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Organisation

Organisation

Contact
I Klaus Madlener
I Patrick Michel
I Christoph Feller
I http://www-madlener.informatik.uni-kl.de/teaching/ss2011/

Dates, Time, and Location
I 3C + 3R (8 ECTS-LP)
I Monday, 11:45-13:15, room 48-462
I Wednesday, 11:45-13:15, room 48-462 or room 32-411
I Thursday, 11:45-13:15, room 48-462
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Organisation

Organisation

Course Webpage
I http://www-madlener.informatik.uni-kl.de/teaching/ss2011/svhol/

Literature
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Organisation

Organisation (cont.)

I L. C. Paulson. ML for the Working Programmer. Cambridge
University Press, 1996.

I R. Harper. Programming in Standard ML. Available at
http://www.cs.cmu.edu/ rwh/smlbook/book.pdf. Carnegie Mellon
University, 2009.

I T. Nipkow, L. C. Paulson and M. Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic. Springer LNCS 2283, 2002

I Prof. Basin, Dr. Brucker, Dr. Smaus, Prof. Wolff Material of
course CSMR -
http://www.infsec.ethz.ch/education/permanent/csmr/slides
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Organisation

Organisation (cont.)

Acknowledgements
I to Dr. Jens Brandt who designed most of the slides
I Prof. Dr. Arnd Poetzsch-Heffter for providing his course material
I Prof. Basin, Dr. Brucker, Dr. Smaus, Prof. Wolff, and the

MMISS-project for the slides on CSMR
I Prof. Nipkow for the slides on Isabelle/HOL.
I to the Isabelle/HOL community
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Overview

Overview

Course Outline
I Introduction
I Concepts of functional programming
I Higher-order logic
I Verification in Isabelle/HOL (and other theorem provers)
I Verification of algorithms: A case study
I Modeling and verification of finite software systems: A case study
I Specification of programming languages
I Verification of a Hoare logics
I Beyond interactive theorem proving
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Overall structure

Overall structure

1. Introduction
2. Functional specification and programming
3. Language and semantical aspects of higher-order logic
4. Proof system for higher-order logic
5. Sets, functions, relations, and fixpoints
6. Verifying functions
7. Inductively defined sets
8. Specification of programming language semantics
9. Program verification and programming logic
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Overall structure

Chapter 1: Introduction

1. Terminology: Specification, verification, logic

2. Language: Syntax and semantics
3. Proof systems

3.1 Hilbert style proof systems
3.2 Proof system for natural deduction
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Overall structure

Chapter 2: Functional programming and specification

1. Functional programming in ML

2. A simple theorem prover: Structure and unification

3. Functional specification in isabelle/HOL

» slides_02: 1-65
» slides_02: 77-101
» Chapter 2 and 3 of Isabelle/HOL Tutorial
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Overall structure

Chapter 3: Language and semantical aspects of HOL

1. Introduction to higher-order logic

2. Foundation of higher-order logic

3. Conservative extension of theories
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Overall structure

Chapter 4: Proof system for HOL

1. Formulas, sequents, and rules revisited

2. Application of rules

3. Fundamental methods of Isabelle/HOL
4. An overview of theory Main

4.1 The structure of theory Main
4.2 Set construction in Isabelle/HOL
4.3 Natural numbers in Isabelle/HOL
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Overall structure

Chapter 4: Proof system for HOL (cont.)

5. Rewriting and simplification

6. Case analysis and structural induction

7. Proof automation

8. More proof methods

» slides of Sessions 2, 3.1, 3.2, and 4 & 5 by T. Nipkow
» Chapter 5 of Isabelle/HOL Tutorial til page 99
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Overall structure

Chapter 5: Sets, functions, relations, and fixpoints

1. Sets

2. Functions

3. Relations

4. Well-founded relations

5. Fixpoints

» Chapter 6 of Isabelle/HOL Tutorial til page 118
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Overall structure

Chapter 6: Verifying functions

1. Conceptual aspects

2. Case study: Gcd

3. Case study: Quicksort – Shallow embedding of algorithms

» theories for Gcd and Quicksort
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Overall structure

Chapter 7: Inductively defined sets

1. Defining sets inductively
2. Specification of transitions systems

2.1 Transition systems
2.2 Modeling: Case study Elevator
2.3 Reasoning about finite transition systems

» Section 7.1 of Isabelle/HOL Tutorial
» slides of Sessions 6.1 T. Nipkow
» theory for Elevator

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 16



Organisation, Overview Introduction .

Overall structure

Chapter 8:
Specification of programming language semantics

1. Introduction to programming language semantics
2. Techniques to express semantics

2.1 Natural semantics / big step semantics
2.2 Structured operational semantics / small step semantics
2.3 Denotational semantics

3. Formalizing semantics in HOL

» slides about operational semantics by P. MÃ 1
4ller

» theory for while-language
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Overall structure

Chapter 9:
Program verification and programming logic

1. Hoare logic

2. Program verification based on language semantics

3. Program verification with Hoare logic

4. Soundness of Hoare logic

» theory for while-language
» theory for Hoare logic
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Chapter 1

Introduction .
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Overview

Overview

Motivation
I Specifications: Models and properties Spec-formalisms
I How do we express/specify facts? Languages
I What is a proof? What is a formal proof? Logical calculus
I How do we prove a specified fact? Proof search
I Why formal? What is the role of a theorem prover? Tools

Goals
I role of formal specifications
I recapitulate logic
I introduce/review basic concepts
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Motivation

Role of formal Specifications

I Software and hardware systems must accomplish
well defined tasks (requirements).

I Software Engineering has as goal
I Definition of criteria for the evaluation of SW-Systems
I Methods and techniques for the development of SW-Systems, that

accomplish such criteria
I Characterization of SW-Systems
I Development processes for SW-Systems
I Measures and Supporting Tools

I Simplified view of a SD-Process:
Definition of a sequence of actions and descriptions for the
SW-System to be developed. Process- and Product-Models

Goal: The group of documents that includes an executable
program.
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Motivation

Installation

Verification

Generation

last formal Specification

Verification of
the program
correctness

(Test)

Final System
Programs

Specification

formal Specification

Temporary specification

Temporary specification

Verification

Validationinformal
actual needs
Specifications

(Test)
Validation

Verification
(Test)

Maintenance

Coding

Refinement
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Motivation

Comment

I First Specification: Global Specification
Fundament for the Development
“Contract or Agreement” between Developers and Client

I Intermediate (partial) specifications:
Base of the Communication between Developers.

I Programs: Final products.

Development paradigms
I Structured Programming
I Design + Program
I Transformation Methods
I . . .
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Motivation

Properties of Specifications

Consistency Completeness

I Validation of the global specification regarding the requirements.
I Verification of intermediate specifications regarding the previous

one.
I Verification of the programs regarding the specification.
I Verification of the integrated final system with respect to the

global specification.
I Activities: Validation, Verification, Testing, Consistency- and

Completeness-Check
I Tool support needed!
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Motivation

Requirements
I The global specification describes, as exact as possible, what

must be done.
I Abstraction of the how

Advantages
I apriori: Reference document, compact and legible.
I aposteriori: Possibility to follow and document design decisions 

traceability, reusability, maintenance.

I Problem: Size and complexity of the systems.

Principles to be supported
I Refinement principle: Abstraction levels
I Structuring mechanisms: Decomposition and modularization

techniques
I Object orientation
I Verification and validation concepts
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Motivation

Requirements Description Specification Language

I Choice of the specification technique depends on the System.
Frequently more than a single specification technique is needed.
(What – How).

I Type of Systems:
Pure function oriented (I/O), reactive- embedded- real time-
systems.

I Problem : Universal Specification Technique (UST)
difficult to understand, ambiguities, tools, size . . .
e.g. UML

I Desired: Compact, legible and exact specifications

Here: functional specification techniques
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Formal Specifications

Formal Specifications

I A specification in a formal specification language defines all the
possible behaviors of the specified system.

I 3 Aspects: Syntax, Semantics, Inference System
I Syntax: What’s allowed to write: Text with structure, Properties

often described by formulas from a logic, e.g equational logic.
I Semantics: Which models are associated with the specification, 

Notion of models.
I Inference System: Consequences (Derivation) of properties of the

system. Notion of consequence.

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 27



Organisation, Overview Introduction .

Formal Specifications

Formal Specifications

I Two main classes:

Model oriented - - Property oriented
(constructive) (declarative)
e.g.VDM, Z, ASM signature (functions, predicates)
Construction of a Properties
non-ambiguous model (formulas, axioms)
from available
data structures and models
construction rules algebraic specification
Concept of correctness AFFIRM, OBJ, ASF, HOL,. . .

I Operational specifications:
Petri nets, process algebras, automata based (SDL).
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Formal Specifications

Tool support

I Syntactic support (grammars, parser,...)
I Verification: theorem proving (proof obligations)
I Prototyping (executable specifications)
I Code generation (out of the specifications generate C code)
I Testing (from the specification generate test cases for the

program)

Desired:
To generate the tools out of the syntax and semantics of the
specification language
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Formal Specifications

Example: declarative

Example 1.1. Restricted logic: e.g. equational logic

I Axioms: ∀X t1 = t2 t1, t2 terms.
I Rules: Equals are replaced with equals. (directed).
I Terms ≈ names for objects (identifier), structuring, construction

of the object.
I Abstraction: Terms as elements of an algebra, term algebra.
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Formal Specifications

Stack: algebraic specification

Example 1.2. Elements of an algebraic specification: Signature (sorts
(types), operation names with arities), Axioms (often only equations)

SPEC STACK
USING NATURAL, BOOLEAN “Names of known SPECs”
SORT stack “Principal type”
OPS init :→ stack “Constant of the type stack, empty stack”

push : stack nat→ stack
pop : stack→ stack
top : stack→ nat

is_empty? : stack→ bool
stack_error :→ stack
nat_error :→ nat

(Signature fixed)
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Formal Specifications

Axioms for Stack

FORALL s : stack n : nat
AXIOMS

is_empty? (init) = true
is_empty? (push (s, n)) = false
pop (init) = stack_error
pop (push (s, n)) = s
top (init) = nat_error
top (push (s,n)) = n

Terms or expressions: top (push (push (init, 2), 3)) “means” 3

Semantics? Operationalization?

Apply equations as rules from left to right 
Notion of rules and rewriting
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Formal Specifications

Example: Sorting of lists over arbitrary types

Example 1.3.

Formal ::



spec ELEMENT
use BOOL
sorts elem
ops . ≤ . : elem,elem→ bool
eqns x ≤ x = true

imp(x ≤ y and y ≤ z, x ≤ z) = true
x ≤ y or y ≤ x = true
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Formal Specifications

Example (Cont.)

spec LIST[ELEMENT]
use ELEMENT
sorts list
ops nil :→ list

. : elem, list→ list (“infix”)
insert : elem, list→ list
insertsort : list→ list
case : bool, list, list→ list
sorted : list→ bool
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Formal Specifications

Example (Cont.)

eqns case(true, l1, l2) = l1
case(false, l1, l2) = l2

insert(x ,nil) = x .nil
insert(x , y .l) = case(x ≤ y , x .y .l , y . insert(x , l))

insertsort(nil) = nil
insertsort(x .l) = insert(x , insertsort(l))

sorted(nil) = true
sorted(x .nil) = true
sorted(x .y .l) = if x ≤ y then sorted(y .l) else false

Property: sorted(insertsort(l)) = true
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Language: Syntax and Semantics

Syntax

Aspects of syntax
I used to designate things and express facts
I terms and formulas are formed from variables and function

symbols
I function symbols map a tupel of terms to another term
I constant symbols: no arguments
I constant can be seen as functions with zero arguments
I predicate symbols are considered as boolean functions
I set of variables
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Language: Syntax and Semantics

Syntax (cont.)

Example 1.4. Natural Numbers

I constant symbol: 0
I function symbol suc : N→ N
I function symbol plus : N× N→ N
I function symbol . . .
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Language: Syntax and Semantics

Syntax of propositional logic

Definition 1.5. Symbols

I V = {a,b, c, . . .} is a set of propositional variables
I two function symbols: ¬ and→

Definition 1.6. Language

I each P ∈ V is a formula
I if φ is a formula, then ¬φ is a formula
I if φ and ψ are formulas, then φ→ ψ is a formula
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Language: Syntax and Semantics

Semantics

Purpose
I syntax only specifies the structure of terms and formulas
I symbols and terms are assigned a meaning
I variables are assigned a value
I in particular, propositional variables are assigned a truth value

Bottom-Up Approach
I assignments give variables a value
I terms/formulas are evaluated based on the meaning of the

function symbols
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Language: Syntax and Semantics

Interpretations/Structures

Definition 1.7. Assignment in Propositional Logic
A variable assignment in propositionan logic is a mapping

I I : V → {true, false}
Definition 1.8. Valuation of Propositional Logic
The valuation V takes an assignment I and a formula and yiels a true
or false:

I if φ ∈ V: V (φ) = I(φ)
I V (¬φ) = f¬(V (φ))
I V (φ→ ψ) = f→(V (φ),V (ψ))

where

f¬
false true
true false

f→ false true
false true true
true false true

Problem 1.9. Is V a well defined function?
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Language: Syntax and Semantics

Validity

Definition 1.10. Validity of formulas in propositional logic
I a formula φ is valid if VIφ evaluates to true

for all assigments I
I notation: |= φ

Example 1.11. Tautology in Propositional Logic
I φ = a ∨ ¬a (where a ∈ V) is valid

I I(a) = false: V (a ∨ ¬a) = true
I I(a) = true: V (a ∨ ¬a) = true
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Language: Syntax and Semantics

Syntactic Sugar

Purpose
I additions to the language that do not affect its expressiveness
I more practical way of description

Example 1.12. Abbreviations in Propositional Logic
I True denotes φ→ φ

I False denotes ¬True
I φ ∨ ψ denotes (¬φ)→ ψ

I φ ∧ ψ denotes ¬((¬φ) ∨ (¬ψ))

I φ↔ ψ denotes ((φ→ ψ) ∧ (ψ → φ))
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Proof Systems/Logical Calculi

Proof Systems/Logical Calculi: Introduction

General Concept
I purely syntactical manipulations based on designated

transformation rules
I starting point: set of formulas, often a given set of axioms
I deriving new formulas by deduction rules from given formulas Γ

I φ is provable from Γ if φ can be obtained by a finite number of
derivation steps assuming the formulas in Γ

I notation: Γ ` φ means φ is provable from Γ

I notation: ` φ means φ is provable from a given set of axioms
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Proof Systems/Logical Calculi

Proof System Styles

Hilbert Style
I easy to understand
I hard to use

Natural Deduction
I easy to use
I hard to understand

I . . .

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 44



Organisation, Overview Introduction .

Proof Systems/Logical Calculi

Hilbert-Style Deduction Rules

Definition 1.13. Deduction Rule

I deduction rule d is a n + 1-tuple

φ1 · · · φn

ψ

I formulas φ1 . . . φn, called premises of rule
I formula ψ, called conclusion of rule
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Proof Systems/Logical Calculi

Hilbert-Style Proofs

Definition 1.14. Proof
I let D be a set of deduction rules, including the axioms as rules

without premisses
I proofs in D are (natural) trees such that

I axioms are proofs
I if P1, . . . ,Pn are proofs with roots φ1 . . . φn and

φ1 · · ·φn

ψ
is in D, then

P1 · · ·Pn

ψ
is a proof in D

I can also be written in a line-oriented style
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Proof Systems/Logical Calculi

Hilbert-Style Deduction Rules

Axioms
I let Γ be a set of axioms, ψ ∈ Γ, then ψ is a proof
I axioms allow to construct trivial proofs

Rule example

I Modus Ponens:
φ→ ψ, φ

ψ

I if φ→ ψ and φ have already been proven, ψ can be deduced
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Proof Systems/Logical Calculi

Proof Example

Example 1.15. Hilbert Proof
I language formed with the four proposition symbols P, Q, R, S
I axioms: P, Q, Q → R, P → (R → S)

P → (R → S) P
R → S

Q → R Q
R

S

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 48



Organisation, Overview Introduction .

Proof Systems/Logical Calculi

Hilbert Calculus for Propositional Logic

Definition 1.16. Axioms of Propositional Logic
All instantiations of the following schemas:

I A→ (B → A)

I (A→ (B → C))→ ((A→ B)→ (A→ C))

I (¬B → ¬A)→ ((¬B → A)→ B)

I where A,B,C are arbitrary propositions

Rules: All instantiations of modus ponens.

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 49



Organisation, Overview Introduction .

Proof Systems/Logical Calculi

Natural Deduction

Motivation
I introducing a hypothesis is a natural step in a proof
I Hilbert proofs do not permit this directly
I can be only encoded by using→
I proofs are much longer and not very natural

Natural Deduction
I alternative definition where introduction of a hypothesis is a

deduction rule
I deduction step can modify not only the proven propositions but

also the assumptions Γ
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Proof Systems/Logical Calculi

Natural Deduction Rules

Definition 1.17. Natural Deduction Rule

I deduction rule d is a n + 1-tuple

Γ1 ` φ1 · · · Γn ` φn

Γ ` ψ

I pairs of Γ (set of formulas) and φ (formulas): sequents
I proof: tree of sequents with rule instantiations as nodes
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Proof Systems/Logical Calculi

Natural Deduction Rules

Natural Deduction Rules
I rich set of rules
I elimination rules eliminate a logical symbol from a premise
I introduction rules introduce a logical symbol into the conclusion
I reasoning from assumptions
I Assumption Introduction, Assumption weakening:

Γ ` φ φ ∈ Γ
Γ ` φ

Γ, ψ ` φ
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Proof Systems/Logical Calculi

Natural Deduction Rules

Definition 1.18. Natural Deduction Rules for Propositional Logic

I ∨-introduction
Γ ` φ

Γ ` φ ∨ ψ
Γ ` ψ

Γ ` φ ∨ ψ
I ∨-elimination

Γ ` φ ∨ ψ Γ, φ ` ξ Γ, ψ ` ξ
Γ ` ξ

I →-introduction
Γ, φ ` ψ

Γ ` φ→ ψ

I →-elimination
Γ ` φ→ ψ Γ ` φ

Γ ` ψ
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Proof Systems/Logical Calculi

Natural Deduction Example

Example 1.19. {A→ C,B → C} ` (A ∨ B)→ C

Γ ` A ∨ B
Γ,A ` A→ C Γ,A ` A

Γ,A ` C

· · ·
Γ,B ` C

Γ := {A→ C,B → C,A ∨ B} ` C
{A→ C,B → C} ` (A ∨ B)→ C
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Summary

Summary

Specification and verification
I Algebraic specification - Functional specification

Theorem-Proving Fundamentals
I syntax: symbols, terms, formulas
I semantics: (mathematical structures,) variable assigments,

denotations for terms and formulas
I proof system/(logical) calculus: axioms, deduction rules, proofs,

theories

Fundamental Principle of Logic: “Establish truth by calculation” (APH,
2010)
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Chapter 2

Functional
Programming:Isabelle
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Isabelle: Functional programming

Overview of Isabelle/HOL

2
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Isabelle: Functional programming

System Architecture

Isabelle generic theorem prover

3
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Functional Programming:Isabelle

Isabelle: Functional programming

System Architecture

Isabelle/HOL Isabelle instance for HOL

Isabelle generic theorem prover

3
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Isabelle: Functional programming

System Architecture

ProofGeneral (X)Emacs based interface

Isabelle/HOL Isabelle instance for HOL

Isabelle generic theorem prover

3
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Isabelle: Functional programming

HOL

HOL = Higher-Order Logic

4
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Functional Programming:Isabelle

Isabelle: Functional programming

HOL

HOL = Higher-Order Logic
HOL = Functional programming + Logic

4
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Isabelle: Functional programming

HOL

HOL = Higher-Order Logic
HOL = Functional programming + Logic

HOL has
• datatypes
• recursive functions
• logical operators (∧, −→, ∀, ∃, . . . )

4
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Isabelle: Functional programming

HOL

HOL = Higher-Order Logic
HOL = Functional programming + Logic

HOL has
• datatypes
• recursive functions
• logical operators (∧, −→, ∀, ∃, . . . )

HOL is a programming language!

4
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Isabelle: Functional programming

HOL

HOL = Higher-Order Logic
HOL = Functional programming + Logic

HOL has
• datatypes
• recursive functions
• logical operators (∧, −→, ∀, ∃, . . . )

HOL is a programming language!

Higher-order = functions are values, too!

4
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Isabelle: Functional programming

Formulae

Syntax (in decreasing priority):

form ::= (form) | term = term | ¬form
| form ∧ form | form ∨ form | form −→ form

| ∀x. form | ∃x. form

5
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Isabelle: Functional programming

Formulae

Syntax (in decreasing priority):

form ::= (form) | term = term | ¬form
| form ∧ form | form ∨ form | form −→ form

| ∀x. form | ∃x. form

Examples
• ¬ A ∧ B ∨ C ≡ ((¬ A) ∧ B) ∨ C

5
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Isabelle: Functional programming

Formulae

Syntax (in decreasing priority):

form ::= (form) | term = term | ¬form
| form ∧ form | form ∨ form | form −→ form

| ∀x. form | ∃x. form

Examples
• ¬ A ∧ B ∨ C ≡ ((¬ A) ∧ B) ∨ C
• A = B ∧ C ≡ (A = B) ∧ C

5
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Isabelle: Functional programming

Formulae

Syntax (in decreasing priority):

form ::= (form) | term = term | ¬form
| form ∧ form | form ∨ form | form −→ form

| ∀x. form | ∃x. form

Examples
• ¬ A ∧ B ∨ C ≡ ((¬ A) ∧ B) ∨ C
• A = B ∧ C ≡ (A = B) ∧ C
• ∀ x. P x ∧ Q x ≡ ∀ x. (P x ∧ Q x)

5
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Isabelle: Functional programming

Formulae

Syntax (in decreasing priority):

form ::= (form) | term = term | ¬form
| form ∧ form | form ∨ form | form −→ form

| ∀x. form | ∃x. form

Examples
• ¬ A ∧ B ∨ C ≡ ((¬ A) ∧ B) ∨ C
• A = B ∧ C ≡ (A = B) ∧ C
• ∀ x. P x ∧ Q x ≡ ∀ x. (P x ∧ Q x)

Scope of quantifiers: as far to the right as possible

5
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Isabelle: Functional programming

Formulae

Abbreviation: ∀ x y. P x y ≡ ∀ x. ∀ y. P x y

6
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Isabelle: Functional programming

Formulae

Abbreviation: ∀ x y. P x y ≡ ∀ x. ∀ y. P x y (∀ , ∃ , λ, . . . )

6

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 72



Functional Programming:Isabelle

Isabelle: Functional programming

Formulae

Abbreviation: ∀ x y. P x y ≡ ∀ x. ∀ y. P x y (∀ , ∃ , λ, . . . )

Parentheses:
• ∧, ∨ and −→ associate to the right:

A ∧ B ∧ C ≡ A ∧ (B ∧ C)

6
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Isabelle: Functional programming

Formulae

Abbreviation: ∀ x y. P x y ≡ ∀ x. ∀ y. P x y (∀ , ∃ , λ, . . . )

Parentheses:
• ∧, ∨ and −→ associate to the right:

A ∧ B ∧ C ≡ A ∧ (B ∧ C)

• A −→ B −→ C ≡ A −→ (B −→ C) 6≡ (A −→ B) −→ C !

