Exercises for the Lecture Logics
 Sheet 5

Delivery until 25. Mai 2011 10:00 Uhr

Exercise 1: [Tableaux, tutorial]
On sheet 1 a diet plan was described by the following formula:

$$
A \equiv(\neg B \rightarrow F) \wedge(((B \wedge F) \rightarrow \neg E) \wedge((E \vee \neg B) \rightarrow \neg F))
$$

Construct a complete tableau for A. What properties of A can be derived using the tableau? Find a disjunctive normal form for A using the tableau.

Exercise 2: [Tableaux-consequence, tutorial]
Prove:

1. $(A \wedge \neg B) \vdash_{\tau} \neg((\neg A) \wedge(\neg B))$
2. $(A \wedge(A \rightarrow B)) \vdash_{\tau} B$
3. $A \rightarrow(B \rightarrow C) \vdash_{\tau}(A \rightarrow B) \rightarrow(A \rightarrow C)$

Exercise 3: [compactness theorem, 6P]

1. Prove that for a set of formulas Σ and a formula A there is a closed tableau for $\Sigma \cup\{\neg A\}$ iff there is a closed tableau for $\Gamma \cup\{\neg A\}$ for every finite subset $\Gamma \subset \Sigma$.
Hint: You can use König's Lemma, which states that a tree is finite iff every branch is finite.
2. Prove that the compactness theorem holds for tableaux, i.e.
$\Sigma \vdash_{\tau} A$ iff there is a finite subset $\Sigma_{0} \subseteq \Sigma$ with $\Sigma_{0} \vdash_{\tau} A$.

Exercise 4: [Tableaux-consequence, 5P]
Prove:

1. $\{p, p \vee q, p \rightarrow s, r \rightarrow q\} \vdash_{\tau} q \rightarrow p$
2. $\{p, p \vee q, p \rightarrow s, r \rightarrow q\} \vdash_{\tau} s$
3. $\vdash_{\tau}(\neg(p \rightarrow q) \rightarrow(q \rightarrow p))$
4. $F \vdash_{\tau} q \rightarrow p \wedge(\neg(s \wedge \neg(s \vee((q \wedge r) \rightarrow p))))$
5. $\neg((A \rightarrow(A \vee C)) \wedge D) \vdash_{\tau}(C \rightarrow B) \vee \neg D$

Exercise 5: [DNF from tableaux, 2P]
Using the tableaux-method, find a DNF for the following formulas:

1. $(p \rightarrow \neg(\neg q \rightarrow r)) \rightarrow(q \vee r)$
2. $(q \rightarrow p) \rightarrow \neg(r \rightarrow q)$

Exercise 6: [Tableaux with equivalence, 4P]
α - and β-formulas have so far only been defined for $\{\neg, \wedge, \vee, \rightarrow\}$, but \leftrightarrow has been omitted. Is $A \equiv B \leftrightarrow C$ an α - or a β-formula and which components does it consist of?

Exercise 7: [limitations of the tableau method, 5P]
Can the following statements be proved using the tableaux method? Give short explanations.

1. $\{p, q, r, s\} \models t$
2. $\{p, q, r, s\} \not \models \neg(q \rightarrow s)$
3. $F \models \neg(p \rightarrow(q \leftrightarrow r) \wedge \neg r) \rightarrow(s \vee \neg p)$
4. $\Sigma:=\left\{p_{i} \wedge \neg p_{i+1} \mid i \in \mathbb{N}\right\}$ is unsatisfiable.
5. $\Sigma:=\left\{p_{i} \wedge \neg p_{i+1} \mid i \in 2 \mathbb{N}\right\}$ is satisfiable.

Keep your arguments as general as possible. I.e. if you can explain why there is a tableaux-proof without actually writing it down, then do not write it down.

Exercise 8: [Tableaux-consequence, tutorial]
Prove without using the soundness and completeness of the tableaux-method:
If $\Sigma \vdash_{\mathcal{T}} p \wedge q$ then $\Sigma \vdash_{\mathcal{T}} p \vee q$ holds as well.
Delivery: until 25. Mai 2011 10:00 Uhr into the box next to room 34-401.4

