Exercises for the Lecture Logics
 Sheet 9

Prof. Dr. Klaus Madlener
Delivery until 29. Juni 2011 10:00 Uhr

Exercise 1: [Validity, tutorial]
Prove that the following formulas are universally valid:
$A_{1} \equiv(a=3 \rightarrow(q \rightarrow \forall y[a=y \rightarrow y=4])) \rightarrow((a=3 \rightarrow q) \rightarrow(a=3 \rightarrow \forall y[a=y \rightarrow y=4]))$
$A_{2} \equiv \forall z \forall x[p(x)] \rightarrow p(f(a, 5))$
$A_{3} \equiv \exists P \forall Q[P \rightarrow(Q \wedge r) \rightarrow P \vee r]$
$A_{4} \equiv \exists P[P]$

Exercise 2: [Substitution, tutorial]

1. Find a formula A, a term t and a variable x such that the substitution $A_{x}[t]$ is allowed, $A_{x}[t]$ is universally valid, but A is not universally valid.
2. Let σ be the substitutionb from exercise 5. Apply this substitution to the following formulas and terms:

$$
\begin{aligned}
A_{1} & \equiv\left(x<3 \rightarrow p\left(x_{1}\right)\right) \\
A_{2} & \equiv \exists x\left[x=0 \vee P\left(x_{3}\right)\right] \\
A_{3} & \equiv \forall x\left[\neg x_{1}=0\right] \\
A_{4} & \equiv \forall x_{1}\left[\neg x_{1}=0\right] \rightarrow p
\end{aligned}
$$

Exercise 3: [semantic conclusion, tutorial]
Let $A \in$ Form. Prove or disprove:

1. $\exists y \forall x A \models \forall x \exists y A$
2. $\forall x \exists y A \models \exists y \forall x A$
3. $\forall x f(x)=g(x) \models f=g$.

Exercise 4: [Tautologies in PL]
Prove that the following formulas are universally valid:
$A_{1} \equiv \forall x \exists P[P(x) \vee x=f(a)] \rightarrow(Q(y, z) \rightarrow \forall x \exists P[P(x) \vee x=f(a)])$
$A_{2} \equiv \forall x[q(x)] \rightarrow q(h(g(a, f(b)), b, f(c)))$
$A_{3} \equiv \forall z[\neg(x=f(x) \rightarrow p(f(x))) \rightarrow(p(f(x)) \rightarrow x=f(x))]$
$A_{4} \equiv \exists P[P \rightarrow q \vee r]$

Exercise 5: [Substitution, 10 P]
Let the substitution σ be defined by

$$
\begin{aligned}
& \sigma\left(x_{1}\right)=x+3 \cdot x \\
& \sigma\left(x_{2}\right)=3-\left(x+x_{1}\right) \cdot 2 \\
& \sigma\left(x_{3}\right)=42 \\
& \sigma\left(x_{4}\right)=f(a, g(b)) \\
& \sigma\left(x_{5}\right)=\text { if }(x>3) \text { then } 5 \text { else } 3 \\
& \sigma\left(x_{6}\right)=g(y * 2) .
\end{aligned}
$$

Apply σ to the following formulas. Check whether the substitution is allowed.
$A_{1} \equiv x_{1} \geq x_{3}$
$A_{2} \equiv \forall x\left[x=42 \rightarrow \neg\left(x_{4}=3\right)\right]$
$A_{3} \equiv \exists y\left[f(y)=0 \rightarrow \forall x\left[x \geq x_{2}\right]\right]$
$A_{4} \equiv p\left(x_{1}\right) \vee \forall x\left[x+3>x_{6}\right]$
$A_{5} \equiv \forall x\left[x_{5}=5 \rightarrow x>3\right]$
$A_{6} \equiv x_{3}<x_{4} \vee \forall y[p(y) \vee y=3]$
$A_{7} \equiv \forall x_{3}\left[x_{3}=42\right]$

Exercise 6: [Decidability of equational logic, 5 P]
We know from the lecture that the validity of a formula is generally undecidable. However, this does not hold for all restricted classes of formulas.
Consider formulas of pure equational logic, i.e. formulas with the operators $\{\neg, \wedge, \vee, \forall, \exists\}$, that contain only variables " x_{i} " and „="For example:

$$
\forall x \forall y \exists z[(x=y \wedge y \neq z) \rightarrow x=z]
$$

Sketch a procedure that decides whether such a formula is universally valid. Argue for the correctness of your procedure.

Delivery: until 29. Juni 2011 10:00 Uhr into the box next to room 34-401.4