6
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Isabelle: Functional programming

Warning

Quantifiers have low priority and need to be parenthesized:

! P ∧ ∀ x. Q x ; P ∧ (∀ x. Q x) !

7
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Isabelle: Functional programming

Types and Terms

8
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Isabelle: Functional programming

Types

Syntax:

τ ::= (τ)

| bool | nat | . . . base types

9
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Isabelle: Functional programming

Types

Syntax:

τ ::= (τ)

| bool | nat | . . . base types
| ’a | ’b | . . . type variables

9
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Isabelle: Functional programming

Types

Syntax:

τ ::= (τ)

| bool | nat | . . . base types
| ’a | ’b | . . . type variables
| τ ⇒ τ total functions

9
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Isabelle: Functional programming

Types

Syntax:

τ ::= (τ)

| bool | nat | . . . base types
| ’a | ’b | . . . type variables
| τ ⇒ τ total functions
| τ × τ pairs (ascii: * )

9
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Isabelle: Functional programming

Types

Syntax:

τ ::= (τ)

| bool | nat | . . . base types
| ’a | ’b | . . . type variables
| τ ⇒ τ total functions
| τ × τ pairs (ascii: * )
| τ list lists

9
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Isabelle: Functional programming

Types

Syntax:

τ ::= (τ)

| bool | nat | . . . base types
| ’a | ’b | . . . type variables
| τ ⇒ τ total functions
| τ × τ pairs (ascii: * )
| τ list lists
| . . . user-defined types

9
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Isabelle: Functional programming

Types

Syntax:

τ ::= (τ)

| bool | nat | . . . base types
| ’a | ’b | . . . type variables
| τ ⇒ τ total functions
| τ × τ pairs (ascii: * )
| τ list lists
| . . . user-defined types

Parentheses: T1⇒ T2 ⇒ T3 ≡ T1 ⇒ (T2 ⇒ T3)

9
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Isabelle: Functional programming

Terms: Basic syntax

Syntax:

term ::= (term)

| a constant or variable (identifier)
| term term function application
| λx. term function “abstraction”

10
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Isabelle: Functional programming

Terms: Basic syntax

Syntax:

term ::= (term)

| a constant or variable (identifier)
| term term function application
| λx. term function “abstraction”
| . . . lots of syntactic sugar

10
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Isabelle: Functional programming

Terms: Basic syntax

Syntax:

term ::= (term)

| a constant or variable (identifier)
| term term function application
| λx. term function “abstraction”
| . . . lots of syntactic sugar

Examples: f (g x) y h (λx. f (g x))

10
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Isabelle: Functional programming

Terms: Basic syntax

Syntax:

term ::= (term)

| a constant or variable (identifier)
| term term function application
| λx. term function “abstraction”
| . . . lots of syntactic sugar

Examples: f (g x) y h (λx. f (g x))

Parantheses: f a1 a2 a3 ≡ ((f a1) a2) a3

10
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Isabelle: Functional programming

λ-calculus on one slide

Informal notation: t[x]

11
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Isabelle: Functional programming

λ-calculus on one slide

Informal notation: t[x]

• Function application:
f a is the call of function f with argument a

11
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Isabelle: Functional programming

λ-calculus on one slide

Informal notation: t[x]

• Function application:
f a is the call of function f with argument a

• Function abstraction:
λx.t[x] is the function with formal parameter x and
body/result t[x], i.e. x 7→ t[x].

11
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Isabelle: Functional programming

λ-calculus on one slide

Informal notation: t[x]

• Function application:
f a is the call of function f with argument a

• Function abstraction:
λx.t[x] is the function with formal parameter x and
body/result t[x], i.e. x 7→ t[x].

• Computation:
Replace formal by actual parameter (“β-reduction”):
(λx.t[x]) a −→β t[a]

11
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Isabelle: Functional programming

λ-calculus on one slide

Informal notation: t[x]

• Function application:
f a is the call of function f with argument a

• Function abstraction:
λx.t[x] is the function with formal parameter x and
body/result t[x], i.e. x 7→ t[x].

• Computation:
Replace formal by actual parameter (“β-reduction”):
(λx.t[x]) a −→β t[a]

Example: (λ x. x + 5) 3 −→β (3 + 5)

11
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Isabelle: Functional programming

−→β in Isabelle: Don’t worry, be happy

Isabelle performs β-reduction automatically

Isabelle considers (λx.t[x])a and t[a] equivalent

12
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Isabelle: Functional programming

Terms and Types

Terms must be well-typed
(the argument of every function call must be of the right type)

13
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Isabelle: Functional programming

Terms and Types

Terms must be well-typed
(the argument of every function call must be of the right type)

Notation: t :: τ means t is a well-typed term of type τ .

13
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Isabelle: Functional programming

Type inference

Isabelle automatically computes (“infers”) the type of each
variable in a term.

14
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Isabelle: Functional programming

Type inference

Isabelle automatically computes (“infers”) the type of each
variable in a term.

In the presence of overloaded functions (functions with
multiple types) not always possible.

14
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Isabelle: Functional programming

Type inference

Isabelle automatically computes (“infers”) the type of each
variable in a term.

In the presence of overloaded functions (functions with
multiple types) not always possible.

User can help with type annotations inside the term.

Example: f (x::nat)

14
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Isabelle: Functional programming

Currying

Thou shalt curry your functions

15
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Isabelle: Functional programming

Currying

Thou shalt curry your functions

• Curried: f :: τ1 ⇒ τ2 ⇒ τ

• Tupled: f’ :: τ1 × τ2 ⇒ τ

15
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Isabelle: Functional programming

Currying

Thou shalt curry your functions

• Curried: f :: τ1 ⇒ τ2 ⇒ τ

• Tupled: f’ :: τ1 × τ2 ⇒ τ

Advantage: partial application f a1 with a1 :: τ1

15

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 101



Functional Programming:Isabelle

Isabelle: Functional programming

Terms: Syntactic sugar

Some predefined syntactic sugar:

• Infix: +, -, * , #, @, . . .
• Mixfix: if _ then _ else _, case _ of , . . .

16
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Isabelle: Functional programming

Terms: Syntactic sugar

Some predefined syntactic sugar:

• Infix: +, -, * , #, @, . . .
• Mixfix: if _ then _ else _, case _ of , . . .

Prefix binds more strongly than infix:

! f x + y ≡ (f x) + y 6≡ f (x + y) !

16
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Functional Programming:Isabelle

Isabelle: Functional programming

Terms: Syntactic sugar

Some predefined syntactic sugar:

• Infix: +, -, * , #, @, . . .
• Mixfix: if _ then _ else _, case _ of , . . .

Prefix binds more strongly than infix:

! f x + y ≡ (f x) + y 6≡ f (x + y) !
Enclose if and case in parentheses:

! (if _ then _ else _) !

16
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Isabelle: Functional programming

Base types: bool, nat, list

17
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Isabelle: Functional programming

Type bool

Formulae = terms of type bool

18
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Isabelle: Functional programming

Type bool

Formulae = terms of type bool

True :: bool
False :: bool
∧, ∨, . . . :: bool ⇒ bool ⇒ bool
...

18
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Isabelle: Functional programming

Type bool

Formulae = terms of type bool

True :: bool
False :: bool
∧, ∨, . . . :: bool ⇒ bool ⇒ bool
...

if-and-only-if: =

18
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Isabelle: Functional programming

Type nat

0 :: nat
Suc :: nat ⇒ nat
+, *, ... :: nat ⇒ nat ⇒ nat
...

19
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Isabelle: Functional programming

Type nat

0 :: nat
Suc :: nat ⇒ nat
+, *, ... :: nat ⇒ nat ⇒ nat
...

! Numbers and arithmetic operations are overloaded:
0,1,2,... :: ’a, + :: ’a ⇒ ’a ⇒ ’a

You need type annotations: 1 :: nat, x + (y::nat)

19
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Isabelle: Functional programming

Type nat

0 :: nat
Suc :: nat ⇒ nat
+, *, ... :: nat ⇒ nat ⇒ nat
...

! Numbers and arithmetic operations are overloaded:
0,1,2,... :: ’a, + :: ’a ⇒ ’a ⇒ ’a

You need type annotations: 1 :: nat, x + (y::nat)

. . . unless the context is unambiguous: Suc z

19
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Isabelle: Functional programming

Type list

• [] : empty list

• x # xs: list with first element x ("head")
and rest xs ("tail")

• Syntactic sugar: [x1,. . . ,xn]

20
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Isabelle: Functional programming

Type list

• [] : empty list

• x # xs: list with first element x ("head")
and rest xs ("tail")

• Syntactic sugar: [x1,. . . ,xn]

Large library:
hd, tl, map, length, filter, set, nth, take, drop, distinct, . . .

Don’t reinvent, reuse!
; HOL/List.thy

20
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Isabelle: Functional programming

Isabelle Theories

21
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Isabelle: Functional programming

Theory = Module

Syntax: theory MyTh

imports ImpTh1 . . . ImpThn

begin

(declarations, definitions, theorems, proofs, ...)∗

end

• MyTh: name of theory. Must live in file MyTh.thy

• ImpThi: name of imported theories. Import transitive.

22
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Isabelle: Functional programming

Theory = Module

Syntax: theory MyTh

imports ImpTh1 . . . ImpThn

begin

(declarations, definitions, theorems, proofs, ...)∗

end

• MyTh: name of theory. Must live in file MyTh.thy

• ImpThi: name of imported theories. Import transitive.

Usually: theory MyTh

imports Main
...

22
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Isabelle: Functional programming

Proof General

An Isabelle Interface

by David Aspinall

23

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 117



Functional Programming:Isabelle

Isabelle: Functional programming

Proof General

Customized version of (x)emacs:
• all of emacs (info: C-h i )
• Isabelle aware (when editing .thy files)
• mathematical symbols (“x-symbols”)

24
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Isabelle: Functional programming

X-Symbols

Input of funny symbols in Proof General
• via menu (“X-Symbol”)
• via ascii encoding (similar to LATEX): \<and> , \<or> , . . .

• via abbreviation: /\ , \/ , --> , . . .

x-symbol ∀ ∃ λ ¬ ∧ ∨ −→ ⇒
ascii (1) \<forall> \<exists> \<lambda> \<not> /\ \/ --> =>

ascii (2) ALL EX % ˜ & |

(1) is converted to x-symbol, (2) stays ascii.

25
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Isabelle: Functional programming

Demo: terms and types

26
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Isabelle: Functional programming

An introduction to recursion and induction

27
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Isabelle: Functional programming

A recursive datatype: toy lists

datatype ’a list = Nil | Cons ’a (’a list)

28
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Isabelle: Functional programming

A recursive datatype: toy lists

datatype ’a list = Nil | Cons ’a (’a list)

Nil : empty list

Cons x xs : head x :: ’a, tail xs :: ’a list

28
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Isabelle: Functional programming

A recursive datatype: toy lists

datatype ’a list = Nil | Cons ’a (’a list)

Nil : empty list

Cons x xs : head x :: ’a, tail xs :: ’a list

A toy list: Cons False (Cons True Nil)

28
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Isabelle: Functional programming

A recursive datatype: toy lists

datatype ’a list = Nil | Cons ’a (’a list)

Nil : empty list

Cons x xs : head x :: ’a, tail xs :: ’a list

A toy list: Cons False (Cons True Nil)

Predefined lists: [False, True]

28

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 125



Functional Programming:Isabelle

Isabelle: Functional programming

Structural induction on lists

P xs holds for all lists xs if

29
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Isabelle: Functional programming

Structural induction on lists

P xs holds for all lists xs if
• P Nil

29
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Isabelle: Functional programming

Structural induction on lists

P xs holds for all lists xs if
• P Nil
• and for arbitrary x and xs, P xs implies P (Cons x xs)

29
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Isabelle: Functional programming

A recursive function: append

Definition by primitive recursion:

primrec app :: ’a list ⇒ ’a list ⇒ ’a list where
app Nil ys = ? |
app (Cons x xs) ys = ??

30
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Isabelle: Functional programming

A recursive function: append

Definition by primitive recursion:

primrec app :: ’a list ⇒ ’a list ⇒ ’a list where
app Nil ys = ? |
app (Cons x xs) ys = ??

1 rule per constructor
Recursive calls must drop the constructor =⇒ Termination

30
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Isabelle: Functional programming

Concrete syntax

In .thy files:
Types and formulas need to be inclosed in "

31
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Isabelle: Functional programming

Concrete syntax

In .thy files:
Types and formulas need to be inclosed in "

Except for single identifiers, e.g. ’a

31
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Isabelle: Functional programming

Concrete syntax

In .thy files:
Types and formulas need to be inclosed in "

Except for single identifiers, e.g. ’a

" normally not shown on slides

31
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Isabelle: Functional programming

Demo: append and reverse

32
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Isabelle: Functional programming

Proofs

General schema:

lemma name: "..."
apply (...)
apply (...)
...
done

If the lemma is suitable as a simplification rule:

lemma name[simp]: "..."

33
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Isabelle: Functional programming

Proof methods

• Structural induction
• Format: (induct x)

x must be a free variable in the first subgoal.
The type of x must be a datatype.

• Effect: generates 1 new subgoal per constructor
• Simplification and a bit of logic
• Format: auto
• Effect: tries to solve as many subgoals as possible

using simplification and basic logical reasoning.

34

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 136



Functional Programming:Isabelle

Isabelle: Functional programming

Top down proofs

Command
sorry

“completes” any proof.

35
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Isabelle: Functional programming

Top down proofs

Command
sorry

“completes” any proof.

Allows top down development:

Assume lemma first, prove it later.

35
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Isabelle: Functional programming

Some useful tools

36

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 139



Functional Programming:Isabelle

Isabelle: Functional programming

Disproving tools

Automatic counterexample search by random testing:
quickcheck

37
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Isabelle: Functional programming

Disproving tools

Automatic counterexample search by random testing:
quickcheck

Counterexample search via SAT solver:
nitpick

37
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Isabelle: Functional programming

Finding theorems

1. Click on Find button

2. Input search pattern (e.g. "_ & True")

38
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Isabelle: Functional programming

Demo: Disproving and Finding

39
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Isabelle: Functional programming

Isabelle’s meta-logic

40
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Isabelle: Functional programming

Basic constructs

Implication =⇒ (==>)
For separating premises and conclusion of theorems

41
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Isabelle: Functional programming

Basic constructs

Implication =⇒ (==>)
For separating premises and conclusion of theorems

Equality ≡ (==)
For definitions

41
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Isabelle: Functional programming

Basic constructs

Implication =⇒ (==>)
For separating premises and conclusion of theorems

Equality ≡ (==)
For definitions

Universal quantifier
∧

(!! )
For binding local variables

41
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Isabelle: Functional programming

Basic constructs

Implication =⇒ (==>)
For separating premises and conclusion of theorems

Equality ≡ (==)
For definitions

Universal quantifier
∧

(!! )
For binding local variables

Do not use inside HOL formulae

41
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Isabelle: Functional programming

Notation

[[ A1; . . . ; An ]] =⇒ B

abbreviates

A1 =⇒ . . . =⇒ An =⇒ B

42
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Isabelle: Functional programming

Notation

[[ A1; . . . ; An ]] =⇒ B

abbreviates

A1 =⇒ . . . =⇒ An =⇒ B

; ≈ “and”

42
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Isabelle: Functional programming

The proof state

1.
∧

x1 . . . xp. [[ A1; . . . ; An ]] =⇒ B

x1 . . . xp Local constants
A1 . . . An Local assumptions
B Actual (sub)goal

43
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Isabelle: Functional programming

Type and function definition in Isabelle/HOL

44

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 152



Functional Programming:Isabelle

Isabelle: Functional programming

Type definition in Isabelle/HOL

45
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Isabelle: Functional programming

Introducing new types

Keywords:
• typedecl : pure declaration
• types : abbreviation
• datatype : recursive datatype

46
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Isabelle: Functional programming

typedecl

typedecl name

Introduces new “opaque” type name without definition

47
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Functional Programming:Isabelle

Isabelle: Functional programming

typedecl

typedecl name

Introduces new “opaque” type name without definition

Example:

typedecl addr — An abstract type of addresses

47
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Isabelle: Functional programming

types

types name = τ

Introduces an abbreviation name for type τ

48
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Isabelle: Functional programming

types

types name = τ

Introduces an abbreviation name for type τ

Examples:

types
name = string
(’a,’b)foo = ’a list × ’b list

48
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Isabelle: Functional programming

types

types name = τ

Introduces an abbreviation name for type τ

Examples:

types
name = string
(’a,’b)foo = ’a list × ’b list

Type abbreviations are expanded immediately after parsing
Not present in internal representation and Isabelle output

48
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Isabelle: Functional programming

datatype

49
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Isabelle: Functional programming

The example

datatype ’a list = Nil | Cons ’a (’a list)

Properties:

• Types: Nil :: ’a list
Cons :: ’a ⇒ ’a list ⇒ ’a list

• Distinctness: Nil 6= Cons x xs
• Injectivity: (Cons x xs = Cons y ys) = (x = y ∧ xs = ys)

50
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Isabelle: Functional programming

The general case

datatype (α1, . . . , αn)τ = C1 τ1,1 . . . τ1,n1

| . . .
| Ck τk,1 . . . τk,nk

• Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni ⇒ (α1, . . . , αn)τ

• Distinctness: Ci . . . 6= Cj . . . if i 6= j

• Injectivity:
(Ci x1 . . . xni = Ci y1 . . . yni) = (x1 = y1 ∧ . . . ∧ xni = yni)

51
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Isabelle: Functional programming

The general case

datatype (α1, . . . , αn)τ = C1 τ1,1 . . . τ1,n1

| . . .
| Ck τk,1 . . . τk,nk

• Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni ⇒ (α1, . . . , αn)τ

• Distinctness: Ci . . . 6= Cj . . . if i 6= j

• Injectivity:
(Ci x1 . . . xni = Ci y1 . . . yni) = (x1 = y1 ∧ . . . ∧ xni = yni)

Distinctness and Injectivity are applied automatically
Induction must be applied explicitly

51
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Isabelle: Functional programming

Function definition in Isabelle/HOL

52

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 164



Functional Programming:Isabelle

Isabelle: Functional programming

Why nontermination can be harmful

How about f x = f x + 1 ?

53
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Isabelle: Functional programming

Why nontermination can be harmful

How about f x = f x + 1 ?

Subtract f x on both sides.
=⇒ 0 = 1

53
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Isabelle: Functional programming

Why nontermination can be harmful

How about f x = f x + 1 ?

Subtract f x on both sides.
=⇒ 0 = 1

! All functions in HOL must be total !

53
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Isabelle: Functional programming

Function definition schemas in Isabelle/HOL

• Non-recursive with definition
No problem

54
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Isabelle: Functional programming

Function definition schemas in Isabelle/HOL

• Non-recursive with definition
No problem

• Primitive-recursive with primrec
Terminating by construction

54
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Isabelle: Functional programming

Function definition schemas in Isabelle/HOL

• Non-recursive with definition
No problem

• Primitive-recursive with primrec
Terminating by construction

• Well-founded recursion with fun
Automatic termination proof

54
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Isabelle: Functional programming

Function definition schemas in Isabelle/HOL

• Non-recursive with definition
No problem

• Primitive-recursive with primrec
Terminating by construction

• Well-founded recursion with fun
Automatic termination proof

• Well-founded recursion with function
User-supplied termination proof

54
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Isabelle: Functional programming

definition

55
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Isabelle: Functional programming

Definition (non-recursive) by example

definition sq :: nat ⇒ nat where sq n = n * n

56
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Isabelle: Functional programming

Definitions: pitfalls

definition prime :: nat ⇒ bool where
prime p = (1 < p ∧ (m dvd p −→ m = 1 ∨ m = p))

57
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Isabelle: Functional programming

Definitions: pitfalls

definition prime :: nat ⇒ bool where
prime p = (1 < p ∧ (m dvd p −→ m = 1 ∨ m = p))

Not a definition: free m not on left-hand side

57
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Isabelle: Functional programming

Definitions: pitfalls

definition prime :: nat ⇒ bool where
prime p = (1 < p ∧ (m dvd p −→ m = 1 ∨ m = p))

Not a definition: free m not on left-hand side

! Every free variable on the rhs must occur on the lhs !

57
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Functional Programming:Isabelle

Isabelle: Functional programming

Definitions: pitfalls

definition prime :: nat ⇒ bool where
prime p = (1 < p ∧ (m dvd p −→ m = 1 ∨ m = p))

Not a definition: free m not on left-hand side

! Every free variable on the rhs must occur on the lhs !

prime p = (1 < p ∧ (∀m. m dvd p −→ m = 1 ∨ m = p))

57
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Isabelle: Functional programming

Using definitions

Definitions are not used automatically

58
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Isabelle: Functional programming

Using definitions

Definitions are not used automatically

Unfolding the definition of sq:

apply (unfold sq_def)

58
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Isabelle: Functional programming

primrec

59
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Functional Programming:Isabelle

Isabelle: Functional programming

The example

primrec app :: ’a list ⇒ ’a list ⇒ ’a list where

app Nil ys = ys |

app (Cons x xs) ys = Cons x (app xs ys)

60
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Isabelle: Functional programming

The general case

If τ is a datatype (with constructors C1, . . . , Ck) then
f :: · · · ⇒ τ ⇒ · · · ⇒ τ ′ can be defined by primitive recursion:

f x1 . . . (C1 y1,1 . . . y1,n1) . . . xp = r1 |
...
f x1 . . . (Ck yk,1 . . . yk,nk

) . . . xp = rk

61
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Isabelle: Functional programming

The general case

If τ is a datatype (with constructors C1, . . . , Ck) then
f :: · · · ⇒ τ ⇒ · · · ⇒ τ ′ can be defined by primitive recursion:

f x1 . . . (C1 y1,1 . . . y1,n1) . . . xp = r1 |
...
f x1 . . . (Ck yk,1 . . . yk,nk

) . . . xp = rk

The recursive calls in ri must be structurally smaller,
i.e. of the form f a1 . . . yi,j . . . ap
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Isabelle: Functional programming

nat is a datatype

datatype nat = 0 | Suc nat

62
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Isabelle: Functional programming

nat is a datatype

datatype nat = 0 | Suc nat

Functions on nat definable by primrec!

primrec f :: nat ⇒ ...
f 0 = ...
f(Suc n) = ... f n ...

