4. Mai 2011

Exercises for the Lecture Logics Sheet 3

Prof. Dr. Klaus Madlener

Delivery until 11. Mai 2011 10:00 Uhr

Exercise 1: [syntactical proofs for tautologies, tutorial] Consider the following rule patterns:

1.
$$\frac{A \lor \neg A}{true}$$

2.
$$\frac{A \lor true}{true}$$

3.
$$\frac{A \to \neg A}{\neg A}$$

4.
$$\frac{(A \lor B) \lor C}{A \lor (B \lor C)}$$

5.
$$\frac{A \lor B}{B \lor A}$$

6.
$$\frac{A \to B}{\neg A \lor B}$$

true is a propositional constant with $\varphi(true) = 1$ for each valuation φ .

Show that the following propositions are tautologies by deducing $A \vdash true$ using the above rule patterns.

1. $A_1 \equiv (B \lor A) \lor (C \to \neg B)$ 2. $A_2 \equiv p \to (q \to (p \to q))$

Exercise 2: [Proofs in deductive systems, tutorial]

Prove:

1.
$$\neg (q \rightarrow p) \vdash_{\mathcal{F}_0} \neg p$$

- 2. $\vdash_{\mathcal{F}_0} \neg (p \rightarrow p) \rightarrow \neg (p \rightarrow q)$
- 3. $(\neg (p \rightarrow q)) \vdash_{\mathcal{F}_0} (q \rightarrow p)$

Exercise 3: [Proofs in \mathcal{F}_0 , 6P]

Prove the formulas 10 and 11 from example 1.22 in the slides in \mathcal{F}_0 .

Exercise 4: [Proofs by contradiction in \mathcal{F}_0 , 6P]

- 1. Prove without using semantical arguments that $\Sigma \vdash_{\mathcal{F}_0} A$ holds if and only if $\Sigma \cup \{\neg A\}$ is inconsistent.
- 2. Prove in \mathcal{F}_0 :
 - a) $q, r \to \neg q \vdash_{\mathcal{F}_0} \neg r$

b)
$$A \to (\neg B \to C), (\neg B \to C) \to (A \to \neg B), \neg C \vdash_{\mathcal{F}_0} \neg A$$

Exercise 5: [Correctness of Rules, 5P]

A rule pattern $R_0: \frac{A_1, \ldots, A_n}{A}$ is *sound*, if, whenever the Premises A_1, \ldots, A_n are tautologies, the conclusion A is also a tautology.

- 1. Prove: If $\mathcal{F} = (Ax, R)$ is a deductive system with sound axioms (i.e. the axioms are tautologies) and sound rules, then \mathcal{F} is sound.
- 2. Find a sound rule $\frac{A_1, \ldots, A_n}{A}$ with $A_1, \ldots, A_n \not\models A$.
- 3. Find a simple deductive system with sound rules, s.t. every set of Formulas is inconsistent in the system.

Exercise 6: [Additional Operators in \mathcal{F}_0 , 8P]

To cope with formulas from the whole set F in the deductive system \mathcal{F}_0 we can introduce further axioms.

- 1. Introduce further axioms in \mathcal{F}_0 which allow using formulas that contain the disjunctive operator (\lor). We will refer to this extended system as \mathcal{F}'_0 .
- 2. Show that \mathcal{F}'_0 is still correct.
- 3. Find a formula Q from F_0 that is semantically equivalent to $P \equiv (p \lor q) \lor r$.
- 4. Prove without using semantical arguments that $\vdash_{\mathcal{F}'_0} P \to Q$ holds.

Delivery: until 11. Mai 2011 10:00 Uhr into the box next to room 34-401.4