Exercises for the Lecture Logics

Sheet 2

Prof. Dr. Klaus Madlener
Delivery until 04. Mai 2011 10:00 Uhr

Exercise 1: [logical equivalence, satisfiability, tutorial]
Let p, q, r, and s be propositional variables and A, B, C formulas. Prove:

1. $\{p, p \vee q, p \rightarrow s, r \rightarrow q\} \models q \rightarrow p$
2. $\{p, p \vee q, p \rightarrow s, r \rightarrow q\} \models s$
3. $A \models=\neg(\neg A))$
4. $A \wedge(B \wedge C) \models==(A \wedge B) \wedge C$
5. $A \wedge(B \vee C) \models=(A \wedge B) \vee(A \wedge C)$
6. $\neg(A \wedge B) \models=\mid(\neg A \vee \neg B)$ und $\neg(A \vee B) \models=\mid(\neg A \wedge \neg B)$
7. $A \rightarrow B \models=(\neg A) \vee B$

Which different ways are there to prove these equivalences?

Exercise 2: [complete operator bases, tutorial]
Let the NAND-operator | be defined by

$$
\varphi(A \mid B):= \begin{cases}0 & \text { if } \varphi(A)=\varphi(B)=1 \\ 1 & \text { otherwise }\end{cases}
$$

Prove that $\{\mid\}$ is a complete operator basis.

Exercise 3: [boolean functions, tutorial]
Prove that every boolean function $f: \mathbb{B}^{n} \rightarrow \mathbb{B}$ can be represented by a formula built using p_{1}, \ldots, p_{n} and an operator basis.

Exercise 4: [operator sets, tutorial]
Let $F(\{\neg, \leftrightarrow\})$ be the set of all formulas containing only variables, \neg, and \leftrightarrow.
Prove: If there are exactly n different variables in $A \in F(\{\neg, \leftrightarrow\})$, then there is a formula $A^{\prime} \in F(\{\neg, \leftrightarrow\})$ with

1. $A \models=A^{\prime}$
2. Negation symbols occcur in A^{\prime} only exactly in front of variables (e.g. $p \leftrightarrow \neg q$).
3. A^{\prime} contains at most $2 n$ Literals (i.e. occurrences of negated or non-negated variables).

Exercise 5: [semantic conclusion, 6P]
Prove or disprove:

1. $\{p \vee q, q \rightarrow r\} \models r$
2. $\{p \wedge q, \neg p \rightarrow(q \rightarrow r), q \wedge \neg r,\} \vDash q \rightarrow r$
3. $\{p, p \wedge q, p \rightarrow r, q \wedge \neg r, r \rightarrow s,(\neg q \vee r \vee \neg s) \rightarrow p\} \vDash(q \rightarrow r) \wedge(p \vee(r \rightarrow r))$
4. $\{p, p \rightarrow r, r \vee \neg q\} \models p \rightarrow(q \rightarrow p)$
5. $F \models q \rightarrow p \wedge(\neg(s \wedge \neg(s \vee((q \wedge r) \rightarrow p))))$
6. $F \models p \leftrightarrow \neg p$

Exercise 6: [deduction theorem, 5P]
Prove the following variant of the deduction theorem:

$$
\left\{A_{1}, \ldots, A_{n}\right\} \models B \text { iff. }\left(A_{1} \wedge \ldots \wedge A_{n}\right) \rightarrow B \text { is a tautology. }
$$

Exercise 7: [compactness theorem, 5P]
Prove that the following set is satisfiable:

$$
\Sigma:=\left\{p_{i} \vee p_{i+1} \mid i \in \mathbb{N}\right\} \cup\left\{\left(p_{i} \wedge p_{i+1}\right) \rightarrow \neg p_{i+2} \mid i \in \mathbb{N}\right\}
$$

Exercise 8: [compactness theorem, 2P]
Let $\Sigma \subseteq F$ be an infinite set of propositional formulas and let $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \ldots$ be satisfiable subsets of F, s. th. $\Sigma^{\prime} \subseteq \Sigma_{i}$ (for an $i>0$) holds for every finite subset $\Sigma^{\prime} \subseteq \Sigma$. Is Σ satisfiable? Prove your claim.

Exercise 9: [substitution, 4P]
Let $A, B, C \in F$ and let $A \models=B$ be formulas and A be a subformula of C.
Prove: If C^{\prime} is gained C by replacing one or more occurrences of A by B, then $C \models=C^{\prime}$ holds.

Exercise 10: [complete operator bases, 6P]

1. Prove that $\{\neg \rightarrow\}$ is a complete operator basis.
2. Prove that $\{\neg, \leftrightarrow\}$ is not a complete operator basis.

Exercise 11: [stapler, 1P]
Formalise the following proposition: If neither a stapler nor a paper clip is used for a submitted exercise, then possibly no points will be awarded for this exercise.
Attention: This proposition is a tautology!
Delivery: until 04. Mai 2011 10:00 Uhr into the box next to room 34-401.4