62
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Isabelle: Functional programming

More predefined types and functions

63
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Isabelle: Functional programming

Type option

datatype ’a option = None | Some ’a

64
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Isabelle: Functional programming

Type option

datatype ’a option = None | Some ’a

Important application:

. . . ⇒ ’a option ≈ partial function:

None ≈ no result
Some a ≈ result a

64
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Isabelle: Functional programming

Type option

datatype ’a option = None | Some ’a

Important application:

. . . ⇒ ’a option ≈ partial function:

None ≈ no result
Some a ≈ result a

Example:
primrec lookup :: ’k ⇒ (’k × ’v) list ⇒ ’v option where

64
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Isabelle: Functional programming

Type option

datatype ’a option = None | Some ’a

Important application:

. . . ⇒ ’a option ≈ partial function:

None ≈ no result
Some a ≈ result a

Example:
primrec lookup :: ’k ⇒ (’k × ’v) list ⇒ ’v option where

lookup k [] = None

64
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Isabelle: Functional programming

Type option

datatype ’a option = None | Some ’a

Important application:

. . . ⇒ ’a option ≈ partial function:

None ≈ no result
Some a ≈ result a

Example:
primrec lookup :: ’k ⇒ (’k × ’v) list ⇒ ’v option where

lookup k [] = None |
lookup k (x#xs) =

(if fst x = k then Some(snd x) else lookup k xs)

64
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Isabelle: Functional programming

case

Datatype values can be taken apart with case expressions:

(case xs of [] ⇒ . . . | y#ys ⇒ ... y ... ys ...)

65
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Isabelle: Functional programming

case

Datatype values can be taken apart with case expressions:

(case xs of [] ⇒ . . . | y#ys ⇒ ... y ... ys ...)

Wildcards:
(case xs of [] ⇒ [] | y#_ ⇒ [y])

65
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Functional Programming:Isabelle

Isabelle: Functional programming

case

Datatype values can be taken apart with case expressions:

(case xs of [] ⇒ . . . | y#ys ⇒ ... y ... ys ...)

Wildcards:
(case xs of [] ⇒ [] | y#_ ⇒ [y])

Nested patterns:
(case xs of [0] ⇒ 0 | [Suc n] ⇒ n | _ ⇒ 2)

65
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Isabelle: Functional programming

case

Datatype values can be taken apart with case expressions:

(case xs of [] ⇒ . . . | y#ys ⇒ ... y ... ys ...)

Wildcards:
(case xs of [] ⇒ [] | y#_ ⇒ [y])

Nested patterns:
(case xs of [0] ⇒ 0 | [Suc n] ⇒ n | _ ⇒ 2)

Complicated patterns mean complicated proofs!

65
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Isabelle: Functional programming

case

Datatype values can be taken apart with case expressions:

(case xs of [] ⇒ . . . | y#ys ⇒ ... y ... ys ...)

Wildcards:
(case xs of [] ⇒ [] | y#_ ⇒ [y])

Nested patterns:
(case xs of [0] ⇒ 0 | [Suc n] ⇒ n | _ ⇒ 2)

Complicated patterns mean complicated proofs!

Needs ( ) in context

65
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Isabelle: Functional programming

Proof by case distinction

If t :: τ and τ is a datatype
apply (case_tac t)

66
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Isabelle: Functional programming

Proof by case distinction

If t :: τ and τ is a datatype
apply (case_tac t)

creates k subgoals

t = Ci x1 . . . xp =⇒ . . .

one for each constructor Ci of type τ .

66

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 198



Functional Programming:Isabelle

Isabelle: Functional programming

Demo: trees

67
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Isabelle: Functional programming

fun

From primitive recursion
to arbitrary pattern matching

68
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Isabelle: Functional programming

Example: Fibonacchi

fun fib :: nat ⇒ nat where

fib 0 = 0 |
fib (Suc 0) = 1 |
fib (Suc(Suc n)) = fib (n+1) + fib n

69
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Isabelle: Functional programming

Example: Separation

fun sep :: ’a ⇒ ’a list ⇒ ’a list where

sep a [] = [] |
sep a [x] = [x] |
sep a (x#y#zs) = x # a # sep a (y#zs)

70
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Isabelle: Functional programming

Example: Ackermann

fun ack :: nat ⇒ nat ⇒ nat where

ack 0 n = Suc n |
ack (Suc m) 0 = ack m (Suc 0) |
ack (Suc m) (Suc n) = ack m (ack (Suc m) n)
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Isabelle: Functional programming

Key features of fun

• Arbitrary pattern matching

72
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Isabelle: Functional programming

Key features of fun

• Arbitrary pattern matching
• Order of equations matters

72
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Isabelle: Functional programming

Key features of fun

• Arbitrary pattern matching
• Order of equations matters
• Termination must be provable

by lexicographic combination of size measures

72
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Isabelle: Functional programming

Size

• size(n::nat) = n

73
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Isabelle: Functional programming

Size

• size(n::nat) = n
• size(xs) = length xs

73
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Isabelle: Functional programming

Size

• size(n::nat) = n
• size(xs) = length xs
• size counts number of (non-nullary) constructors

73
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Isabelle: Functional programming

Lexicographic ordering

Either the first component decreases, or it stays unchanged
and the second component decreases:

74
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Isabelle: Functional programming

Lexicographic ordering

Either the first component decreases, or it stays unchanged
and the second component decreases:

(5, 3) > (4, 7) > (4, 6) > (4, 0) > (3, 42) > · · ·
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Isabelle: Functional programming

Lexicographic ordering

Either the first component decreases, or it stays unchanged
and the second component decreases:

(5, 3) > (4, 7) > (4, 6) > (4, 0) > (3, 42) > · · ·
Similar for tuples:

(5, 6, 3) > (4, 12, 5) > (4, 11, 9) > (4, 11, 8) > · · ·

74
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Isabelle: Functional programming

Lexicographic ordering

Either the first component decreases, or it stays unchanged
and the second component decreases:

(5, 3) > (4, 7) > (4, 6) > (4, 0) > (3, 42) > · · ·
Similar for tuples:

(5, 6, 3) > (4, 12, 5) > (4, 11, 9) > (4, 11, 8) > · · ·
Theorem If each component ordering terminates, then
their lexicographic product terminates, too.

74
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Isabelle: Functional programming

Ackermann terminates

ack 0 n = Suc n

ack (Suc m) 0 = ack m (Suc 0)

ack (Suc m) (Suc n) = ack m (ack (Suc m) n)
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Isabelle: Functional programming

Ackermann terminates

ack 0 n = Suc n

ack (Suc m) 0 = ack m (Suc 0)

ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

because the arguments of each recursive call are
lexicographically smaller than the arguments on the lhs.

75
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Isabelle: Functional programming

Ackermann terminates

ack 0 n = Suc n

ack (Suc m) 0 = ack m (Suc 0)

ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

because the arguments of each recursive call are
lexicographically smaller than the arguments on the lhs.

Note: order of arguments not important for Isabelle!
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Isabelle: Functional programming

Computation Induction

If f :: τ ⇒ τ ′ is defined by fun , a special induction schema is
provided to prove P (x) for all x :: τ :

76
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Isabelle: Functional programming

Computation Induction

If f :: τ ⇒ τ ′ is defined by fun , a special induction schema is
provided to prove P (x) for all x :: τ :

for each equation f(e) = t,
prove P (e) assuming P (r) for all recursive calls f(r) in t.

76
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Isabelle: Functional programming

Computation Induction

If f :: τ ⇒ τ ′ is defined by fun , a special induction schema is
provided to prove P (x) for all x :: τ :

for each equation f(e) = t,
prove P (e) assuming P (r) for all recursive calls f(r) in t.

Induction follows course of (terminating!) computation

76
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Isabelle: Functional programming

Computation Induction: Example

fun div2 :: nat ⇒ nat where
div2 0 = 0 |
div2 (Suc 0) = 0 |
div2(Suc(Suc n)) = Suc(div2 n)

77
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Isabelle: Functional programming

Computation Induction: Example

fun div2 :: nat ⇒ nat where
div2 0 = 0 |
div2 (Suc 0) = 0 |
div2(Suc(Suc n)) = Suc(div2 n)

; induction rule div2.induct :

P (0) P (Suc 0) P (n) =⇒ P (Suc(Suc n))

P (m)

77
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Isabelle: Functional programming

Demo: fun
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HOL:Foundations

Chapter 3

HOL:Foundations
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HOL:Foundations

HOL:Introduction

Introduction to HOL The Language of Higher Order Logic The HOL system

Introduction

• Stands for Higher Order Logic

• Denotes both a logic and a system

• Logic is an evolution of Alonzo Church’s

Simple Theory of Types (1940)

• System is an evolution of LCF (1979)

• Intent of this lecture: give an overview of HOL
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HOL:Introduction

Introduction to HOL The Language of Higher Order Logic The HOL system

Some Logical History

• Frege was a logicist (math is a subset of logic)

• Proposed a system on which (he thought) all mathematics

could be derived (in principle)

• Bertrand Russell found paradox in Frege’s system

• Proposed the Ramified Theory of Types

• Wrote Principia Mathematica with Whitehead

• An attempt at developing basic mathematics completely

formally

“My intellect never recovered from the strain”
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HOL:Introduction

Introduction to HOL The Language of Higher Order Logic The HOL system

Russell’s Paradox

Definition
A set s does not contain itself if s /∈ s
Fact
Consider X = {s | s /∈ s}. X is the set of all sets that do not
contain themselves.

• If X ∈ X then X does not contain itself, i.e., X /∈ X
• If X /∈ X then X contains itself, i.e., X ∈ X

So X ∈ X iff X /∈ X. Contradiction.

• Gottlob, we have a problem!
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HOL:Foundations

HOL:Introduction

Introduction to HOL The Language of Higher Order Logic The HOL system

Type Theory

• Problem: even allowing the expression of the notion of sets

that do not contain themselves leads to contradiction

• One solution: ban such self-referential expressions

(so-called vicious circles)

• Russell’s proposal: invent a hierarchy of types

• Elements of lower types could not be applied to elements

of higher types

• Blocks the paradox because X ∈ X no longer a

well-formed expression
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HOL:Introduction

Introduction to HOL The Language of Higher Order Logic The HOL system

Type Theories

• Russell’s Ramified Theory of Types was very complex

• Simplified by Frank Ramsey in 1920s

• A. Church used typed λ-calculus to give a sleek

presentation (Simple Theory of Types 1940)

• An earlier attempt by Church used untyped λ-calculus as a

foundation for mathematics. It was inconsistent.

• HOL is a version of Church’s 1940 logic.

• Many other variants as well, e.g., Calculus of Constructions
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History of HOL Implementations

• Late 1960’s : Dana Scott’s Domain Theory

• Logic of Computable Functions: a (first order) logic for

Scott’s theory

• Implemented in Edinburgh LCF (mid-1970s)

• Early 1980’s : Mike Gordon swapped Scott’s logic for

Church’s

• Kept much of LCF implementation
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Contemporary Implementations of HOL

• HOL-Light (Harrison)

• HOL-4 (Gordon, Slind, Norrish, others)

• Isabelle/HOL (Paulson,Nipkow)

• ProofPower (Arthan)

• reFLect (Intel)

Related systems:

• PVS (extension of Church’s logic with dependent types

and subtypes)

• ACL2 (built on Common Lisp subset)

• MIZAR (Tarski-Grothendieck set theory)
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Page of Logic Implementations

For a collection of logic implementations see

http://www.cs.ru.nl/~freek/digimath/index.html
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Motivation
• Higher-order logic (HOL) is an expressive foundation for

mathematics: analysis, algebra, . . .

computer science: program correctness, hardware

verification, . . .

• Reasoning in HOL is classical.

• Still important: modeling of problems (now in HOL).

• Still important: deriving relevant reasoning principles.

(rev. 12275)
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Motivation (2)
• HOL offers safety through strength:
◦ small kernel of constants and axioms;

◦ Safety via conservative (definitional) extensions.

• Contrast with
◦ weak logics (e.g., propositional logic): can’t define much;

◦ axiomatic extensions: can lead to inconsistency

Bertrand Russell once likened the advantages of postulation

over definition to the advantages of theft over honest toil!

(rev. 12275)
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Alternatives to Isabelle/HOL
• We will use and focus on Isabelle/HOL.

• Could forgo the use of a meta-logic and employ

alternatives, e.g., HOL system or PVS. Or use constructive

alternatives such as Coq or Nuprl.

• Choice depends on culture and application.

(rev. 12275)
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Which Foundation?
• Set theory is often seen as the basis for mathematics.
◦ Zermelo-Fraenkel, Bernays-Gödel, . . .

◦ Set theories (both) distinguish between sets and classes.

◦ Consistency maintained as some collections are “too big” to be sets,

e.g., class of all sets is not a set. A class cannot belong to another

class (let alone a set)!

• HOL as an alternative (Church 1940, Henkin 1950).
◦ Rationale: one usually works with typed entities.

◦ Isabelle/HOL also supports like polymorphism and type classes.

HOL is weaker than ZF set theory, but for most applications this

does not matter. If you prefer ML to Lisp, you will probably prefer

HOL to ZF. —Larry Paulson

• Another alternative: category theory (Eilenberg, Mac Lane)
(rev. 12275)
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Meaning of “Higher Order”

1st-order: quantification over individuals (0th-order objects).

∀x, y.R(x, y) −→ R(y, x)

2nd-order: quantification over predicates and functions.

false ≡ ∀P. P

P ∧Q ≡ ∀R. (P −→ Q −→ R) −→ R

3rd-order: quantify over variables whose arguments are pred-

icates.
...
“higher order” ! union of all finite orders

(rev. 12275)
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Basic HOL Syntax (1)
• Types:

τ ::= bool | ind | τ ⇒ τ

◦ bool and ind are also called o and i in literature [Chu40, And86]

◦ Isabelle allows definitions of new type constructors, e.g., list(bool)

◦ Isabelle supports polymorphic type definitions, e.g., list(α)

• Terms: (V set of variables and C set of constants)

T ::= V | C | (T T ) | λV. T
◦ Terms are simply-typed.

◦ Terms of type bool are called (well-formed) formulae.

(rev. 12275)
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Basic HOL Syntax (2)
• Constants are always supplied with types and include:

True,False : bool
= : τ ⇒ τ ⇒ bool (for all types τ)

−→ : bool ⇒ bool ⇒ bool
ι : (τ ⇒ bool) ⇒ τ (for all types τ)

• Note that the description operator ιf yields the unique

element x for which f x is True, provided it exists.

Otherwise, it yields an arbitrary value.

• Note that in Isabelle, the provisos “for all types τ” can be

expressed by using polymorphic type variables α.

(rev. 12275)
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HOL Semantics
• Intuitively an extension of many-sorted semantics with

functions
◦ FOL: structure is domain and functions/relations

〈D, (fi)i∈F , (ri)i∈R〉
◦ Many-sorted FOL: domains are sort-indexed

〈(Di)i∈S, (fi)i∈F , (ri)i∈R〉
◦ HOL extends idea: domain D is indexed by (infinitely many) types

• Our presentation ignores polymorphism on the

object-logical level, it is treated on the meta-level, though

(a version covering object-level parametric polymorphism is

[GM93]).

(rev. 12275)
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Model Based on Universe of Sets U
Definition 1 (Universe):

U is a collection of sets, fulfilling closure conditions:

Inhab: Each X ∈ U is a nonempty set

Sub: If X ∈ U and Y 6= ∅ ⊆ X, then Y ∈ U
Prod: If X, Y ∈ U then X × Y ∈ U .

X × Y is Cartesian product, {{x}, {x, y}} encodes (x, y)

Pow: If X ∈ U then P(X) = {Y : Y ⊆ X} ∈ U
Infty: U contains a distinguished infinite set I

(rev. 12275)
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Universe of Sets U (cont.)
• Function space:

X ⇒ Y is the set of (graphs of all total) functions from X

to Y
◦ For X and Y nonempty, X ⇒ Y is a nonempty subset of P(X × Y )

◦ From closure conditions: X, Y ∈ U then so is X ⇒ Y .

• Distinguished sets:
from Infty and Sub there is (at least one) set

Unit: A distinguished 1 element set {1}
Bool: A distinguished 2 element set {T, F}.

(rev. 12275)
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Definition 2 (Frame):

A frame is a collection (Dα)α∈τ with Dα ∈ U , for α ∈ τ and

• Dbool = {T, F}
• Dind = X where X is some infinite set of individuals

• Dα⇒β ⊆ Dα ⇒ Dβ, i.e., some collection of functions from

Dα to Dβ

Example: Dbool⇒bool is some nonempty subset of functions

from {T, F} to {T, F}. Some of these subsets contain, e.g.,

the identity function, others do not.

(rev. 12275)
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Definition 3 (Interpretation):

An interpretation 〈(Dα)α∈τ ,J 〉 consists of a frame (Dα)α∈τ

and a denotation function J mapping each constant of type

α to an element of Dα where:

• J (True) = T and J (False) = F

• J (=α⇒α⇒bool) is the identity on Dα

• J (−→) denotes the implication function over Dbool , i.e.,

b → b′ =
{

F if b = T and b′ = F

T otherwise

• J (ι(α⇒bool)⇒α) ∈ (Dα ⇒ Dbool) ⇒ Dα denotes the function

the(f) =
{

a if f = (λx.x = a)
y otherwise (y ∈ Dα is arbitrary)

(rev. 12275)
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Definition 4 (Generalized Models):

An interpretation M = 〈(Dα)α∈τ ,J 〉 is a (general) model for

HOL iff there is a binary function VM such that

• for all type-indexed families of substitutions σ = (σα)α∈τ

and terms t of type α, VM(σ, t) ∈ Dα, and

• for all type-indexed families of substitutions σ = (σα)α∈τ ,
(a) VM(σ, xα) = σα(xα)

(b) VM(σ, c) = J (c), for c a (primitive) constant

(c) VM(σ, sα⇒βtα) = VM(σ, s)VM(σ, t)
i.e., the value of the function VM(σ, s) at the argument VM(σ, t)

(d) VM(λxα. tβ) = “the function from Dα into Dβ whose value for

each z ∈ Dα is VM(σ[x← z], t)”

(rev. 12275)
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Generalized Models - Facts (1)
• If M is a general model and σ a substitution,

then VM(σ, t) is uniquely determined, for every term t.

VM(σ, t) is value of t in M w.r.t. σ.

• Gives rise to the standard notion of satisfiability/validity:
◦ We write VM, σ |= φ for VM(σ, φ) = T .

◦ φ is satisfiable in M if VM, σ |= φ, for some substitution σ.

◦ φ is valid in M if VM, σ |= φ, for every substitution σ.

◦ φ is valid (in the general sense) if φ is valid in every general model

M.
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Generalized Models - Facts (2)
• Not all interpretations are general models.

• Closure conditions guarantee every well-formed formula

has a value under every assignment, e.g.,

closure under functions: identity function from Dα to Dα

must belong to Dα⇒α so that VM(σ, λxα. x) is defined.

closure under application:
◦ if DN is set of natural numbers and

◦ DN⇒N⇒N contains addition function p where p x y = x + y

◦ then DN⇒N must contain k x = 2x + 5
since k = VM(σ, λx. f(f x x) y) where σ(f) = p and σ(y) = 5.
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Standard Models
Definition 5 (Standard Models):

A general model is a standard model iff for all α, β ∈ τ ,

Dα⇒β is the set of all functions from Dα to Dβ.

• A standard model is a general model, but not necessary

vice versa.

• Analogous definitions for satisfiability and validity w.r.t.

standard models.

(rev. 12275)
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Standard Models
Definition 5 (Standard Models):

A general model is a standard model iff for all α, β ∈ τ ,

Dα⇒β is the set of all functions from Dα to Dβ.

• A standard model is a general model, but not necessary

vice versa.

• Analogous definitions for satisfiability and validity w.r.t.

standard models.

• We can now re-introduce HOL in Isabelle’s meta-logic.

(rev. 12275)
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Isabelle/HOL
The syntax of the core-language is introduced by:

consts
Not :: bool ⇒ bool (”¬ ” [40] 40)

True :: bool

False :: bool

If :: [bool, ’a, ’a] ⇒ ’a (”( if then else )”)

The :: (’a ⇒ bool) ⇒ ’a (binder ”THE ” 10)

All :: (’a ⇒ bool) ⇒ bool (binder ”∀ ” 10)

Ex :: (’a ⇒ bool) ⇒ bool (binder ”∃ ” 10)

= :: [’ a, ’a] ⇒ bool ( infixl 50)

∧ :: [bool, bool] ⇒ bool ( infixr 35)

∨ :: [bool, bool] ⇒ bool ( infixr 30)

−→ :: [bool, bool] ⇒ bool ( infixr 25)

(rev. 12275)
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The Axioms of HOL (1)
axioms

refl : ”t = t”

subst : ”[[ s = t; P(s) ]] =⇒ P(t)”

ext : ”(
∧

x. f x = g x) =⇒ (λx. f x) = (λx. g x)”

impI: ”(P =⇒Q) =⇒P−→Q”

mp: ”[[ P−→Q; P ]] =⇒Q”

iff : ”(P−→Q) −→(Q−→P) −→(P=Q)”

True or False : ”(P=True) ∨(P=False)”

the eq trivial : ”(THE x. x = a) = (a::’a)”
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The Axioms of HOL (2)
Additionally, there is:

• universal α, β, and η congruence on terms (implicitly),

• the axiom of infinity, and

• the axiom of choice (Hilbert operator).

• This is the entire basis!

(rev. 12275)
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Core Definitions of HOL
defs

True def : True ≡ ((λx::bool. x) = (λx. x))

All def : All (P) ≡ (P = (λx. True))

Ex def: Ex(P) ≡∀Q. (∀ x. P x−→Q) −→Q

False def : False ≡ (∀P. P)

not def : ¬ P ≡P−→False

and def: P ∧Q ≡∀R. (P−→Q−→R) −→R

or def : P ∨Q ≡∀R. (P−→R) −→(Q−→R) −→R

if def : If P x y ≡THE z::’a. (P=True −→z=x) ∧
(P=False −→z=y)
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Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 252



HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 636

Meta-theoretic Properties of HOL
Theorem 1 (Soundness of HOL, [And86]):

HOL is sound w.r.t. to general models.
⊢HOL φ implies φ is valid

Theorem 2 (Completeness of HOL, [And86]):

• HOL is complete w.r.t. to general models.

