SS 2011

11. Mai 2011

Exercises for the Lecture Logics Sheet 4

Prof. Dr. Klaus Madlener

Delivery until 18. Mai 2011 10:00 Uhr

Exercise 1: [deductive systems, tutorial]

Let the deductive system $\hat{\mathcal{F}}$ be defined by changing the first axiom pattern of \mathcal{F}_0 to

$$A \to (A \to B).$$

1. Is $\hat{\mathcal{F}}$ complete?

2. Ist $\hat{\mathcal{F}}$ sound?

Exercise 2: [Proofs in deductive systems, tutorial]

Prove:

- 1. $(\neg(p \rightarrow q)) \vdash_G (q \rightarrow p)$
- 2. $(\neg (p \rightarrow q)) \vdash_H (q \rightarrow p)$
- 3. $\vdash_G (p \land q) \to (p \lor r)$
- 4. $\vdash_H (p \land q) \to (p \lor r)$

Exercise 3: [Soundness of Gentzen's sequent calculus, 4P] Prove that the sequent calculus is sound, i.e.

if $\Gamma \vdash_G \Delta$ then $\Gamma \models \Delta$.

Exercise 4: [Completeness of the Hilbert calculus, 8P]

Prove that the Hilbert calculus is complete.

If you use a rule that is not explicitly mentioned on slides 70f, then define it yourself and argue about its soundness.

Exercise 5: [Proofs in deductive systems, 8P]

Prove:

- 1. $\vdash_G (A \to (B \to C)) \to ((A \to B) \to (A \to C))$
- 2. $A \rightarrow B, C \rightarrow D, A \lor C \vdash_G B \lor D$
- 3. $\vdash_G \neg (A \lor B) \lor B \lor A$
- 4. $A \wedge B, B \wedge C \vdash_G A \wedge C$

Delivery: until 18. Mai 2011 10:00 Uhr into the box next to room 34-401.4