$\mathrm{SS}~2011$

Exercises for the Lecture Logics Sheet 2

Prof. Dr. Klaus Madlener

Delivery until 04. Mai 2011 10:00 Uhr

Exercise 1: [logical equivalence, satisfiability, tutorial]

Let p, q, r, and s be propositional variables and A, B, C formulas. Prove:

1. $\{p, p \lor q, p \to s, r \to q\} \models q \to p$ 2. $\{p, p \lor q, p \to s, r \to q\} \models s$ 3. $A \models = \neg (\neg A))$ 4. $A \land (B \land C) \models = (A \land B) \land C$ 5. $A \land (B \lor C) \models = (A \land B) \lor (A \land C)$ 6. $\neg (A \land B) \models = (\neg A \lor \neg B) \text{ und } \neg (A \lor B) \models = (\neg A \land \neg B)$ 7. $A \to B \models = (\neg A) \lor B$

Which different ways are there to prove these equivalences?

Exercise 2: [complete operator bases, tutorial]

Let the NAND-operator | be defined by

$$\varphi(A \mid B) := \begin{cases} 0 & \text{if } \varphi(A) = \varphi(B) = 1\\ 1 & \text{otherwise.} \end{cases}$$

Prove that $\{|\}$ is a complete operator basis.

Exercise 3: [boolean functions, tutorial]

Prove that every boolean function $f : \mathbb{B}^n \to \mathbb{B}$ can be represented by a formula built using p_1, \ldots, p_n and an operator basis.

Exercise 4: [operator sets, tutorial]

Let $F(\{\neg,\leftrightarrow\})$ be the set of all formulas containing only variables, \neg , and \leftrightarrow .

Prove: If there are exactly *n* different variables in $A \in F(\{\neg, \leftrightarrow\})$, then there is a formula $A' \in F(\{\neg, \leftrightarrow\})$ with

- 1. $A \models = A'$
- 2. Negation symbols occcur in A' only exactly in front of variables (e.g. $p \leftrightarrow \neg q$).
- 3. A' contains at most 2n Literals (i.e. occurrences of negated or non-negated variables).

Exercise 5: [semantic conclusion, 6P] Prove or disprove:

1. $\{p \lor q, q \to r\} \models r$ 2. $\{p \land q, \neg p \to (q \to r), q \land \neg r, \} \models q \to r$ 3. $\{p, p \land q, p \to r, q \land \neg r, r \to s, (\neg q \lor r \lor \neg s) \to p\} \models (q \to r) \land (p \lor (r \to r))$ 4. $\{p, p \to r, r \lor \neg q\} \models p \to (q \to p)$ 5. $F \models q \to p \land (\neg (s \land \neg (s \lor ((q \land r) \to p))))$ 6. $F \models p \leftrightarrow \neg p$

Exercise 6: [deduction theorem, 5P]

Prove the following variant of the deduction theorem:

$$\{A_1,\ldots,A_n\}\models B$$
 iff. $(A_1\wedge\ldots\wedge A_n)\to B$ is a tautology.

Exercise 7: [compactness theorem, 5P]

Prove that the following set is satisfiable:

$$\Sigma := \{ p_i \lor p_{i+1} | i \in \mathbb{N} \} \cup \{ (p_i \land p_{i+1}) \to \neg p_{i+2} | i \in \mathbb{N} \}$$

Exercise 8: [compactness theorem, 2P]

Let $\Sigma \subseteq F$ be an infinite set of propositional formulas and let $\Sigma_1, \Sigma_2, \Sigma_3, \ldots$ be satisfiable subsets of F, s. th. $\Sigma' \subseteq \Sigma_i$ (for an i > 0) holds for every finite subset $\Sigma' \subseteq \Sigma$. Is Σ satisfiable? Prove your claim.

Exercise 9: [substitution, 4P]

Let $A, B, C \in F$ and let $A \models \exists B$ be formulas and A be a subformula of C. Prove: If C' is gained C by replacing one or more occurrences of A by B, then $C \models \exists C'$ holds.

Exercise 10: [complete operator bases, 6P]

- 1. Prove that $\{\neg \rightarrow\}$ is a complete operator basis.
- 2. Prove that $\{\neg, \leftrightarrow\}$ is not a complete operator basis.

Exercise 11: [stapler, 1P]

Formalise the following proposition: If neither a stapler nor a paper clip is used for a submitted exercise, then possibly no points will be awarded for this exercise. Attention: This proposition is a tautology!

Delivery: until 04. Mai 2011 10:00 Uhr into the box next to room 34-401.4