φ is valid implies ⊢HOL φ

• HOL is complete w.r.t. to standard models.

Theorem 3 (HOL with infinity, [And86]):

• HOL+infinity is complete w.r.t. general models.

• HOL+infinity is incomplete w.r.t. standard models.
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Conclusions
• HOL generalizes semantics of FOL
◦ bool serves as type of propositions

◦ Syntax/semantics allows for higher-order functions

• Logic is rather minimal: 8 rules, more-or-less obvious

• Logic is very powerful in terms of what we can

represent/derive.
◦ Other “logical” syntax

◦ Rich theories via conservative extensions

(topic for next few weeks!)
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Outline
In the previous lecture, we have derived all well-known

inference rules. There is now the need to scale up. Today we

look at conservative theory extensions, an important method

for this purpose.

In the weeks to come, we will look at how mathematics is

encoded in the Isabelle/HOL library.
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Conservative Theory Extensions: Basics

Terminology and basic definitions (c.f. [GM93]):

Definition 6 (theory):

A (syntactic) theory T is a triple (χ,Σ, A), where χ is a type

signature, Σ a signature, and A a set of axioms.

Definition 7 (consistent):

A theory T is consistent iff False is not provable in T .

Definition 8 (theory extension):

A theory T ′ = (χ′,Σ′, A′) is an extension of a theory

T = (χ,Σ, A) iff χ ⊆ χ′ and Σ ⊆ Σ′ and A ⊆ A′.
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Definitions (Cont.)
Definition 9 (conservative extension):

A theory extension T ′ = (χ′,Σ′, A′) of a theory

T = (χ,Σ, A) is conservative iff for the set of provable

formulas Th we have

Th(T ) = Th(T ′) |Σ,

where |Σ filters away all formulas not belonging to Σ.

Counterexample:

∀f :: α ⇒ α. Y f = f (Y f)
fix

(rev. 32934)
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Consistency Preserved
Lemma 1 (consistency):

If T ′ is a conservative extension of a consistent theory T ,

then

False /∈ Th(T ′).
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Syntactic Schemata for Conservative
Extensions

• Constant definition

• Type definition

• Constant specification

• Type specification

Will look at first two schemata now.

For the other two see [GM93].
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Constant Definition

Definition 10 (constant definition):

A theory extension T ′ = (χ′,Σ′, A′) of a theory

T = (χ,Σ, A) is a constant definition, iff

• χ′ = χ and Σ′ = Σ ∪ {c :: τ}, where c /∈ dom(Σ);
• A′ = A ∪ {c = E};
• E does not contain c and is closed;

• no subterm of E has a type containing a type variable that

is not contained in the type of c.
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Constant Definitions are Conservative
Lemma 2 (constant definitions):

A constant definition is a conservative extension.

Proof Sketch:

• Th(T ) ⊆ Th(T ′) |Σ : trivial.

• Th(T ) ⊇ Th(T ′) |Σ : let π′ be a proof for φ ∈ Th(T ′) |Σ.

We unfold any subterm in π′ that contains c via c = E

into π. π is a proof in T , i.e., φ ∈ Th(T ).
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Side Conditions
Where are those side conditions needed? What goes wrong?

Simple example: Let E ≡ ∃x :: α. ∃y :: α. x 6= y and

suppose σ is a type inhabited by only one term, and τ is a

type inhabited by at least two terms. Then we would have:

c = c holds by refl

=⇒ (∃x :: σ. ∃y :: σ. x 6= y) = (∃x :: τ. ∃y :: τ. x 6= y)
=⇒ False = True
=⇒ False

Reconsider the definition of True.
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Constant Definition: Examples
Definitions of True, False, ¬, ∧, ∨, ∀, and ∃ revisited.

True def : True ≡ ((λx::bool. x) = (λx. x))

All def : All (P) ≡ (P = (λx. True))

Ex def: Ex(P) ≡∀Q. (∀ x. P x−→Q) −→Q

False def : False ≡ (∀P. P)

not def : ¬ P ≡P−→False

and def: P ∧Q ≡∀R. (P−→Q−→R) −→R

or def : P ∨Q ≡∀R. (P−→R) −→(Q−→R) −→R

Recall that All (P) is equivalent to ∀ x. P x and

Ex(P) is equivalent to ∃ x. P x.
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More Constant Definitions in Isabelle
let−in−, if−then−else, unique existence:

consts
Let :: [’ a, ’a ⇒ ’b] ⇒ ’b

If :: [bool, ’a, ’a] ⇒ ’a

Ex1 :: (’a ⇒ bool) ⇒ bool

defs
Let def : ”Let s f ≡ f(s)”

if def : ” If P x y ≡THE z::’a .(P=True−→z=x) ∧
(P=False−→z=y)”

Ex1 def: ”Ex1(P) ≡∃ x. P(x) ∧ (∀ y. P(y) −→ y=x)”

Note: ⇒ is function type arrow; recall syntax for [...] ⇒ ...
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Type Definitions

Type definitions, explained intuitively: we have

• an existing type r;

• a predicate S :: r ⇒ bool , defining a non-empty “subset”

of r;

• axioms stating an isomorphism between S and the new

type t.
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Type Definition: Definition
Definition 11 (type definition):

Assume a theory T = (χ,Σ, A) and a type r and a term S

of type r ⇒ bool .
A theory extension T ′ = (χ′,Σ′, A′) of T is a type definition

for type t (where t fresh), iff

χ′ = χ ⊎ {t},
Σ′ = Σ ∪ {Abst :: r ⇒ t, Rept :: t ⇒ r}
A′ = A ∪ {∀x.Abst(Rept x) = x,

∀x.S x −→ Rept(Abst x) = x}
Proof obligation T ⊢ ∃x. S x (inside HOL)
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Type Definitions are Conservative
Lemma 3 (type definitions):

A type definition is a conservative extension.

Proof see [GM93, pp.230].
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HOL is Rich Enough!
This may seem fishy: if a new type is always isomorphic to a

subset of an existing type, how is this construction going to

lead to a “rich” collection of types for large-scale

applications?

But in fact, due to ind and ⇒, the types in HOL are already

very rich.

We now give three examples revealing the power of type

definitions.
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Example: Typed Sets
General scheme, substituting r ≡ α ⇒ bool (α is any type

variable), t ≡ α set (or set), S ≡ λx :: α ⇒ bool .True

χ′ = χ ⊎ {set},
Σ′ = Σ ∪ {Absset :: (α ⇒ bool) ⇒ α set ,

Repset :: α set ⇒ (α ⇒ bool)}
A′ = A ∪ {∀x.Absset(Repset x) = x,

∀x. Repset(Absset x) = x}
Simplification since S ≡ λx.True. Proof obligation:

(∃x. S x) trivial since (∃x.True) = True. Inhabitation is

crucial!
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Sets: Remarks
Any function f :: τ ⇒ bool can be interpreted as a set of τ ;

f is called characteristic function. That’s what Absset f

does; Absset is a wrapper saying “interpret f as set”.

S ≡ λx.True and so S is trivial in this case.
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More Constants for Sets
For convenient use of sets, we define more constants:

{x | f x} ∼= Collect f = Absset f

x ∈ A = (Repset A) x

A ∪B = {x | x ∈ A ∨ x ∈ B}
...

Consistent set theory adequate for most of mathematics and

computer science !

Here, sets are just an example to demonstrate type

definitions. Later we study them for their own sake.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 278



HOL:Foundations

HOL:Conservative extensions

Type Definitions 707

Example: Pairs
Consider type α ⇒ β ⇒ bool . We can regard a term

f :: α ⇒ β ⇒ bool as a representation of the pair (a, b),
where a :: α and b :: β, iff f x y is true exactly for x = a and

y = b. Observe:

• For given a and b, there is exactly one such f (namely,

λx :: α. λy :: β. x = a ∧ y = b).

• Some functions of type α ⇒ β ⇒ bool represent pairs and

others don’t (e.g., the function λx. λy. True does not

represent a pair). The ones that do are are equal to

λx :: α. λy :: β. x = a ∧ y = b, for some a and b.
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Type Definition for Pairs
This gives rise to a type definition where S is non-trivial:

r ≡ α ⇒ β ⇒ bool
S ≡ λf :: α ⇒ β ⇒ bool .

∃a. ∃b. f = λx :: α. λy :: β. x = a ∧ y = b

t ≡ α× β (× infix)

It is convenient to define a constant Pair Rep (not to be

confused with Rep×) as follows:

Pair Rep a b = λx ::’ a. λ y ::’ b. x=a ∧y=b.
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Implementation in Isabelle
Isabelle provides a special syntax for type definitions:

typedef (T)

( typevars ) T’ = ”{x. A(x)}”
How is this linked to our scheme:

• the new type is called T ′;
• r is the type of x (inferred);

• S is λx.A x;

• constants Abs T and Rep T are automatically generated.
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Isabelle Syntax for Pair Example
constdefs
Pair Rep :: [’ a, ’b] ⇒ [’ a, ’b] ⇒ bool

”Pair Rep ≡ (λ a b. λ x y. x=a ∧y=b)”

typedef (Prod)

(’a, ’b) ”∗” ( infixr 20)

= ”{f. ∃ a. ∃ b. f=Pair Rep(a::’a)(b ::’ b)}”
The keyword constdefs introduces a constant definition.

The definition and use of Pair Rep is for convenience. There

are “two names” ∗ and Prod.

See Product Type.thy.
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Example: Sums
An element of (α, β) sum is either Inl a ::’ a or Inr b ::’ b.

Consider type α ⇒ β ⇒ bool ⇒ bool . We can regard

f :: α ⇒ β ⇒ bool ⇒ bool as a
representation of . . . iff f x y i is true for . . .

Inl a x = a, y arbitrary, and i = True
Inr b x arbitrary, y = b, and i = False.

Similar to pairs.
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Isabelle Syntax for Sum Example
constdefs

Inl Rep :: [’ a, ’a, ’b, bool] ⇒ bool

”Inl Rep ≡ (λa. λx y p. x=a ∧p)”

Inr Rep :: [’ b, ’a, ’b, bool] ⇒ bool

”Inr Rep ≡ (λb. λx y p. y=b ∧¬p)”

typedef (Sum)

(’a ,’ b) ”+” ( infixr 10)

= ”{f. (∃ a. f = Inl Rep(a ::’ a)) ∨
(∃ b. f = Inr Rep(b ::’ b))}”

See Sum Type.thy.

Exercise: How would you define a type even based on nat?
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Summary
• We have presented a method to safely build up larger

theories:
◦ Constant definitions;

◦ Type definitions.

• Subtle side conditions.

• A new type must be isomorphic to a “subset” of an

existing type.
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More Detailed Explanations
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Axioms or Rules
Inside Isabelle, axioms are thm’s, and they may include Isabelle’s

metalevel implication =⇒. For this reason, it is not required to mention

rules explicitly.

But speaking more generally about HOL, not just its Isabelle

implementation, one should better say “rules” here, i.e., objects with a

horizontal line and zero or more formulas above the line and one formula

below the line.
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Provable Formulas
The provable formulas are terms of type bool derivable using the

inference rules of HOL and the empty assumption list. We write Th(T )
for the derivable formulas of a theory T .
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Closed Terms
A term is closed or ground if it does not contain any free variables.
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Definition of True Is Type-Closed
True is defined as λx :: bool . x = λx. x and not λx :: α.x = λx. x. The

definition must be type-closed.
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Fixpoint Combinator
Given a function f : α ⇒ α, a fixpoint of f is a term t such that f t = t.

Now Y is supposed to be a fixpoint combinator, i.e., for any function f ,

the term Y f should be a fixpoint of f . This is what the rule

∀f :: α ⇒ α.Y f = f (Y f)
fix

says. Consider the example f ≡ ¬. Then the axiom allows us to infer

Y (¬) = ¬(Y (¬)), and it is easy to derive False from this. This axiom is

a standard example of a non-conservative extension of a theory.

This inconsistency is not surprising: Not every function has a fixpoint, so

there cannot be a combinator returning a fixpoint of any function.

Nevertheless, fixpoints are important and must be realized in some way,

as we will see later.
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Side Conditions
By side conditions we mean

• E does not contain c and is closed;

• no subterm of E has a type containing a type variable that is not

contained in the type of c;

in the definition.

The second condition also has a name: one says that the definition must

be type-closed.

The notion of having a type is defined by the type assignment calculus.

Since E is required to be closed, all variables occurring in E must be

λ-bound, and so the type of those variables is given by the type

superscripts.
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Domains of Σ, Γ
The domain of Σ, denoted dom(Σ), is {c | (c :: A) ∈ Σ for some A}.
Likewise, the domain of Γ, denoted dom(Γ), is

{x | (x :: A) ∈ Γ for some A}.
Note the slight abuse of notation.
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constdefs
In Isabelle theory files, consts is the keyword preceding a sequence of

constant declarations (i.e., this is where the Σ is defined), and defs is

the keyword preceding the constant definitions defining these constants

(i.e., this is where the A is defined.

constdefs combines the two, i.e. it allows for a sequence of both

constant declarations and definitions, and the theorem identifier c def is

generated automatically. E.g.

constdefs
id :: ”’a ⇒ ’a”

”id ≡λ x. x”

will bind id def to id ≡ λx.x.
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S
Here, S is any “predicate”, i.e., a term of type r ⇒ bool , not necessarily

a constant.
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Fresh t
The type constructor t must not occur in χ.
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What Is t?
We use the letter χ to denote the set of type constructors (where the

arity and fixity is indicated in some way). So since t ∈ χ′, we have that t

should be a type constructor. However, we abuse notation and also use t

for the type obtained by applying the type constructor t to a vector of

different type variables (as many as t requires).
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⊎
The symbol ⊎ denotes disjoint union, so the expression A ⊎B is

well-formed only when A and B have no elements in common.
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What Are Abst and Rept?
Of course we are giving a schematic definition here, so any letters we use

are meta-notation.

Notice that Abst and Rept stand for new constants. For any new type t

to be defined, two such constants must be added to the signature to

provide a generic way of obtaining terms of the new type. Since the new

type is isomorphic to the “subset” S, whose members are of type r, one

can say that Abst and Rept provide a type conversion between (the

subset S of) r and t.

So we have a new type t, and we can obtain members of the new type by

applying Abst to a term u of type t for which S u holds.
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Isomorphism
The formulas

∀x.Abst(Rept x) = x

∀x.S x −→ Rept(Abst x) = x

state that the “set” S and the new type t are isomorphic. Note that

Abst should not be applied to a term not in “set” S. Therefore we have

the premise S x in the above equation.

Note also that S could be the “trivial filter” λx.True. In this case, Abst

and Rept would provide an isomorphism between the entire type r and

the new type t.
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Proof Obligation
We have said previously that S should be a non-empty “subset” of t.

Therefore it must be proven that ∃x. S x. This is related to the

semantics.

Whenever a type definition is introduced in Isabelle, the proof obligation

must be shown inside Isabelle/HOL. Isabelle provides the typedef
syntax for type definitions, as we will see later.
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Inhabitation in the set Example
We have S ≡ λx :: α ⇒ bool .True, and so in (∃x.Sx), the variable x

has type α ⇒ bool . The proposition (∃x.Sx) is true since the type

α ⇒ bool is inhabited, e.g. by the term λx :: α.True or λx :: α.False.

Beware of a confusion: This does not mean that the new type α set,

defined by this construction, is the type of non-empty sets. There is a

term for the empty set: The empty set is the term Absset (λx.False).
Recall a previous argument for the importance of inhabitation.
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Trivial S
We said that in the general formalism for defining a new type, there is a

term S of type r ⇒ bool that defines a “subset” of a type r. In other

words, it filters some terms from type r. Thus the idea that a predicate

can be interpreted as a set is present in the general formalism for

defining a new type.

Now we are talking about a particular example, the type α set. Having

the idea “predicates are sets” in mind, one is tempted to think that in

the particular example, S will take the role of defining particular sets,

i.e., terms of type α set. This is not the case!

Rather, S is λx.True and hence trivial in this example. Moreover, in the

example, r is α ⇒ bool , and any term f of type r defines a set whose

elements are of type α; Absset f is that set.
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Collect
We have seen Collect before in the theory file exercise 03 (näıve set

theory).

Collect f is the set whose characteristic function is f . The usual

concrete syntax is {x | f x}. The construct is called set comprehension.

Note also that Collect is the same as Absset here, so there is no need to

have them as separate constants, and for this reason Isabelle theory file

Set.thy only provides Collect.
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The ∈-Sign
We define

x ∈ A = (Repset A) x

Since Repset has type α set ⇒ (α ⇒ bool), this means that x is of type

α and A is of type (α ⇒ bool). Therefore ∈ is of type

α ⇒ (α set) ⇒ bool (but written infix).

In the the Isabelle theory Set.thy, you will indeed find that the constant

op : (Isabelle syntax for ∈) has type [α, α set] ⇒ bool . However, you will

not find anything directly corresponding to Repset.

One can see that this setup is equivalent to the one we have here (which

was presented like that for the sake of generality). There are two axioms

in Set.thy:

axioms
mem Collect eq [ iff ]: ”(a : {x. P(x)}) = P(a)”
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Collect mem eq [simp]: ”{x. x:A} = A”

These axioms can be translated into definitions as follows:

a ∈ {x | P x} = P a 
a ∈ (Collect P ) = P a 
a ∈ (Absset P ) = P a 
Repset(Absset P ) a = P a Repset(Absset P ) = P

The last step uses extensionality.

Now the second one:

{x | x ∈ A} = A 
{x | (RepsetA) x} = A 
Collect(RepsetA) = A

Ignoring some universal quantifications (these are implicit in Isabelle),
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these are the isomorphy axioms for set.
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Consistent Set Theory
Typed set theory is a conservative extension of HOL and hence

consistent.

Recall the problems with untyped set theory.
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“Exactly one” Term
When we say that there is “exactly one” f , this is meant modulo equality

in HOL. This means that e.g. λx :: α y :: β.y = b ∧ x = a is also such a

term since (λx :: α y :: β.x = a ∧ y = b) = (λx :: αy :: β. y = b ∧ x = a)
is derivable in HOL.
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Rep×
Rep× would be the generic name for one of the two

isomorphism-defining functions.

Since Rep× cannot be represented directly for lexical reasons, type

definitions in Isabelle provide two names for a type, one if the type is

used as such, and one for the purpose of generating the names of the

isomorphism-defining functions.
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Iteration of λ’s
We write λa :: α b :: β. λx :: α y :: β. x = a ∧ y = b rather than

λa :: α b :: β x :: α y :: β.x = a ∧ y = b to emphasize the idea that one

first applies Pair Rep to a and b, and the result is a function

representing a pair, wich can then be applied to x and y.
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Sum Types
Idea of sum or union type: t is in the sum of τ and σ if t is either in τ or

in σ. To do this formally in our type system, and also in the type system

of functional programming languages like ML, t must be wrapped to

signal if it is of type τ or of type σ.

For example, in ML one could define

datatype (α, β) sum = Inl α | Inr β

So an element of (α, β) sum is either Inl a where a :: α or Inr b where

b :: β.
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Defining even
Suppose we have a type nat and a constant + with the expected

meaning. We want to define a type even of even numbers. What is an

even number?
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HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 741

Defining even
Suppose we have a type nat and a constant + with the expected

meaning. We want to define a type even of even numbers. What is an

even number?

The following choice of S is adequate:

S ≡ λx.∃n. x = n + n

Using the Isabelle scheme, this would be

typedef (Even)

even = ”{x. ∃ y.x=y+y}”
We could then go on by defining an operation PLUS on even, say as

follows:

constdefs

(rev. 32934)
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HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 742

PLUS::[even,even] → even ( infixl 56)

PLUS def ”op PLUS ≡λxy. Abs Even(Rep Even(x)+Rep Even(x))”

Note that we chose to use names even and Even, but we could have

used the same name twice as well.

(rev. 32934)
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HOL:Foundations

HOL:Conservative extensions

Recursive Type definitions

Types One, Numbers, Lists, Trees
I Using Constant Definition and Type Definition
I one: use subset of bool
I num: use subset of ind +Axiom of infinity
I lists: use subset of (num→ α)× num
I trees: use num
I recursive type definitions: use one, ×, +, α-tree
I Details in Melham (89): Automating Recursive Type Definitions in

HOL
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Proof system of Isabelle/HOL

Chapter 4

Proof system of
Isabelle/HOL
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Proof system of Isabelle/HOL

Methods and Rules

Methods and Rules
Formulas, sequents, and rules revisited

Propositions can represent:

I formulas, generalized sequents: lemmas/theorems to be proven
I rules: to be applied in a proof step
I proof (sub-)goals, i.e., open leaves in a proof tree

Example: from Lecture.thy

I SPEC, SCHEMATIC (Warning)
I ARULE
I GOAL

A proven lemma/theorem is automatically transformed into a rule.
That is, the set of rules is not fixed in Isabelle/HOL.E.g. ARULE.
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Methods and Rules

Variables

Six kinds of variables:
I (logical) variables bound by the logic-quantifiers
I (logical) variables bound by the meta-quantifier
I free (logical) variables
I schematic variables (in rules and proofs)
I type variables
I schematic type variables
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Proof system of Isabelle/HOL

Methods and Rules

Format of Goals and Rules
Format of Goals

I
∧

x1...xk . [|A1; ...; Am|] =⇒ C
I xi are variables local to the subgoal (possibly none)
I Ai are called the assumptions (possibly none)
I C is called the conclusion
I usually first three types of variables sometimes also schematic

variables.

Format of Rules
I [|P1; ...; Pn|] =⇒ Q
I Pi are called the premises (possibly none)
I P1 is called the major premise
I Q is called the consequent (not standard)
I Schematic variables in Pi, Q.
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Methods and Rules

Application of rules

Methods are commands to work on the proof state
In particular, methods allow to apply rules. Whereas the set of rules is
not fixed, the basic methods are fixed in Isabelle/HOL.
Rule application:

I Applying rules is based on unification.
I Unification is done w.r.t. the schematic variables.
I The unifier is applied to the complete proof state!
I Unification may involve renaming of bound variables.

