge(v \bmod 2=0)\) do
    \(u \leftarrow u / 2 ; v \leftarrow v / 2 ; g \leftarrow 2 g\)
end while
while \((u \neq 0)\) do
        if \((u \bmod 2=0)\) then
            \(u \leftarrow u / 2\)
        else if \((v \bmod 2=0)\) then
            \(v \leftarrow v / 2\)
        else
            \(t \leftarrow|u-v| / 2\)
            if \(u \geq v\) then
                    \(u \leftarrow t\)
            else
                    \(v \leftarrow t\)
            end if
        end if
end while
return \(g \cdot v\)
```

Show that this algorithm actually calculates $\operatorname{gcd}(u, v)$ for any input $u, v \in \mathbb{N}^{+}$and that it requires $O\left((\lambda(u v))^{2}\right)$ in the worst case. We assume that positive natural numbers are given in binary representation and that $\lambda(x)$ is the length of this representation (without leading zeros). Sow finally, that $O(\lambda(u) \lambda(v))$ bit operations do not suffice in the worst case.