Example: (general idea of rule application)
I rule: [|P1; P2|] =⇒ Q
I subgoal: A =⇒ C
I if U unifies C and Q, then sufficient subgoals are:
I U(A) =⇒ U(P1),U(A) =⇒ U(P2)
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Methods and Rules

Methods

Command: apply(method <parameters>)

Application of a rule to a subgoal depends on the method:
Methods are (for convenience) be classified into:

I introduction methods: decompose formulae to the right of =⇒
I elimination methods: decompose formulae to the left of =⇒

Method rule <rulename> :
I unify Q with C; fails if no unifier exists; otherwise unifier U
I remaining subgoals: For i = 1, ...,n
I

∧
x1...xk . U([|A1; ...; Am|] =⇒ Pi)

I Example GOAL
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Methods and Rules

Methods

Method assumption:
I unify C with first possible Aj; fails if no Aj exists for unification
I subgoal is closed (discharged)
I Example GOAL

Method erule <rulename> :
I unify Q with C and simultanneously unify P1 with some Aj; fails if

no unifier exists; otherwise unifier U
I remaining subgoals: For i = 2, ...,n
I

∧
x1...xk . U([|A1; ...; Am\Aj |] =⇒ Pi)

I Example GOAL

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 323



Proof system of Isabelle/HOL

Methods and Rules

Methods
Method drule <rulename> :

I unify P1 some Aj; fails if no unifier exists; otherwise unifier U
I remaining subgoals:
I For i = 2, ...,n

∧
x1...xk . U([|A1; ...; Am\Aj |] =⇒ Pi)

I
∧

x1...xk . U([|A1; ...; Am\Aj ; Q|] =⇒ C)

I Example C1

Method frule <rulename> :
I unify P1 some Aj; fails if no unifier exists; otherwise unifier U
I remaining subgoals:
I For i = 2, ...,n

∧
x1...xk . U([|A1; ...; Am|] =⇒ Pi)

I
∧

x1...xk . U([|A1; ...; Am; Q|] =⇒ C)

I Example C1
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Methods and Rules

Methods
Method [edf]rule_tac x= term in <rule> :

I are similar to the version above but allow to influence the
unification

I Example 5.8.2, p. 79, TAC
I FIXAX2

Method unfold <name_def> :
I unfolds the definition of a constant in all subgoals
I Example SPEC

Method induct_tac <freevar...> :
I uses the inductive definition of a function
I generates the corresponding subgoals
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Proof system of Isabelle/HOL

Methods and Rules

Fundamental rules of Isabelle/HOl
See IsabelleHOLMain, Sect. 2.2

Remark
I Safe rules preserve provability
I e.g. conjI, impI, notI, iffI, refl, ccontr, classical, conjE, disjE
I Unsafe rules can turn a provable goal into an unprovable one
I e.g. disjI1, disjI2, impE, iffD1, iffD2, notE
I  Apply safe rules before unsafe ones

Example
I lemma UNSAFE: “A ∨ ¬A′′

I apply (rule disI1)
I sorry
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Proof system of Isabelle/HOL

Methods and Rules

An overview of theory Main

The structure of theory Main: p. 23

Set construction in Isabelle/HOL: Sect. 6

Natural numbers in Isabelle/HOL: Sect. 15

Remark
Working with theory Main:

I The programmer cannot know the complete library
I The “verificator” cannot know all rules.
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Isabelle: Rewriting and simplification

Rewriting and simplification

taken from IsabelleTutorial, Sect. 3.1) »> slidesNipkow:

apply(simp add: eq1 . . . eqn)

»> Demo: MyDemo, Simp
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Overview

• Term rewriting foundations
• Term rewriting in Isabelle/HOL
• Basic simplification
• Extensions

80
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Term rewriting foundations

81

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 330



Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Term rewriting means . . .

Using equations l = r from left to right

82
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Term rewriting means . . .

Using equations l = r from left to right

As long as possible

82
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Term rewriting means . . .

Using equations l = r from left to right

As long as possible

Terminology: equation ; rewrite rule

82
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Isabelle: Rewriting and simplification

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

83
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x

83
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Isabelle: Rewriting and simplification

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x
(1)
=

Suc 0 ≤ Suc 0 + x

83
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Isabelle: Rewriting and simplification

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x
(1)
=

Suc 0 ≤ Suc 0 + x
(2)
=

Suc 0 ≤ Suc (0 + x)

83
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Isabelle: Rewriting and simplification

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x
(1)
=

Suc 0 ≤ Suc 0 + x
(2)
=

Suc 0 ≤ Suc (0 + x)
(3)
=

0 ≤ 0 + x

83
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Isabelle: Rewriting and simplification

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x
(1)
=

Suc 0 ≤ Suc 0 + x
(2)
=

Suc 0 ≤ Suc (0 + x)
(3)
=

0 ≤ 0 + x
(4)
=

True

83
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Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

84
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]
if there is a substitution σ such that σ(l) = s

84
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]
if there is a substitution σ such that σ(l) = s

• Result: t[σ(r)]

84
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Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]
if there is a substitution σ such that σ(l) = s

• Result: t[σ(r)]

• Note: t[s] = t[σ(r)]

84
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Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]
if there is a substitution σ such that σ(l) = s

• Result: t[σ(r)]

• Note: t[s] = t[σ(r)]

Example:

Equation: 0 + n = n

Term: a + (0 + (b + c))

84
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Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]
if there is a substitution σ such that σ(l) = s

• Result: t[σ(r)]

• Note: t[s] = t[σ(r)]

Example:

Equation: 0 + n = n

Term: a + (0 + (b + c))

σ = {n 7→ b + c}
84
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Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]
if there is a substitution σ such that σ(l) = s

• Result: t[σ(r)]

• Note: t[s] = t[σ(r)]

Example:

Equation: 0 + n = n

Term: a + (0 + (b + c))

σ = {n 7→ b + c}
Result: a + (b + c)

84
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Isabelle: Rewriting and simplification

Extension: conditional rewriting

Rewrite rules can be conditional:

[[P1 . . . Pn]] =⇒ l = r

85
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Extension: conditional rewriting

Rewrite rules can be conditional:

[[P1 . . . Pn]] =⇒ l = r

is applicable to term t[s] with σ if
• σ(l) = s and
• σ(P1), . . . , σ(Pn) are provable (again by rewriting).

85

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 348



Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Interlude: Variables in Isabelle

86

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 349



Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Schematic variables

Three kinds of variables:
• bound: ∀ x. x = x
• free: x = x

87
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Schematic variables

Three kinds of variables:
• bound: ∀ x. x = x
• free: x = x
• schematic: ?x = ?x (“unknown”)

87
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Schematic variables

Three kinds of variables:
• bound: ∀ x. x = x
• free: x = x
• schematic: ?x = ?x (“unknown”)

Schematic variables:

87
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Isabelle: Rewriting and simplification

Schematic variables

Three kinds of variables:
• bound: ∀ x. x = x
• free: x = x
• schematic: ?x = ?x (“unknown”)

Schematic variables:

• Logically: free = schematic

87
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Schematic variables

Three kinds of variables:
• bound: ∀ x. x = x
• free: x = x
• schematic: ?x = ?x (“unknown”)

Schematic variables:

• Logically: free = schematic
• Operationally:
• free variables are fixed
• schematic variables are instantiated by substitutions

87
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Isabelle: Rewriting and simplification

From x to ?x

State lemmas with free variables:

lemma app_Nil2[simp]: xs @ [] = xs

88
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

From x to ?x

State lemmas with free variables:

lemma app_Nil2[simp]: xs @ [] = xs
...
done

88
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

From x to ?x

State lemmas with free variables:

lemma app_Nil2[simp]: xs @ [] = xs
...
done

After the proof: Isabelle changes xs to ?xs (internally):
?xs @ [] = ?xs

Now usable with arbitrary values for ?xs

88
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

From x to ?x

State lemmas with free variables:

lemma app_Nil2[simp]: xs @ [] = xs
...
done

After the proof: Isabelle changes xs to ?xs (internally):
?xs @ [] = ?xs

Now usable with arbitrary values for ?xs

Example: rewriting
rev(a @ []) = rev a

using app_Nil2 with σ = {?xs 7→ a}
88
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Term rewriting in Isabelle

89
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Isabelle: Rewriting and simplification

Basic simplification

Goal: 1. [[ P1; . . . ; Pm ]] =⇒ C

apply (simp add: eq1 . . . eqn)

90
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Basic simplification

Goal: 1. [[ P1; . . . ; Pm ]] =⇒ C

apply (simp add: eq1 . . . eqn)

Simplify P1 . . . Pm and C using
• lemmas with attribute simp

90
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Basic simplification

Goal: 1. [[ P1; . . . ; Pm ]] =⇒ C

apply (simp add: eq1 . . . eqn)

Simplify P1 . . . Pm and C using
• lemmas with attribute simp
• rules from primrec , fun and datatype

90
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Basic simplification

Goal: 1. [[ P1; . . . ; Pm ]] =⇒ C

apply (simp add: eq1 . . . eqn)

Simplify P1 . . . Pm and C using
• lemmas with attribute simp
• rules from primrec , fun and datatype

• additional lemmas eq1 . . . eqn

90
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Basic simplification

Goal: 1. [[ P1; . . . ; Pm ]] =⇒ C

apply (simp add: eq1 . . . eqn)

Simplify P1 . . . Pm and C using
• lemmas with attribute simp
• rules from primrec , fun and datatype

• additional lemmas eq1 . . . eqn

• assumptions P1 . . . Pm

90
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Isabelle: Rewriting and simplification

Basic simplification

Goal: 1. [[ P1; . . . ; Pm ]] =⇒ C

apply (simp add: eq1 . . . eqn)

Simplify P1 . . . Pm and C using
• lemmas with attribute simp
• rules from primrec , fun and datatype

• additional lemmas eq1 . . . eqn

• assumptions P1 . . . Pm

Variations:
• (simp . . . del: . . . ) removes simp-lemmas
• add and del are optional

90
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

auto versus simp

• auto acts on all subgoals
• simp acts only on subgoal 1
• auto applies simp and more

91
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Isabelle: Rewriting and simplification

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

92
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(x) = g(x), g(x) = f(x)

92
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(x) = g(x), g(x) = f(x)

[[P1 . . . Pn]] =⇒ l = r

is suitable as a simp-rule only
if l is “bigger” than r and each Pi

92
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Isabelle: Rewriting and simplification

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(x) = g(x), g(x) = f(x)

[[P1 . . . Pn]] =⇒ l = r

is suitable as a simp-rule only
if l is “bigger” than r and each Pi

n < m =⇒ (n < Suc m) = True
Suc n < m =⇒ (n < m) = True

92
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Isabelle: Rewriting and simplification

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(x) = g(x), g(x) = f(x)

[[P1 . . . Pn]] =⇒ l = r

is suitable as a simp-rule only
if l is “bigger” than r and each Pi

n < m =⇒ (n < Suc m) = True YES
Suc n < m =⇒ (n < m) = True NO

92
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Isabelle: Rewriting and simplification

Rewriting with definitions

Definitions do not have the simp attribute.

93
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Isabelle: Rewriting and simplification

Rewriting with definitions

Definitions do not have the simp attribute.

They must be used explicitly: (simp add: f_def . . . )

93
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Isabelle: Rewriting and simplification

Extensions of rewriting

94
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Isabelle: Rewriting and simplification

Local assumptions

Simplification of A −→ B:

1. Simplify A to A′

2. Simplify B using A′

95
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Isabelle: Rewriting and simplification

Case splitting with simp

P(if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))

96
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Case splitting with simp

P(if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))

Automatic

96

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 377



Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Case splitting with simp

P(if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))

Automatic

P(case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P(a)) ∧ (∀n. e = Suc n −→ P(b))

96
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Case splitting with simp

P(if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))

Automatic

P(case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P(a)) ∧ (∀n. e = Suc n −→ P(b))

By hand: (simp split: nat.split)

96
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Case splitting with simp

P(if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))

Automatic

P(case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P(a)) ∧ (∀n. e = Suc n −→ P(b))

By hand: (simp split: nat.split)

Similar for any datatype t : t.split
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Ordered rewriting

Problem: ?x + ?y = ?y + ?x does not terminate

97
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Ordered rewriting

Problem: ?x + ?y = ?y + ?x does not terminate

Solution: permutative simp-rules are used only if the term
becomes lexicographically smaller.

97
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Ordered rewriting

Problem: ?x + ?y = ?y + ?x does not terminate

Solution: permutative simp-rules are used only if the term
becomes lexicographically smaller.

Example: b + a ; a + b but not a + b ; b + a.

97
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Ordered rewriting

Problem: ?x + ?y = ?y + ?x does not terminate

Solution: permutative simp-rules are used only if the term
becomes lexicographically smaller.

Example: b + a ; a + b but not a + b ; b + a.

For types nat, int etc:
• lemmas add_ac sort any sum (+)
• lemmas times_ac sort any product (∗)

97
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Ordered rewriting

Problem: ?x + ?y = ?y + ?x does not terminate

Solution: permutative simp-rules are used only if the term
becomes lexicographically smaller.

Example: b + a ; a + b but not a + b ; b + a.

For types nat, int etc:
• lemmas add_ac sort any sum (+)
• lemmas times_ac sort any product (∗)

Example: (simp add: add_ac) yields

(b + c) + a ; · · ·; a + (b + c)

97
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Preprocessing

simp-rules are preprocessed (recursively) for maximal
simplification power:

¬A 7→ A = False

A −→ B 7→ A =⇒ B

A ∧ B 7→ A, B

∀x.A(x) 7→ A(?x)

A 7→ A = True

98
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Preprocessing

simp-rules are preprocessed (recursively) for maximal
simplification power:

¬A 7→ A = False

A −→ B 7→ A =⇒ B

A ∧ B 7→ A, B

∀x.A(x) 7→ A(?x)

A 7→ A = True

Example:

(p −→ q ∧ ¬ r) ∧ s 7→

98
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Preprocessing

simp-rules are preprocessed (recursively) for maximal
simplification power:

¬A 7→ A = False

A −→ B 7→ A =⇒ B

A ∧ B 7→ A, B

∀x.A(x) 7→ A(?x)

A 7→ A = True

Example:

(p −→ q ∧ ¬ r) ∧ s 7→


p =⇒ q = True
p =⇒ r = False

s = True


98
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

When everything else fails: Tracing

Set trace mode on/off in Proof General:

Isabelle → Settings → Trace simplifier

Output in separate trace buffer

99
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Proof system of Isabelle/HOL

Case analysis and structural induction

Case analysis and structural induction

taken from IsabelleTutorial, Sect. 2, Sect. 3.2, Sect. 3.5
»> slidesNipkow:»> Demo: MyDemo,Trees

Slides for Session 3.2, 1-12 (slidesNipkow 87-93)
»>MyDemo, Induction Heuristics

Slides for Session 2, 57-79
»>MyDemo, Fun
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Proof system of Isabelle/HOL

Case analysis and structural induction

Basic heuristics

Theorems about recursive functions are proved by
induction

102
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Proof system of Isabelle/HOL

Case analysis and structural induction

Basic heuristics

Theorems about recursive functions are proved by
induction

Induction on argument number i of f
if f is defined by recursion on argument number i

102
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Proof system of Isabelle/HOL

Case analysis and structural induction

A tail recursive reverse

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list

103
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Proof system of Isabelle/HOL

Case analysis and structural induction

A tail recursive reverse

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list where

itrev [] ys = ys |
itrev (x#xs) ys =

103
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Proof system of Isabelle/HOL

Case analysis and structural induction

A tail recursive reverse

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list where

itrev [] ys = ys |
itrev (x#xs) ys = itrev xs (x#ys)

103
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Proof system of Isabelle/HOL

Case analysis and structural induction

A tail recursive reverse

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list where

itrev [] ys = ys |
itrev (x#xs) ys = itrev xs (x#ys)

lemma itrev xs [] = rev xs

103
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Proof system of Isabelle/HOL

Case analysis and structural induction

A tail recursive reverse

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list where

itrev [] ys = ys |
itrev (x#xs) ys = itrev xs (x#ys)

lemma itrev xs [] = rev xs

Why in this direction?

103
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Proof system of Isabelle/HOL

Case analysis and structural induction

A tail recursive reverse

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list where

itrev [] ys = ys |
itrev (x#xs) ys = itrev xs (x#ys)

lemma itrev xs [] = rev xs

Why in this direction?

Because the lhs is “more complex” than the rhs.

103
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Proof system of Isabelle/HOL

Case analysis and structural induction

Demo

104
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Proof system of Isabelle/HOL

Case analysis and structural induction

Generalisation

• Replace constants by variables

105
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Proof system of Isabelle/HOL

Case analysis and structural induction

Generalisation

• Replace constants by variables

• Generalize free variables
• by ∀ in formula
• by arbitrary in induction proof

105
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Proof system of Isabelle/HOL

Proof automation

Proof search automation
taken from IsabelleTutorial, Sect. 5.12, 5.13

Proof automation tries to apply rules either
I to finish the proof of (sub-)goal
I to simplify the subgoals

We call this the success criterion.

Methods for proof automation are different in
I the success criterion
I the rules they use
I the way in which these rule are applied

Simplification applies rewrite rules repeatedly as long as possible.
Classical reasoning uses search and backtracking with rules from
predicate logic.
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Proof system of Isabelle/HOL

Proof automation

General Methods (Tactics)

blast:
I tries to finish proof of (sub-)goal
I classical reasoner

clarify:
I tries to perform obvious proof steps
I classical reasoner (only safe rule, no splitting of (sub-)goal)

safe:
I tries to perform obvious proof steps
I classical reasoner (only safe rule, splitting)
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Proof system of Isabelle/HOL

Proof automation

General Methods (Tactics)

clarsimp:
I tries to finish proof of (sub-)goal
I classical reasoner interleaved with simplification (only safe rule,

no splitting)

force:
I tries to finish proof of (sub-)goal
I classical reasoner and simplification

auto:
I tries to perform proof steps on all subgoals
I classical reasoner and simplification (splitting)
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Proof system of Isabelle/HOL

Proof automation

More proof methods

Forward proof step in backward proof:
I apply rules to assumptions

Forward proofs (Hilbert style proofs):
I directly prove a theorem from proven theorems

Directives/attributes:
I of: instantiates the variables of a rule to a list of terms
I OF: applies a rule to a list of theorems
I THEN: gives a theorem to named rule and returns the conclusion
I simplified: applies the simplifier to a theorem
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Proof system of Isabelle/HOL

Proof automation

More proof methods

Forward proof step in backward proof:
I apply rules to assumptions

Forward proofs (Hilbert style proofs):
I directly prove a theorem from proven theorems

Directives/attributes:
I of: instantiates the variables of a rule to a list of terms
I OF: applies a rule to a list of theorems
I THEN: gives a theorem to named rule and returns the conclusion
I simplified: applies the simplifier to a theorem
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Proof system of Isabelle/HOL

Proof automation

Forward proofs: OF

r[OF r 1 . . . rn]

Prove assumption 1 of theorem r with theorem r 1,
and assumption 2 with theorem r 2, and . . .

134
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Proof system of Isabelle/HOL

Proof automation

Forward proofs: OF

r[OF r 1 . . . rn]

Prove assumption 1 of theorem r with theorem r 1,
and assumption 2 with theorem r 2, and . . .

Rule r [[ A1; . . . ; Am ]] =⇒ A
Rule r 1 [[ B1; . . . ; Bn ]] =⇒ B
Substitution σ(B) ≡ σ(A1)
r[OF r 1]

134
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Proof system of Isabelle/HOL

Proof automation

Forward proofs: OF

r[OF r 1 . . . rn]

Prove assumption 1 of theorem r with theorem r 1,
and assumption 2 with theorem r 2, and . . .

Rule r [[ A1; . . . ; Am ]] =⇒ A
Rule r 1 [[ B1; . . . ; Bn ]] =⇒ B
Substitution σ(B) ≡ σ(A1)
r[OF r 1] σ( [[ B1; . . . ; Bn; A2; . . . ; Am ]] =⇒ A)

134

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 409



Proof system of Isabelle/HOL

Proof automation

More proof methods

Method insert:
I inserts a theorem as a new assumption into current subgoal

Method subgoal_tac:
I inserts an arbitrary formula F as assumption
I F becomes additional subgoal

»>MyDemo, subgoal_tac
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Sets, Functions, Relations, and Fixpoints

Chapter 5

Sets, Functions,
Relations, and Fixpoints
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Sets, Functions, Relations, and Fixpoints

Sets

Sets, Functions, Relations

see IHT 6.1, 6.2, 6.3
I Finite Set Notation
I Set Comprehension
I Binding Operators
I Finiteness and Cardinality
I Function update, Range, Injective - Surjective
I Relations, Predicates
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Sets, Functions, Relations, and Fixpoints

Sets

Overview

• Set notation
• Inductively defined sets

138

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 413



Sets, Functions, Relations, and Fixpoints

Sets

Set notation

139
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Sets, Functions, Relations, and Fixpoints

Sets

Sets

Sets over type ’a:

’a set

140

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 415



Sets, Functions, Relations, and Fixpoints

Sets

Sets

Sets over type ’a:

’a set = ’a ⇒ bool

140
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Sets, Functions, Relations, and Fixpoints

Sets

Sets

Sets over type ’a:

’a set = ’a ⇒ bool

• {}, {e1,. . . ,en}, {x. P x}

140
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Sets, Functions, Relations, and Fixpoints

Sets

Sets

Sets over type ’a:

’a set = ’a ⇒ bool

• {}, {e1,. . . ,en}, {x. P x}
• e ∈ A, A ⊆ B

140
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Sets

Sets

Sets over type ’a:

’a set = ’a ⇒ bool

• {}, {e1,. . . ,en}, {x. P x}
• e ∈ A, A ⊆ B
• A ∪ B, A ∩ B, A - B, - A

140
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Sets

Sets

Sets over type ’a:

’a set = ’a ⇒ bool

• {}, {e1,. . . ,en}, {x. P x}
• e ∈ A, A ⊆ B
• A ∪ B, A ∩ B, A - B, - A
• ⋃

x∈A B x,
⋂

x∈A B x

140
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Sets

Sets

Sets over type ’a:

’a set = ’a ⇒ bool

• {}, {e1,. . . ,en}, {x. P x}
• e ∈ A, A ⊆ B
• A ∪ B, A ∩ B, A - B, - A
• ⋃

x∈A B x,
⋂

x∈A B x
• {i..j}

140
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Sets

Sets

Sets over type ’a:

’a set = ’a ⇒ bool

• {}, {e1,. . . ,en}, {x. P x}
• e ∈ A, A ⊆ B
• A ∪ B, A ∩ B, A - B, - A
• ⋃

x∈A B x,
⋂

x∈A B x
• {i..j}
• insert :: ’a ⇒ ’a set ⇒ ’a set

140
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Sets, Functions, Relations, and Fixpoints

Sets

Sets

Sets over type ’a:

’a set = ’a ⇒ bool

• {}, {e1,. . . ,en}, {x. P x}
• e ∈ A, A ⊆ B
• A ∪ B, A ∩ B, A - B, - A
• ⋃

x∈A B x,
⋂

x∈A B x
• {i..j}
• insert :: ’a ⇒ ’a set ⇒ ’a set
• . . .

140
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Sets, Functions, Relations, and Fixpoints

Sets

Proofs about sets

Natural deduction proofs:
• equalityI : [[A ⊆ B; B ⊆ A]] =⇒ A = B

141
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Sets, Functions, Relations, and Fixpoints

Sets

Proofs about sets

Natural deduction proofs:
• equalityI : [[A ⊆ B; B ⊆ A]] =⇒ A = B
• subsetI : (

∧
x. x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

141
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Sets, Functions, Relations, and Fixpoints

Sets

Proofs about sets

Natural deduction proofs:
• equalityI : [[A ⊆ B; B ⊆ A]] =⇒ A = B
• subsetI : (

∧
x. x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

• . . . (see Tutorial)

141
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Sets, Functions, Relations, and Fixpoints

Sets

Demo: proofs about sets

142
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Sets, Functions, Relations, and Fixpoints

Sets

Bounded quantifiers

• ∀ x∈A. P x

143

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 428



Sets, Functions, Relations, and Fixpoints

Sets

Bounded quantifiers

• ∀ x∈A. P x ≡ ∀ x. x∈A −→ P x

143
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Sets, Functions, Relations, and Fixpoints

Sets

Bounded quantifiers

• ∀ x∈A. P x ≡ ∀ x. x∈A −→ P x
• ∃ x∈A. P x

143
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Sets, Functions, Relations, and Fixpoints

Sets

Bounded quantifiers

• ∀ x∈A. P x ≡ ∀ x. x∈A −→ P x
• ∃ x∈A. P x ≡ ∃ x. x∈A ∧ P x

143
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Sets, Functions, Relations, and Fixpoints

Sets

Bounded quantifiers

• ∀ x∈A. P x ≡ ∀ x. x∈A −→ P x
• ∃ x∈A. P x ≡ ∃ x. x∈A ∧ P x
• ballI : (

∧
x. x ∈ A =⇒ P x) =⇒ ∀ x∈A. P x

• bspec : [[∀ x∈A. P x; x ∈ A]] =⇒ P x

143
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Sets

Bounded quantifiers

• ∀ x∈A. P x ≡ ∀ x. x∈A −→ P x
• ∃ x∈A. P x ≡ ∃ x. x∈A ∧ P x
• ballI : (

∧
x. x ∈ A =⇒ P x) =⇒ ∀ x∈A. P x

• bspec : [[∀ x∈A. P x; x ∈ A]] =⇒ P x
• bexI : [[P x; x ∈ A]] =⇒ ∃ x∈A. P x
• bexE : [[∃ x∈A. P x;

∧
x. [[x ∈ A; P x ]] =⇒ Q]] =⇒ Q

143
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Sets

Inductively defined sets

144
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Sets

Example: even numbers

Informally:

145
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Sets

Example: even numbers

Informally:
• 0 is even

145
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Sets, Functions, Relations, and Fixpoints

Sets

Example: even numbers

Informally:
• 0 is even
• If n is even, so is n + 2

145
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Sets, Functions, Relations, and Fixpoints

Sets

Example: even numbers

Informally:
• 0 is even
• If n is even, so is n + 2

• These are the only even numbers

145
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Sets, Functions, Relations, and Fixpoints

Sets

Example: even numbers

Informally:
• 0 is even
• If n is even, so is n + 2

• These are the only even numbers

In Isabelle/HOL:

inductive set Ev :: nat set — The set of all even numbers

145
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Sets, Functions, Relations, and Fixpoints

Sets

Example: even numbers

Informally:
• 0 is even
• If n is even, so is n + 2

• These are the only even numbers

In Isabelle/HOL:

inductive set Ev :: nat set — The set of all even numbers
where

0 ∈ Ev |
n ∈ Ev =⇒ n + 2 ∈ Ev

145
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Sets, Functions, Relations, and Fixpoints

Sets

Format of inductive definitions

inductive set S :: τ set

146
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Sets, Functions, Relations, and Fixpoints

Sets

Format of inductive definitions

inductive set S :: τ set
where

[[ a1 ∈ S; . . . ; an ∈ S; A1; . . . ; Ak ]] =⇒ a ∈ S |
...

146
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Sets, Functions, Relations, and Fixpoints

Sets

Format of inductive definitions

inductive set S :: τ set
where

[[ a1 ∈ S; . . . ; an ∈ S; A1; . . . ; Ak ]] =⇒ a ∈ S |
...

where A1; . . . ; Ak are side conditions not involving S.

146
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Sets, Functions, Relations, and Fixpoints

Sets

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

147
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Sets, Functions, Relations, and Fixpoints

Sets

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

Trickier: m ∈ Ev =⇒ m+m ∈ Ev

147
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Sets

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

Trickier: m ∈ Ev =⇒ m+m ∈ Ev
Idea: induction on the length of the derivation of m ∈ Ev

147
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Sets

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

Trickier: m ∈ Ev =⇒ m+m ∈ Ev
Idea: induction on the length of the derivation of m ∈ Ev
Better: induction on the structure of the derivation

147
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Sets

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

Trickier: m ∈ Ev =⇒ m+m ∈ Ev
Idea: induction on the length of the derivation of m ∈ Ev
Better: induction on the structure of the derivation
Two cases: m ∈ Ev is proved by
• rule 0 ∈ Ev

147
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Sets

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

Trickier: m ∈ Ev =⇒ m+m ∈ Ev
Idea: induction on the length of the derivation of m ∈ Ev
Better: induction on the structure of the derivation
Two cases: m ∈ Ev is proved by
• rule 0 ∈ Ev

=⇒ m = 0 =⇒ 0+0 ∈ Ev

147

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 449



Sets, Functions, Relations, and Fixpoints

Sets

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

Trickier: m ∈ Ev =⇒ m+m ∈ Ev
Idea: induction on the length of the derivation of m ∈ Ev
Better: induction on the structure of the derivation
Two cases: m ∈ Ev is proved by
• rule 0 ∈ Ev

=⇒ m = 0 =⇒ 0+0 ∈ Ev
• rule n ∈ Ev =⇒ n+2 ∈ Ev

147
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Sets

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

Trickier: m ∈ Ev =⇒ m+m ∈ Ev
Idea: induction on the length of the derivation of m ∈ Ev
Better: induction on the structure of the derivation
Two cases: m ∈ Ev is proved by
• rule 0 ∈ Ev

=⇒ m = 0 =⇒ 0+0 ∈ Ev
• rule n ∈ Ev =⇒ n+2 ∈ Ev

=⇒ m = n+2 and n+n ∈ Ev (ind. hyp.!)

147
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Sets

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

Trickier: m ∈ Ev =⇒ m+m ∈ Ev
Idea: induction on the length of the derivation of m ∈ Ev
Better: induction on the structure of the derivation
Two cases: m ∈ Ev is proved by
• rule 0 ∈ Ev

=⇒ m = 0 =⇒ 0+0 ∈ Ev
• rule n ∈ Ev =⇒ n+2 ∈ Ev

=⇒ m = n+2 and n+n ∈ Ev (ind. hyp.!)
=⇒ m+m = (n+2)+(n+2) = ((n+n)+2)+2 ∈ Ev

147
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Sets

Rule induction for Ev

To prove

n ∈ Ev =⇒ P n

by rule induction on n ∈ Ev we must prove

148
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Sets

Rule induction for Ev

To prove

n ∈ Ev =⇒ P n

by rule induction on n ∈ Ev we must prove
• P 0

148
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Sets

Rule induction for Ev

To prove

n ∈ Ev =⇒ P n

by rule induction on n ∈ Ev we must prove
• P 0
• P n =⇒ P(n+2)

148
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Sets

Rule induction for Ev

To prove

n ∈ Ev =⇒ P n

by rule induction on n ∈ Ev we must prove
• P 0
• P n =⇒ P(n+2)

Rule Ev.induct :

[[ n ∈ Ev; P 0;
∧

n. P n =⇒ P(n+2) ]] =⇒ P n

148
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Sets

Rule induction in general

Set S is defined inductively.

149
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Sets

Rule induction in general

Set S is defined inductively.
To prove

x ∈ S =⇒ P x

by rule induction on x ∈ S

149
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Sets

Rule induction in general

Set S is defined inductively.
To prove

x ∈ S =⇒ P x

by rule induction on x ∈ S
we must prove for every rule

[[ a1 ∈ S; . . . ; an ∈ S ]] =⇒ a ∈ S
that P is preserved:

149
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Sets

Rule induction in general

Set S is defined inductively.
To prove

x ∈ S =⇒ P x

by rule induction on x ∈ S
we must prove for every rule

[[ a1 ∈ S; . . . ; an ∈ S ]] =⇒ a ∈ S
that P is preserved:

[[ P a1; . . . ; P an ]] =⇒ P a

149
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Sets

Rule induction in general

Set S is defined inductively.
To prove

x ∈ S =⇒ P x

by rule induction on x ∈ S
we must prove for every rule

[[ a1 ∈ S; . . . ; an ∈ S ]] =⇒ a ∈ S
that P is preserved:

[[ P a1; . . . ; P an ]] =⇒ P a

In Isabelle/HOL:
apply (induct rule: S.induct)

149
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Sets

Demo: inductively defined sets

150
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Sets

Inductive predicates

x ∈ S ; S x

151
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Sets

Inductive predicates

x ∈ S ; S x

Example:
inductive Ev :: nat ⇒ bool
where

Ev 0 |
Ev n =⇒ Ev (n + 2)

151

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 464



Sets, Functions, Relations, and Fixpoints

Sets

Inductive predicates

x ∈ S ; S x

Example:
inductive Ev :: nat ⇒ bool
where

Ev 0 |
Ev n =⇒ Ev (n + 2)

Comparison:
predicate: simpler syntax
set: direct usage of ∪ etc

151

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 465



Sets, Functions, Relations, and Fixpoints

Sets

Inductive predicates

x ∈ S ; S x

Example:
inductive Ev :: nat ⇒ bool
where

Ev 0 |
Ev n =⇒ Ev (n + 2)

Comparison:
predicate: simpler syntax
set: direct usage of ∪ etc

Inductive predicates can be of type τ1 ⇒ ... ⇒ τn ⇒ bool

151
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Sets

Automating it

152
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Sets

simp and auto

simp rewriting and a bit of arithmetic

auto rewriting and a bit of arithmetic, logic & sets

153
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Sets

simp and auto

simp rewriting and a bit of arithmetic

auto rewriting and a bit of arithmetic, logic & sets

• Show you where they got stuck

153
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Sets

simp and auto

simp rewriting and a bit of arithmetic

auto rewriting and a bit of arithmetic, logic & sets

• Show you where they got stuck
• highly incomplete wrt logic

153
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Sets

blast

• A complete (for FOL) tableaux calculus implementation

154
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Sets

blast

• A complete (for FOL) tableaux calculus implementation
• Covers logic, sets, relations, . . .

154
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Sets

blast

• A complete (for FOL) tableaux calculus implementation
• Covers logic, sets, relations, . . .
• Extensible with intro/elim rules

154
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Sets

blast

• A complete (for FOL) tableaux calculus implementation
• Covers logic, sets, relations, . . .
• Extensible with intro/elim rules
• Almost no “=”

154
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Sets

Demo: blast

155
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Well founded relations

Well founded relations

see IHT 6.4
I Well founded orderings: Induction
I Complete Lattices Fixpoints
I Knaster-Tarski Theorem
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Fixpoints

Fixpoints

Importance
I Inductive definitions of sets and relations
I Reminder: relations are sets in Isabelle/HOL
I E.g.: 0 ∈ even
I n ∈ even ==> n+2 ∈ even
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Fixpoints

Properties of Orderings and Functions

Definition 5.1. Monotone Function
Let D be a set with an ordering relation ≤. A function f : D → D is
called monotone, if x ≤ y −→ f (x) ≤ f (y)

Remark
The inductive definition above induces a monotone function on sets
with the subset relation as ordering:

I f_even :: nat set -> nat set
I f_even (A) = A ∪ {0} ∪ {n + 2|n ∈ A}
I

I
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Fixpoints

Well-founded Orderings

I Partial-order ≤⊆ X × X well-founded iff

(∀Y ⊆ X : Y 6= ∅ → (∃y ∈ Y : y minimal in Y in respect of ≤))

I Quasi-order . well-founded iff strict part of . is well-founded.
I Initial segment: Y ⊆ X , left-closed i.e.

(∀y ∈ Y : (∀x ∈ X : x . y → x ∈ Y ))

I Initial section of x : sec(x) = {y : y < x}

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 479



Sets, Functions, Relations, and Fixpoints

Fixpoints

Supremum

I Let (X ,≤) be a partial-order and Y ⊆ X
I S ⊆ X is a chain iff elements of S are linearly ordered through ≤.
I y is an upper bound of Y iff

∀y ′ ∈ Y : y ′ ≤ y

I Supremum: y is a supremum of Y iff y is an upper bound of Y
and

∀y ′ ∈ X : ((y ′ upper bound of Y )→ y ≤ y ′)

I Analog: lower bound, Infimum inf(Y )
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Fixpoints

CPO

I A Partial-order (D,v) is a complete partial ordering (CPO) iff
I ∃ the smallest element ⊥ of D (with respect of v)
I Each chain S has a supremum sup(S).
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Fixpoints

Example

Example 5.2. .

I (P(X ),⊆) is CPO.
I (D,v) is CPO with

I D = X 9 Y : set of all the partial functions f with dom(f ) ⊆ X and
cod(f ) ⊆ Y .

I Let f , g ∈ X 9 Y .

f v g iff dom(f ) ⊆ dom(g) ∧ (∀x ∈ dom(f ) : f (x) = g(x))
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Fixpoints

Monotonous, continuous

I (D,v), (E ,v′) CPOs
I f : D → E monotonous iff

(∀d ,d ′ ∈ D : d v d ′ → f (d) v′ f (d ′))

I f : D → E continuous iff f monotonous and

(∀S ⊆ D : S chain → f (sup(S)) = sup(f (S)))

I X ⊆ D is admissible iff

(∀S ⊆ X : S chain → sup(S) ∈ X )
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Fixpoints

Fixpoint

I (D,v) CPO, f : D → D
I d ∈ D fixpoint of f iff

f (d) = d

I d ∈ D smallest fixpoint of f iff d fixpoint of f and

(∀d ′ ∈ D : d ′ fixpoint → d v d ′)
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Fixpoints

Fixpoint-Theorem

Theorem 5.3 (Fixpoint-Theorem:). (D,v) CPO, f : D → D
continuous, then f has a smallest fixpoint µf and

µf = sup{f i (⊥) : i ∈ N}

Proof: (Sketch)
I sup{f i (⊥) : i ∈ N} fixpoint:

f (sup{f i (⊥) : i ∈ N}) = sup{f i+1(⊥) : i ∈ N}
(continuous)

= sup{sup{f i+1(⊥) : i ∈ N},⊥}
= sup{f i (⊥) : i ∈ N}
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Fixpoints

Fixpoint-Theorem (Cont.)

Fixpoint-Theorem: (D,v) CPO, f : D → D continuous, then f has a
smallest fixpoint µf and

µf = sup{f i (⊥) : i ∈ N}

Proof: (Continuation)
I sup{f i (⊥) : i ∈ N} smallest fixpoint:

1. d ′ fixpoint of f
2. ⊥v d ′

3. f monotonous, d ′ FP: f (⊥) v f (d ′) = d ′

4. Induction: ∀i ∈ N : f i(⊥) v f i(d ′) = d ′

5. sup{f i(⊥) : i ∈ N} v d ′
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Induction

Induction over N

Induction’s principle:

(∀X ⊆ N : ((0 ∈ X ∧ (∀x ∈ X : x ∈ X → x + 1 ∈ X )))→ X = N)

Correctness:
1. Let’s assume no, so ∃X ⊆ N : N \ X 6= ∅
2. Let y be minimum in N \ X (with respect to <).
3. y 6= 0
4. y − 1 ∈ X ∧ y 6∈ X
5. Contradiction
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Induction

Induction over N (Alternative)

Induction’s principle:

(∀X ⊆ N : (∀x ∈ N : sec(x) ⊆ X → x ∈ X )→ X = N)

Correctness:
1. Let’s assume no, so ∃X ⊆ N : N \ X 6= ∅
2. Let y be minimum in N \ X (with respect to <).
3. sec(y) ⊆ X , y 6∈ X
4. Contradiction
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Induction

Well-founded induction

Induction’s principle: Let (Z ,≤) be a well-founded partial order.

(∀X ⊆ Z : (∀x ∈ Z : sec(x) ⊆ X → x ∈ X )→ X = Z )

Correctness:
1. Let’s assume no, so Z \ X 6= ∅
2. Let z be a minimum in Z \ X (in respect of ≤).
3. sec(z) ⊆ X , z 6∈ X
4. Contradiction
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Induction

FP-Induction: Proving properties of fixpoints

Induction’s principle: Let (D,v) CPO, f : D → D continuous.

(∀X ⊆ D admissible : (⊥∈ X ∧ (∀y : y ∈ X → f (y) ∈ X ))→ µf ∈ X )

Correctness: Let X ⊆ D admissible.

µf ∈ X ⇔ sup{f i (⊥) : i ∈ N} ∈ X (FP-theorem)
⇐ ∀i ∈ N : f i (⊥) ∈ X (X admissible )
⇐ ⊥∈ X ∧ (∀n ∈ N : f n(⊥) ∈ X → f (f n(⊥)) ∈ X )

(Induction N)
⇐ ⊥∈ X ∧ (∀y ∈ X → f (y) ∈ X ) (Ass.)
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Induction

Problem

Exercise 5.4. Let (D,v) CPO with
I X = Y = N
I D = X 9 Y : set all partial functions f with dom(f ) ⊆ X and

cod(f ) ⊆ Y .
I Let f ,g ∈ X 9 Y .

f v g iff dom(f ) ⊆ dom(g) ∧ (∀x ∈ dom(f ) : f (x) = g(x))

Consider

F : D → P(N× N)

g 7→
{
{(0,1)} g = ∅
{(x , x · g(x − 1)) : x − 1 ∈ dom(g)} ∪ {(0,1)} otherwise
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Induction

Problem

Prove:
1. ∀g ∈ D : F (g) ∈ D, i.e. F : D → D
2. F : D → D continuous
3. ∀n ∈ N : µF (n) = n!

Note:
I µF can be understood as the semantics of a function’s definition

function Fac(n : N⊥) : N⊥ =def
if n = 0 then 1
else n · Fac(n − 1)

I Keyword: ’ functions’ in Isabelle
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Induction

Problem

Exercise 5.5. Prove: Let G = (V ,E) be an infinite directed graph with
I G has finitely many roots (nodes without incoming edges).
I Each node has finite out-degree.
I Each node is reachable from a root.

There exists an infinite path that begins on a root.
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Induction

Complete Lattices and Existence of Fixpoints

Definition 5.6. Complete Lattice
A partially ordered set (L,≤) is a complete lattice if every subset A of
L has both a greatest lower bound (the infimum, also called the meet)
and a least upper bound (the supremum, also called the join) in
(L,≤). The meet is denoted by

∧
A, and the join by

∨
A.

Lemma 5.7. Complete lattices are non empty.

Theorem 5.8. Knaster-Tarski
Let (L,≤) be a complete lattice and let f : L→ L be a monotone
function. Then the set of fixed points of f in L is also a complete
lattice.

Consequence 5.9. The Knaster-Tarski theorem guarantees the
existence of least and greatest fixpoints.
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Induction

Proof of the Knaster-Tarski theorem

Reformulation
For a complete lattice (L,≤) and a monotone function f : L→ L on L,
the set of all fixpoints of f is also a complete lattice (P,≤), with:

I
∨

P =
∨{x ∈ L|x ≤ f (x)} as the greatest fixpoint of f

I
∧

P =
∧{x ∈ L|f (x) <= x} as the least fixpoint of f

Proof: We begin by showing that P has least and greatest elements.
Let D = {y ∈ L|y ≤ f (y)} and x ∈ D. Then, because f is monotone,
we have f (x) ≤ f (f (x)), that is f (x) ∈ D.
Now let u =

∨
D. Then x ≤ u and f (x) ≤ f (u), so x ≤ f (x) ≤ f (u).

Therefore f (u) is an upper bound of D, but u is the least upper bound,
so u ≤ f (u), i.e. u ∈ D. Then f (u) ∈ D (from above) and f (u) ≤ u
hence f (u) = u. Because every fixpoint is in D we have that u is the
greatest fixpoint of f.
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Induction

Proof of the Knaster-Tarski theorem (cont.)

The function f is monotone on the dual (complete) lattice (Lop,≥). As
we have just proved, its greatest fixpoint there exists. It is the least
one on L, so P has least and greatest elements, or more generally
that every monotone function on a complete lattice has least and
greatest fixpoints.

If a ∈ L and b ∈ L,a ≤ b, we’ll write [a,b] for the closed interval with
bounds a and b : {x ∈ L|a ≤ x ≤ b}. The closed intervals are also
complete lattices.

It remains to prove that P is complete lattice.
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Induction

Proof of the Knaster-Tarski theorem (cont.)

Let W ⊂ P and w =
∨

W . We construct a least upper bound of W in
P. (The reasoning for the greatest lower bound is analogue.)
For every x ∈W , we have x = f (x) ≤ f (w), i.e., f (w) is an upper
bound of W . Since w is the least upper bound of W ,w ≤ f (w).
Furthermore, for y ∈ [w ,

∨
L], we have w ≤ f (w) ≤ f (y). Thus,

f ([w ,
∨

L]) ⊂ [w ,
∨

L] , and we can consider f to be a monotone
function on the complete lattice [w ,

∨
L]. Then,

v =
∧{x ∈ [w ,

∨
L]|f (x) ≤ x} is the least fixpoint of f in [w ,

∨
L].

We show that v is the least upper bound of W in P.
a) v is in P.
b) v is an upper bound of W , because v ∈ [w ,

∨
L], i.e., w ≤ v .

c) v is least. Let z be another upper bound of W in P. Then,
w ≤ z, z ∈ [w ,

∨
L], z is fixpoint, hence v ≤ z
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Induction

Lattices in Isabelle

Monotony and Fixpoints
I mono f ≡ ∀AB. A ≤ B −→ f A ≤ f B (mono_def)
I Usually subset relation as ordering
I lfp f ≡ Inf{u| f u ≤ u} (lfp_def)
I mono f =⇒ lfp f = f (lfp f ) (lfp_unfold)
I [|mono ?f ; ?f (inf (lfp ?f ) ?P) ≤ ?P|] =⇒ lfp?f ≤ ?P

(lfp_induct)
I gfp f ≡ Sup{u| u ≤ f u} (gfp_def)
I mono f =⇒ gfp f = f (gfp f ) (gfp_unfold)
I [|mono ?f ; ?X ≤ ?f (sup ?X (gfp ?f ))|] =⇒?X ≤ gfp ?f

(coinduct)
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Chapter 6

Verifying Functions
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Motivation

Motivation
Verification
Verifying properties of functions is a fundamental task in SE.
Hence it is an aspect of theorem proving. In particular, functions
definitions allow to express recursive algorithms. Our focus here is on
the definition of:

I terminiation/well-definedness properties
I functional properties, i.e., properties relating input parameters to

the result (PR-properties).
I Example: A compiler can be considered as a partial function.

In general:
I specification = model + properties
I or
I specification = model_1 + model_2 + relationship
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Conceptual aspects

Conceptual aspects

Here: specification = function definition + PR-properties

Verify:
I well-definedness of function by:

I often structural induction according to parameter types
I more general: well-founded ordering on parameter space “show

that parameters become smaller”
I PR-properties:

I often structural induction according to parameter types
I in general, proof technique depends on properties
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Conceptual aspects

Discussion

Verification
I works for the full parameter space (in contrast to testing)
I checks for consistency of models and properties

I models may not reflect what programmer had in mind
I properties may not reflect what programmer had in mind
I proofs can have errors

I uses redundancy to find errors
I helps to improve the descriptions
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Conceptual aspects

Discussion (cont.)

Formal verification
I avoids misunderstanding
I allows using tools
I avoids errors in proofs
I  Isabelle and others
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Case study: greatest common devisor
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Verifying Functions

Case study: greatest common devisor

‘

Case study: greatest common devisor

see Gcd.thy
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Case study: Quicksort

Case study: Quicksort

Assumptions
Given:

datatype mapping = lt | ge

fun eval :: "mapping => universe => universe => bool"
where

"eval ge xa ya = not(eval lt ya xa)" |
"[|eval lt ya xa|] ==> eval lt xa ya = False"

Modeling in Isabelle using type classes!
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Case study: Quicksort

Case study: Quicksort

Shallow embedding of the algorithm:
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Case study: Quicksort

Case study: Quicksort (cont.)

fun qsplit ::
"mapping => universe => universe list => universe

list"
where

"qsplit xf xa Nil = Nil"|
"qsplit xf xa (ya#x) =
(if eval xf ya xa then ya#qsplit xf xa x

else qsplit xf xa x)"

fun qsort :: "universe list => universe list" where
"qsort Nil = Nil" |
"qsort (p # l) =
qsort (qsplit lt p l) @ p # qsort (qsplit ge p l)"
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Case study: Quicksort

Properties to prove

Well-definedness/termination of qsort (1) and qsplit (2)

primrec counts :: "’a list => ’a => nat" where
"counts [] x = 0" |
"counts (y#yl) x = counts yl x +(if x=y then 1 else 0)

"

lemma qsort_counts(3): “counts xl = counts (qsort xl)”

fun qsorted :: " universe list => bool" where
"qsorted [] = True"|
"qsorted [x] = True"|
"qsorted (a#b#l) = (eval ge b a \and qsorted (b#l))"

lemma qsort_sort_prop(4): “qsorted (qsort xl)”

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 509



Verifying Functions

Case study: Quicksort

Verification of the properties

Ad 1: qsplit is primitive recursive

Ad 2: Idea: length of parameter decreases

Auxiliary lemma qsplit_length:
"length (qsplit f p l) <= length l"

 Proof termination with “length” as measure
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Case study: Quicksort

Verification of the properties (cont.)

Auxiliary lemma counts_concat:
"counts (l @ m) x = (counts l x) + (counts m x)"

Auxiliary theorem qsplit_lt_ge_count [iff]:
"count (qsplit lt p l) x + count (qsplit ge p l) x =

count l x"

Prove lemma “qsort_counts” by induction
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Verifying Functions

Case study: Quicksort

Property 4

Order lifting to lists

primrec qall :: "mapping => universe => universe list
=> bool" where

"qall f p [] = True"
| "qall f p (h # t) = (eval f h p \and qall f p t)"
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Verifying Functions

Case study: Quicksort

Property 4 (cont.)

Auxiliary Properties

theorem qsplit_splits:
"qall f p (qsplit f p l)"

lemma qall_concat :
"qall f p (a @ b) = (qall f p a \and qall f p b)"

theorem qsplit_qall :
"qall f p l ==> qall f p (qsplit g q l)"

theorem qsort_qall :
"qall f p l ==> qall f p (qsort l)"
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Verifying Functions

Case study: Quicksort

prop(4): “sorted (qsort xl)”

Auxiliary lemmatas

lemma qsorted_append :
"[| qsorted l; qall ge p l|] ==> qsorted (p # l)"

theorem qsorted_concat :
"[| qsorted a; qsorted b; qall lt p a; qall ge p b

|] ==> qsorted (a @ p # b)"

»> Generic.QSort.thy
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Application: Inductively Defined Sets

Chapter 7

Application: Inductively
Defined Sets
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Application: Inductively Defined Sets

Defining sets inductively

Defining sets inductively: Repetition

SessionSlides6.1 starting slide 23
I Rule induction
I Demo inductively defined sets
I Inductive predicates
I Demo
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Application: Inductively Defined Sets

Specification of transitions systems

Transition systems

Definition 7.1. TS
A transition system (TS) is a pair (Q,T) consisting of

I a set Q of states;
I a binary relation T ⊂ (Q ∗Q), usually called the transition relation

(Other names: state transition system, unlabeled transition system)

Definition 7.2. LTS
A labeled transition system (LTS) over Act is a pair (Q,T) consisting of

I a set Q of states;
I a ternary relation T ⊂ (Q ∗ Act ∗Q), usually called the transition

relation, transitions written as q1 -l-> q2
Act is called the set of actions.
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Application: Inductively Defined Sets

Specification of transitions systems

Transition systems (cont.)
Remark 7.3.

I The action labels express input, output, or an “explanation” of an
internal state change.

I Finite automata are LTS.
I Often, transitions systems are equipped with a set of initial states

or sets of initial and final states.
I Traces are sequences (qi) of states with (qi ,qi + 1) ∈ T
I Behavior:: Set of traces beginning at initial states.
I Properties:: expressed in appropriate logic (PDL, CTL ...)

Lemma 7.4. Every LTS (Q,T) over Act can be expressed by a TS
(Q’,T’) such that there is a mapping
rep : Q ∗ Act ⇒ Q′

with q1− l− > q2 ∈ T ⇐⇒ ∃l ′ : (rep(q1, l ′), rep(q2, l)) ∈ T ′

Proof: <exercise>

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 518



Application: Inductively Defined Sets

Specification of transitions systems

Modeling: Case study Elevator

Model of an elevator control system: Description
I Design the logic to move one lift between 3 floors satisfying:
I The lift has for each floor one button which, if pressed, causes

the lift to visit that floor. It is cancelled when the lift visits the floor.
I Each floor has a button to request the lift. It is cancelled when

the lift visits the floor.
I The lift remains in middle floor if no requests are pending.
I Properties
I All requests for floors from the lift must be serviced eventually.
I All requests from floors must be serviced eventually.
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Application: Inductively Defined Sets

Specification of transitions systems

Modeling: Case study Elevator

Datatypes and actions

datatype floor = F0 | F1 | F2
(* actions *)
datatype action = Call floor (* input message *)

| GoTo floor (* input message *)
| Open (* output message *)
| Move (* internal message *)

(* types for elevator state *)
datatype direction = UP | DW
datatype door = CL | OP
(* elevator state *)
"action * floor * direction * door * (floor set)"
(* where | last move | open/closed | what to serve *)
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Application: Inductively Defined Sets

Specification of transitions systems

Datatypes and actions: Transition relation

inductive_set tr :: "(state * state) set" where
"[|g \<notin > T; \<not > (f = g \<and > d = OP)|] ==>
((a,f,r d,T),(Call g,f,r,d,T \<union > {g})) \<in > tr"|
"[|g \<notin > T; \<not > (f = g \<and > d = OP)|] ==>
((a,f,r,d,T),(GoTo g,f,r,d,T \<union > {g})) \<in > tr"|
"f\<in >T==>((a,f,r,d,T),(Open ,f,r,OP,T-{f}))\<in >tr"|
"((a,F1 ,r,d,{F0}) ,(Move ,F0 ,DW ,CL ,{F0})) \<in > tr"|
"((a,F1 ,r,d,{F2}) ,(Move ,F2 ,UP ,CL ,{F2})) \<in > tr"|
"F0\<notin >T==>((a,F0,r,d,T),(Move ,F1,UP,CL ,T))\<in >tr
"F2\<notin >T==>((a,F2,r,d,T),(Move ,F1,DW,CL ,T))\<in >tr
"[|F1\<notin >T; F2\<in >T|] ==>
((a,F1,UP,d,T),(Move ,F2,UP,CL,T)) \<in > tr"|
"[|F1\<notin >T; F0\<in >T|] ==>
((a,F1,DW,d,T),(Move ,F0,DW,CL,T)) \<in > tr"
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Application: Inductively Defined Sets

Specification of transitions systems

Traces

Defining sets of traces

types trace = "nat => state"

coinductive_set traces :: "trace set" where
"[| t \<in> traces; (s, t 0) \<in > tr |] ==>
(\<lambda >n. case n of 0 => s | Suc x => t x) \<in >

traces"

(* Functions on traces *)

definition head :: "trace => state" where
"head t \<equiv > t 0"

definition drp :: "trace => nat => trace" where
"drp t n \<equiv > (\<lambda >x. t (n + x))"
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Application: Inductively Defined Sets

Specification of transitions systems

Properties of Traces

Important properties
I lemma [iff]: “drp (drp t n) m = drp t (n + m)”
I lemma drp_traces: “t ∈ traces =⇒ drp t n ∈ traces”
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Application: Inductively Defined Sets

Specification of transitions systems

Reasoning about finite transition systems

Logic for expressing properties of traces
I For every floor f: If f is a target floor, the elevator will eventually

reach the floor and open the door.
I Always («To f» –> Finally («Op» and «At f»))
I  Temporal logic. Here e.g. LTL
I Formulae built with Atoms, ¬,∧,�,♦
I Interpretations: Kripke structures (Q, I,T ,L)

I A transition relation T ⊆ Q ∗Q such that
∀q ∈ Q.∃q′ ∈ Q.(q,q′) ∈ T

I a labeling (or interpretation) function L : Q → 2Atoms
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Application: Inductively Defined Sets

Specification of transitions systems

Reasoning about finite transition systems

Remark 7.5.
I Since T is left-total, it is always possible to construct an infinite

path through the Kripke structure. A deadlock state qd can be
expressed by single outgoing edge back to qd itself.

I Labeling states (elevator)

datatype atom = Up | Op | At floor | To floor

fun L :: "state => atom => bool" where
"L (_, _, UP, _, _) Up = True" |
"L (_, _, DW, _, _) Up = False" |
"L (_, _, _, CL , _) Op = False" |
"L (_, _, _, OP , _) Op = True" |
"L (_, f, _, _, _) (At g) = (f = g)" |
"L (_, _, _, _, fs) (To f) = (f \<in> fs)"
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Application: Inductively Defined Sets

Specification of transitions systems

Reasoning about finite transition systems (cont.)

I The labeling function L defines for each state q in Q the set L(s)
of all atomic propositions that are valid in s.

I Semantics of LTL

primrec valid ::
"trace => formula => bool" ("(_ |= _)" [80, 80]

80) where
"t |= Atom a = ( a \<in > L (head t) )"

| "t |= Neg f = ( \<not > (t |= f) )"
| "t |= And f g = ( t |= f \<and > t |= g )"
| "t |= Always f = ( \<forall >n. drp t n |= f )"
| "t |= Finally f = ( \<exists >n. drp t n |= f )"

I »> Elevator.thy
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Application: Programming Language Semantics

Chapter 8

Application:
Programming Language

Semantics
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Programming Language Semantics

Software Foundations Book
I Material: http://sct.ethz.ch/teaching/ss2004/sps/lecture.html
I PM intro
I PM bigstep semantics
I Demo MyWhile.thy
I PM smallstep semantics
I Denotational semantics
I Axiomatic semantics: Hoare Logic.
I Demo MyHoare.thy
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Why Formal Semantics?
� Programming language design

- Formal verification of language properties
- Reveal ambiguities
- Support for standardization

� Implementation of programming languages
- Compilers
- Interpreters
- Portability

� Reasoning about programs
- Formal verification of program properties
- Extended static checking

Peter Müller—Semantics of Programming Languages, SS04 – p.7
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Language Properties
� Type safety:
In each execution state, a variable of type T holds a
value of T or a subtype of T

� Very important question for language designers
� Example:
If String is a subtype of Object, should String[] be
a subtype of Object[]?

Peter Müller—Semantics of Programming Languages, SS04 – p.8
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Language Properties
� Type safety:
In each execution state, a variable of type T holds a
value of T or a subtype of T

� Very important question for language designers
� Example:
If String is a subtype of Object, should String[] be
a subtype of Object[]?

void m(Object[] oa) {
oa[0]=new Integer(5);

}

String[] sa=new String[10];
m(sa);
String s = sa[0];

Peter Müller—Semantics of Programming Languages, SS04 – p.8
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Language Definition

Dynamic Semantics

Static Semantics

Syntax

� State of a program execution
� Transformation of states

� Type rules
� Name resolution

� Syntax rules, defined by
grammar

Peter Müller—Semantics of Programming Languages, SS04 – p.12
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Compilation and Execution

Execution

Semantic Analysis,
Type Checking

Scanning, Parsing

Abstract 
Syntax Tree

Annotated Abstract 
Syntax Tree

Peter Müller—Semantics of Programming Languages, SS04 – p.13
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Three Kinds of Semantics
� Operational semantics

- Describes execution on an abstract machine
- Describes how the effect is achieved

� Denotational semantics
- Programs are regarded as functions in a

mathematical domain
- Describes only the effect, not how it is obtained

� Axiomatic semantics
- Specifies properties of the effect of executing a

program are expressed
- Some aspects of the computation may be ignored

Peter Müller—Semantics of Programming Languages, SS04 – p.14
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Operational Semantics

y := 1;
while not(x=1) do ( y := x*y; x := x-1 )

� “First we assign 1 to y, then we test whether x is 1 or
not. If it is then we stop and otherwise we update y
to be the product of x and the previous value of y
and then we decrement x by 1. Now we test whether
the new value of x is 1 or not. . . ”

� Two kinds of operational semantics
- Natural Semantics
- Structural Operational Semantics

Peter Müller—Semantics of Programming Languages, SS04 – p.15
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Denotational Semantics

y := 1;
while not(x=1) do ( y := x*y; x := x-1 )

� “The program computes a partial function from states
to states: the final state will be equal to the initial
state except that the value of x will be 1 and the
value of y will be equal to the factorial of the value of
x in the initial state”

� Two kinds of denotational semantics
- Direct Style Semantics
- Continuation Style Semantics

Peter Müller—Semantics of Programming Languages, SS04 – p.16
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Axiomatic Semantics

y := 1;
while not(x=1) do ( y := x*y; x := x-1 )

� “If x= n holds before the program is executed then
y= n! will hold when the execution terminates (if it
terminates)”

� Two kinds of axiomatic semantics
- Partial correctness
- Total correctness

Peter Müller—Semantics of Programming Languages, SS04 – p.17
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Abstraction

Concrete language implementation

Operational semantics

Denotational semantics

Axiomatic semantics

Abstract descrption

Peter Müller—Semantics of Programming Languages, SS04 – p.18
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Selection Criteria
� Constructs of the
programming language
- Imperative
- Functional
- Concurrent
- Object-oriented
- Non-deterministic
- Etc.

� Application of the
semantics
- Understanding the

language
- Program verification
- Prototyping
- Compiler

construction
- Program analysis
- Etc.

Peter Müller—Semantics of Programming Languages, SS04 – p.19
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

The Language IMP
� Expressions

- Boolean and arithmetic expressions
- No side-effects in expressions

� Variables
- All variables range over integers
- All variables are initialized
- No global variables

� IMP does not include
- Heap allocation and pointers
- Variable declarations
- Procedures
- Concurrency

Peter Müller—Semantics of Programming Languages, SS04 – p.30
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Syntax of IMP: Characters and Tokens

Characters

Letter = ’A’ . . . ’Z’ | ’a’ . . . ’z’
Digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

Tokens

Ident = Letter { Letter | Digit }
Integer = Digit { Digit }
Var = Ident

Peter Müller—Semantics of Programming Languages, SS04 – p.31
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Syntax of IMP: Expressions
Arithmetic expressions

Aexp = Aexp Op Aexp | Var | Integer
Op = ’+’ | ’-’ | ’*’ | ’/’ | ’mod’

Boolean expressions

Bexp = Bexp ’or’ Bexp | Bexp ’and’ Bexp
| ’not’ Bexp | Aexp RelOp Aexp

RelOp = ’=’ | ’#’ | ’<’ | ’<=’ | ’>’ | ’>=’

Peter Müller—Semantics of Programming Languages, SS04 – p.32
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Syntax of IMP: Statemens

Stm = ’skip’
| Var ’:=’ Aexp
| Stm ’;’ Stm
| ’if’ Bexp ’then’ Stm ’else’ Stm ’end’
| ’while’ Bexp ’do’ Stm ’end’

Peter Müller—Semantics of Programming Languages, SS04 – p.33
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Notation

Meta-variables (written in italic font)

x, y, z for variables (Var)
e, e′, e1, e2 for arithmetic expressions (Aexp)
b, b1, b2 for boolean expressions (Bexp)
s, s′, s1, s2 for statements (Stm)

Keywords are written in typewriter font

Peter Müller—Semantics of Programming Languages, SS04 – p.34
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Syntax of IMP: Example

res := 1;
while n > 1 do
res := res * n;
n := n - 1

end

Peter Müller—Semantics of Programming Languages, SS04 – p.35
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Semantic Categories

Syntactic category: Integer Semantic category: Val = Z

101 - 5

101 - 101

� Semantic functions map elements of syntactic
categories to elements of semantic categories

� To define the semantics of IMP, we need semantic
functions for
- Arithmetic expressions (syntactic category Aexp)
- Boolean expressions (syntactic category Bexp)
- Statements (syntactic category Stm)

Peter Müller—Semantics of Programming Languages, SS04 – p.37
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

States

x+1 - ??

� The meaning of an expression depends on the
values bound to the variables that occur in it

� A state associates a value to each variable

State : Var → Val

� We represent a state σ as a finite function

σ = {x1 7→ v1, x2 7→ v2, . . . , xn 7→ vn}
where x1, x2, . . . , xn are different elements of Var and
v1, v2, . . . , vn are elements of Val.

Peter Müller—Semantics of Programming Languages, SS04 – p.38
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Semantics of Arithmetic Expressions

The semantic function

A : Aexp → State → Val

maps an arithmetic expression e and a state σ to a value
A[[e]]σ

A[[x]]σ = σ(x)

A[[i]]σ = i for i ∈ Z
A[[e1 op e2]]σ = A[[e1]]σ op A[[e2]]σ for op ∈ Op

op is the operation Val× Val → Val corresponding to op

Peter Müller—Semantics of Programming Languages, SS04 – p.39
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Semantics of Boolean Expressions

The semantic function

B : Bexp → State → Bool

maps a boolean expression b and a state σ to a truth
value B[[b]]σ

B[[e1 op e2]]σ =

{
tt if A[[e1]]σ op A[[e2]]σ

ff otherwise

op ∈ RelOp and op is the relation Val× Val corresponding
to op

Peter Müller—Semantics of Programming Languages, SS04 – p.40
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Application: Programming Language Semantics

Introduction to Programming Language Semantics

Boolean Expressions (cont’d)

B[[b1 or b2]]σ =

{
tt if B[[b1]]σ = tt or B[[b2]]σ = tt

ff otherwise

B[[b1 and b2]]σ =

{
tt if B[[b1]]σ = tt and B[[b2]]σ = tt

ff otherwise

B[[not b]]σ =

{
tt if B[[b]]σ = ff

ff otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.41
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Application: Programming Language Semantics

Big step semantics

Operational Semantics of Statements
� Evaluation of an expression in a state yields a value

x + 2 * y

A : Aexp → State → Val

� Execution of a statement modifies the state

x := 2 * y

� Operational semantics describe how the state is
modified during the execution of a statement

Peter Müller—Semantics of Programming Languages, SS04 – p.57
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Application: Programming Language Semantics

Big step semantics

Big-Step and Small-Step Semantics
� Big-step semantics describe how the overall results
of the executions are obtained

- Natural semantics

� Small-step semantics describe how the individual
steps of the computations take place

- Structural operational semantics
- Abstract state machines

Peter Müller—Semantics of Programming Languages, SS04 – p.58
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Application: Programming Language Semantics

Big step semantics

Transition Systems
� A transition system is a tuple (Γ, T,B)

- Γ: a set of configurations
- T : a set of terminal configurations, T ⊆ Γ

- B: a transition relation, B⊆ Γ× Γ

� Example: Finite automaton

Γ = {〈w, S〉 | w ∈ {a, b, c}∗, S ∈ {1, 2, 3, 4}}
T = {〈ε, S〉 | S ∈ {1, 2, 3, 4}}
B = {(〈aw, 1〉 → 〈w, 2〉), (〈aw, 1〉 → 〈w, 3〉),

(〈bw, 2〉 → 〈w, 4〉), (〈cw, 3〉 → 〈w, 4〉)}

a b

c

2

3

41

a

Peter Müller—Semantics of Programming Languages, SS04 – p.60
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Application: Programming Language Semantics

Big step semantics

Transitions in Natural Semantics
� Two types of configurations for operational semantics

1. 〈s, σ〉, which represents that the statement s is to be
executed in state σ

2. σ, which represents a terminal state
� The transition relation → describes how executions
take place
- Typical transition: 〈s, σ〉 → σ′

- Example: 〈skip, σ〉 → σ

Γ = {〈s, σ〉 | s ∈ Stm, σ ∈ State} ∪ State

T = State

→⊆ {〈s, σ〉 | s ∈ Stm, σ ∈ State} × State

Peter Müller—Semantics of Programming Languages, SS04 – p.61
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Application: Programming Language Semantics

Big step semantics

Rules
� Transition relation is specified by rules

ϕ1, . . . , ϕn
ψ

if Condition

where ϕ1, . . . , ϕn and ψ are transitions
� Meaning of the rule

If Condition and ϕ1, . . . , ϕn then ψ

� Terminology
- ϕ1, . . . , ϕn are called premises
- ψ is called conclusion
- A rule without premises is called axiom

Peter Müller—Semantics of Programming Languages, SS04 – p.62
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Application: Programming Language Semantics

Big step semantics

Notation
� Updating States: σ[y 7→ v] is the function that

- overrides the association of y in σ by y 7→ v or
- adds the new association y 7→ v to σ

(σ[y 7→ v])(x) =

{
v if x = y

σ(x) if x 6= y

Peter Müller—Semantics of Programming Languages, SS04 – p.63
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Application: Programming Language Semantics

Big step semantics

Natural Semantics of IMP
� skip does not modify the state

〈skip, σ〉 → σ

� x:=e assigns the value of e to variable e

〈x:=e, σ〉 → σ[x 7→ A[[e]]σ]

� Sequential composition s1;s2
- First, s1 is executed in state σ, leading to σ′

- Then s2 is executed in state σ′

〈s1, σ〉 → σ′, 〈s2, σ
′〉 → σ′′

〈s1;s2, σ〉 → σ′′

Peter Müller—Semantics of Programming Languages, SS04 – p.64

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 557



Application: Programming Language Semantics

Big step semantics

Natural Semantics of IMP (cont’d)
� Conditional statement if b then s1 else s2 end

- If b holds, s1 is executed
- If b does not hold, s2 is executed

〈s1, σ〉 → σ′

〈if b then s1 else s2 end, σ〉 → σ′ if B[[b]]σ = tt

〈s2, σ〉 → σ′

〈if b then s1 else s2 end, σ〉 → σ′ ifB[[b]]σ = ff

Peter Müller—Semantics of Programming Languages, SS04 – p.65
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Application: Programming Language Semantics

Big step semantics

Natural Semantics of IMP (cont’d)
� Loop statement while b do s end

- If b holds, s is executed once, leading to state σ ′

- Then the whole while-statement is executed again σ ′

〈s, σ〉 → σ′, 〈while b do s end, σ′〉 → σ′′

〈while b do s end, σ〉 → σ′′ if B[[b]]σ = tt

- If b does not hold, the while-statement does not modify the
state

〈while b do s end, σ〉 → σ
if B[[b]]σ = ff

Peter Müller—Semantics of Programming Languages, SS04 – p.66
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Application: Programming Language Semantics

Big step semantics

Rule Instantiations
� Rules are actually rule schemes

- Meta-variables stand for arbitrary variables, expressions,
statements, states, etc.

- To apply rules, they have to be instantiated by selecting
particular variables, expressions, statements, states, etc.

� Assignment rule scheme

〈x:=e, σ〉 → σ[x 7→ A[[e]]σ]

� Assignment rule instance

〈v:=v+1, {v 7→ 3}〉 → {v 7→ 4}

Peter Müller—Semantics of Programming Languages, SS04 – p.67
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Application: Programming Language Semantics

Big step semantics

Derivations: Example
� What is the final state if statement

z:=x; x:=y; y:=z

is executed in state {x 7→ 5,y 7→ 7,z 7→ 0}
(abbreviated by [5, 7, 0])?

〈z:=x, [5, 7, 0]〉 → [5, 7, 5], 〈x:=y, [5, 7, 5]〉 → [7, 7, 5]
〈z:=x; x:=y, [5, 7, 0]〉 → [7, 7, 5]

,

〈y:=z, [7, 7, 5]〉 → [7, 5, 5]
〈z:=x; x:=y; y:=z, [5, 7, 0]〉 → [7, 5, 5]

Peter Müller—Semantics of Programming Languages, SS04 – p.68
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Application: Programming Language Semantics

Big step semantics

Derivation Trees
� Rule instances can be combined to derive a
transition 〈s, σ〉 → σ′

� The result is a derivation tree
- The root is the transition 〈s, σ〉 → σ′

- The leaves are axiom instances
- The internal nodes are conclusions of rule instances and

have the corresponding premises as immediate children

� The conditions of all instantiated rules must be
satisfied

� There can be several derivations for one transition
(non-deterministic semantics)

Peter Müller—Semantics of Programming Languages, SS04 – p.69
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Application: Programming Language Semantics

Big step semantics

Termination
� The execution of a statement s in state σ

- terminates iff there is a state σ′ such that 〈s, σ〉 → σ′

- loops iff there is no state σ′ such that 〈s, σ〉 → σ′

� A statement s
- always terminates if the execution in a state σ terminates

for all choices of σ
- always loops if the execution in a state σ loops for all

choices of σ

Peter Müller—Semantics of Programming Languages, SS04 – p.70
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Application: Programming Language Semantics

Big step semantics

Semantic Equivalence
� Definition

Two statements s1 and s2 are semantically
equivalent (denoted by s1 ≡ s2) if the follow-
ing property holds for all states σ, σ ′:

〈s1, σ〉 → σ′ ⇔ 〈s2, σ〉 → σ′

� Example

while b do s end ≡
if b then s; while b do s end

Peter Müller—Semantics of Programming Languages, SS04 – p.72
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Application: Programming Language Semantics

Small step semantics

Structural Operational Semantics
� The emphasis is on the individual steps of the
execution
- Execution of assignments
- Execution of tests

� Describing small steps of the execution allows one to
express the order of execution of individual steps
- Interleaving computations
- Evaluation order for expressions (not shown in the course)

� Describing always the next small step allows one to
express properties of looping programs

Peter Müller—Semantics of Programming Languages, SS04 – p.100
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Application: Programming Language Semantics

Small step semantics

Transitions in SOS
� The configurations are the same as for natural
semantics

� The transition relation →1 can have two forms
� 〈s, σ〉 →1 〈s′, σ′〉: the execution of s from σ is not
completed and the remaining computation is
expressed by the intermediate configuration 〈s′, σ′〉

� 〈s, σ〉 →1 σ′: the execution of s from σ has
terminated and the final state is σ′

� A transition 〈s, σ〉 →1 γ describes the first step of
the execution of s from σ

Peter Müller—Semantics of Programming Languages, SS04 – p.101
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Application: Programming Language Semantics

Small step semantics

Transition System

Γ = {〈s, σ〉 | s ∈ Stm, σ ∈ State} ∪ State

T = State

→1⊆ {〈s, σ〉 | s ∈ Stm, σ ∈ State} × Γ

� We say that 〈s, σ〉 is stuck if there is no γ such that
〈s, σ〉 →1 γ

Peter Müller—Semantics of Programming Languages, SS04 – p.102
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Application: Programming Language Semantics

Small step semantics

SOS of IMP
� skip does not modify the state

〈skip, σ〉 →1 σ

� x:=e assigns the value of e to variable x

〈x:=e, σ〉 →1 σ[x 7→ A[[e]]σ]

� skip and assignment require only one step
� Rules are analogous to natural semantics

〈skip, σ〉 → σ

〈x:=e, σ〉 → σ[x 7→ A[[e]]σ]

Peter Müller—Semantics of Programming Languages, SS04 – p.103
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Application: Programming Language Semantics

Small step semantics

SOS of IMP: Sequential Composition
� Sequential composition s1;s2

� First step of executing s1;s2 is the first step of
executing s1

� s1 is executed in one step
〈s1, σ〉 →1 σ′

〈s1;s2, σ〉 →1 〈s2, σ
′〉

� s1 is executed in several steps
〈s1, σ〉 →1 〈s′1, σ′〉

〈s1;s2, σ〉 →1 〈s′1;s2, σ
′〉

Peter Müller—Semantics of Programming Languages, SS04 – p.104
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Application: Programming Language Semantics

Small step semantics

SOS of IMP: Conditional Statement

� The first step of executing if b then s1 else s2 end
is to determine the outcome of the test and thereby
which branch to select

〈if b then s1 else s2 end, σ〉 →1 〈s1, σ〉 if B[[b]]σ = tt

〈if b then s1 else s2 end, σ〉 →1 〈s2, σ〉 ifB[[b]]σ = ff

Peter Müller—Semantics of Programming Languages, SS04 – p.105
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Application: Programming Language Semantics

Small step semantics

Alternative for Conditional Statement
� The first step of executing if b then s1 else s2 end
is the first step of the branch determined by the
outcome of the test

〈s1, σ〉 →1 σ′

〈if b then s1 else s2 end, σ〉 →1 σ′ if B[[b]]σ = tt

〈s1, σ〉 →1 〈s′1, σ′〉
〈if b then s1 else s2 end, σ〉 →1 〈s′1, σ′〉 if B[[b]]σ = tt

and two similar rules for B[[b]]σ = ff

� Alternatives are equivalent for IMP
� Choice is important for languages with parallel
execution

Peter Müller—Semantics of Programming Languages, SS04 – p.106
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Application: Programming Language Semantics

Small step semantics

SOS of IMP: Loop Statement

� The first step is to unrole the loop

〈while b do s end, σ〉 →1
〈if b then s;while b do s end else skip end, σ〉

� Recall that while b do s end and
if b then s;while b do s end else skip end are
semantically equivalent in the natural semantics

Peter Müller—Semantics of Programming Languages, SS04 – p.107
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Application: Programming Language Semantics

Small step semantics

Alternatives for Loop Statement
� The first step is to decide the outcome of the test and
thereby whether to unrole the body of the loop or to
terminate

〈while b do s end, σ〉 →1 〈s;while b do s end, σ〉
if B[[b]]σ = tt

〈while b do s end, σ〉 →1 σ if B[[b]]σ = ff

� Or combine with the alternative semantics of the
conditional statement

� Alternatives are equivalent for IMP

Peter Müller—Semantics of Programming Languages, SS04 – p.108
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Application: Programming Language Semantics

Small step semantics

Derivation Sequences
� A derivation sequence of a statement s starting in
state σ is a sequence γ0, γ1, γ2, . . . , where
- γ0 = 〈s, σ〉

- γi →1 γi+1 for 0 ≤ i

� A derivation sequence is either finite or infinite
- Finite derivation sequences end with a configuration that is

either a terminal configuration or a stuck configuration
� Notation

- γ0 →
i
1 γi indicates that there are i steps in the execution

from γ0 to γi

- γ0 →
∗
1 γi indicates that there is a finite number of steps in

the execution from γ0 to γi

- γ0 →
i
1 γi and γ0 →

∗
1 γi need not be derivation sequences

Peter Müller—Semantics of Programming Languages, SS04 – p.109
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Application: Programming Language Semantics

Small step semantics

Derivation Sequences: Example
� What is the final state if statement

z:=x; x:=y; y:=z

is executed in state {x 7→ 5,y 7→ 7,z 7→ 0}?

〈z:=x; x:=y; y:=z, {x 7→ 5,y 7→ 7,z 7→ 0}〉

→1 〈x:=y; y:=z, {x 7→ 5,y 7→ 7,z 7→ 5}〉

→1 〈y:=z, {x 7→ 7,y 7→ 7,z 7→ 5}〉

→1 {x 7→ 7,y 7→ 5,z 7→ 5}

Peter Müller—Semantics of Programming Languages, SS04 – p.110
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Application: Programming Language Semantics

Small step semantics

Derivation Trees
� Derivation trees explain why transitions take place
� For the first step

〈z:=x; x:=y; y:=z, σ〉 →1 〈x:=y; y:=z, σ[z 7→ 5]〉

the derivation tree is

〈z:=x, σ〉 →1 σ[z 7→ 5]
〈z:=x; x:=y, σ〉 →1 〈x:=y, σ[z 7→ 5]〉

〈z:=x; x:=y; y:=z, σ〉 →1 〈x:=y; y:=z, σ[z 7→ 5]〉

� z:=x; ( x:=y; y:=z ) would lead to a simpler
tree with only one rule application

Peter Müller—Semantics of Programming Languages, SS04 – p.111
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Application: Programming Language Semantics

Small step semantics

Derivation Sequences and Trees
� Natural (big-step) semantics

- The execution of a statement (sequence) is described by
one big transition

- The big transition can be seen as trivial derivation
sequence with exactly one transition

- The derivation tree explains why this transition takes place
� Structural operational (small-step) semantics

- The execution of a statement (sequence) is described by
one or more transitions

- Derivation sequences are important
- Derivation trees justify each individual step in a derivation

sequence

Peter Müller—Semantics of Programming Languages, SS04 – p.112
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Application: Programming Language Semantics

Small step semantics

Termination
� The execution of a statement s in state σ

- terminates iff there is a finite derivation sequence starting
with 〈s, σ〉

- loops iff there is an infinite derivation sequence starting
with 〈s, σ〉

� The execution of a statement s in state σ

- terminates successfully if 〈s, σ〉 →∗
1 σ′

- In IMP, an execution terminates successfully iff it
terminates (no stuck configurations)

Peter Müller—Semantics of Programming Languages, SS04 – p.113
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Application: Programming Language Semantics

Small step semantics

Comparison: Summary
Natural Semantics

� Local variable declarations
and procedures can be
modeled easily

� No distinction between
abortion and looping

� Non-determinism
suppresses looping (if
possible)

� Parallelism cannot be
modeled

Structural Operational Semantics

� Local variable declarations
and procedures require
modeling the execution stack

� Distinction between abortion
and looping

� Non-determinism does not
suppress looping

� Parallelism can be modeled

Peter Müller—Semantics of Programming Languages, SS04 – p.134
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Application: Programming Language Semantics

Denotational semantics

Motivation
� Operational semantics is at a rather low abstraction
level

- Some arbitrariness in choice of rules (e.g., size of steps)
- Syntax involved in description of behavior

� Semantic equivalence in natural semantics

〈s1, σ〉 → σ′ ⇔ 〈s2, σ〉 → σ′

� Idea

- We can describe the behavior on an abstract level if we are
only interested in equivalence

- We specify only the partial function on states

Peter Müller—Semantics of Programming Languages, SS04 – p.194
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Application: Programming Language Semantics

Denotational semantics

Approach
� Denotational semantics describes the effect of a
computation

� A semantic function is defined for each syntactic
construct
- maps syntactic construct to a mathematical object, often a

function
- the mathematical object describes the effect of executing

the syntactic construct

Peter Müller—Semantics of Programming Languages, SS04 – p.195
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Application: Programming Language Semantics

Denotational semantics

Compositionality
� In denotational semantics, semantic functions are
defined compositionally

� There is a semantic clause for each of the basis
elements of the syntactic category

� For each method of constructing a composite
element (in the syntactic category) there is a
semantic clause defined in terms of the semantic
function applied to the immediate constituents of
the composite element

Peter Müller—Semantics of Programming Languages, SS04 – p.196
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Application: Programming Language Semantics

Denotational semantics

Examples
� The semantic functions A : Aexp → State → Val and
B : Bexp → State → Bool are denotational definitions

A[[x]]σ = σ(x)

A[[i]]σ = i for i ∈ Z
A[[e1 op e2]]σ = A[[e1]]σ op A[[e2]]σ for op ∈ Op

B[[e1 op e2]]σ =

{
tt if A[[e1]]σ op A[[e2]]σ

ff otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.197
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Application: Programming Language Semantics

Denotational semantics

Counterexamples
� The semantic functions SNS and SSOS are not
denotational definitions because they are not defined
compositionally

SNS : Stm → (State ↪→ State)

SNS[[s]]σ =







σ′ if 〈s, σ〉 → σ′

undefined otherwise

SSOS : Stm → (State ↪→ State)

SSOS[[s]]σ =







σ′ if 〈s, σ〉 →∗
1 σ′

undefined otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.198
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Application: Programming Language Semantics

Denotational semantics

Semantic Functions

� The effect of executing a statement is described by
the partial function SDS

SDS : Stm → (State ↪→ State)

� Partiality is needed to model non-termination

� The effects of evaluating expressions is defined by
the functions A and B

Peter Müller—Semantics of Programming Languages, SS04 – p.200
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Application: Programming Language Semantics

Denotational semantics

Direct Style Semantics of IMP
� skip does not modify the state

SDS[[skip]] = id

id : State → State

id(σ) = σ

� x:=e assigns the value of e to variable x

SDS[[x:=e]]σ = σ[x 7→ A[[e]]σ]

Peter Müller—Semantics of Programming Languages, SS04 – p.201
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Application: Programming Language Semantics

Denotational semantics

Direct Style Semantics of IMP (cont’d)
� Sequential composition s1;s2

SDS[[s1;s2]] = SDS[[s2]] ◦ SDS[[s1]]

� Function composition ◦ is defined in a strict way
- If one of the functions is undefined on the given argument

then the composition is undefined

(f ◦ g)σ =


f(g(σ)) if g(σ) 6= undefined

and f(g(σ)) 6= undefined

undefined otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.202
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Application: Programming Language Semantics

Denotational semantics

Direct Style Semantics of IMP (cont’d)
� Conditional statement if b then s1 else s2 end

SDS[[if b then s1 else s2 end]] =
cond(B[[b]],SDS[[s1]],SDS[[s2]])

� The function cond
- takes the semantic functions for the condition and the two

statements
- when supplied with a state selects the second or third

argument depending on the first

cond : (State → Bool)× (State ↪→ State)× (State ↪→ State) →

(State ↪→ State)

Peter Müller—Semantics of Programming Languages, SS04 – p.203
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Application: Programming Language Semantics

Denotational semantics

Definition of cond

cond : (State → Bool)× (State ↪→ State)× (State ↪→ State)

→ (State ↪→ State)

cond(b, f, g)σ =



f(σ) if b(σ) = tt

and f(σ) 6= undefined

g(σ) if b(σ) = ff

and g(σ) 6= undefined

undefined otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.204
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Application: Programming Language Semantics

Denotational semantics

Semantics of Loop: Observations
� Defining the semantics of while is difficult
� The semantics of while b do s end must be equal to
if b then s;while b do s end else skip end

� This requirement yields:

SDS[[while b do s end]] =
cond(B[[b]],SDS[[while b do s end]] ◦ SDS[[s]], id)

� We cannot use this equation as a definition because
it is not compositional

Peter Müller—Semantics of Programming Languages, SS04 – p.205
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Application: Programming Language Semantics

Denotational semantics

Functionals and Fixed Points

SDS[[while b do s end]] =
cond(B[[b]],SDS[[while b do s end]] ◦ SDS[[s]], id)

� The above equation has the form g = F (g)
- g = SDS[[while b do s end]]

- F (g) = cond(B[[b]], g ◦ SDS [[s]], id)

� F is a functional (a function from functions to
functions)

� SDS[[while b do s end]] is a fixed point of the
functional F

Peter Müller—Semantics of Programming Languages, SS04 – p.206
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Application: Programming Language Semantics

Denotational semantics

Direct Style Semantics of IMP: Loops
� Loop statement while b do s end

SDS[[while b do s end]] = FIX F

where F (g) = cond(B[[b]], g ◦ SDS[[s]], id)

� We write FIX F to denote the fixed point of the
functional F :

FIX : ((State ↪→ State) → (State ↪→ State))

→ (State ↪→ State)

� This defintion of SDS[[while b do s end]] is
compositional

Peter Müller—Semantics of Programming Languages, SS04 – p.208
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Application: Programming Language Semantics

Denotational semantics

Example
� Consider the statement

while x # 0 do skip end

� The functional for this loop is defined by

F ′(g)σ = cond(B[[x#0]], g ◦ SDS[[skip]], id)σ

= cond(B[[x#0]], g ◦ id , id)σ

= cond(B[[x#0]], g, id)σ

=

{
g(σ) if σ(x) 6= 0

σ if σ(x) = 0

Peter Müller—Semantics of Programming Languages, SS04 – p.209
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Application: Programming Language Semantics

Denotational semantics

Example (cont’d)

� The function

g1(σ) =

{
undefined if σ(x) 6= 0

σ if σ(x) = 0

is a fixed point of F ′

� The function g2(σ) = undefined is not a fixed point for
F ′

Peter Müller—Semantics of Programming Languages, SS04 – p.210
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Application: Programming Language Semantics

Denotational semantics

Well-Definedness

SDS[[while b do s end]] = FIX F

where F (g) = cond(B[[b]], g ◦ SDS[[s]], id)

� The function SDS[[while b do s end]] is well-defined
if FIXF defines a unique fixed point for the
functional F

- There are functionals that have more than one fixed point
- There are functionals that have no fixed point at all

Peter Müller—Semantics of Programming Languages, SS04 – p.211
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Application: Programming Language Semantics

Denotational semantics

Examples
� F ′ from the previous example has more than one
fixed point

F ′(g)σ =







g(σ) if σ(x) 6= 0

σ otherwise

- Every function g′ : State ↪→ State with g′(σ) = σ if σ(x) = 0 is
a fixed point for F ′

� The functional F1 has no fixed point if g1 6= g2

F1(g) =







g1 if g = g2

g2 otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.212
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Application: Programming Language Semantics

Hoare Logic

Hoare Logic

Hoare axioms and rules for simple while languages
I { P } skip { P }
I { P[x/e] } x := e { P }
I { P } c1 { R } , { R } c2 { Q } ==> { P } c1;c2 { Q }
I { P ∧ b } c1 { Q } , { P ∧ !b } c2 { Q } ==>

{ P } if b then c1 else c2 { Q }
I { INV ∧ b } c { INV } ==> { INV } while b do c { INV ∧ !b }
I P –> P’ , { P’ } c { Q’ } , Q’ –> Q ==> { P } c { Q }
I Semantics of the Hoare Logic:
I { P } c { Q } == ( ALL s. ( P(s) ∧ s -c-> t ) –> P(t) )
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Application: Programming Language Semantics

Hoare Logic

Hoare Logic

Example

{ 0 <= x }
c := 0 ;
sq := 1 ;
WHILE sq <= x DO (*INV=(c*c <= x&sq=(c+1)*(c+1))*)

c := c + 1 ;
sq := sq + (2*c + 1);

{ c*c <= x & x < (c+1)*(c+1) }

Demo: MyHoare.thy
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Chapter 9

Application: Verification
of distributed systems
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Dijkstras termination detection algorithm

Distributed Termination Detection : Dijkstra

Example 9.1. Implement the following termination detection protocol:

A passive machine
becomes active, iff it
receives a message
from another machine.

Only active machines
can send messages.

Token

Message

Active / Passive
Machine 0

Machine n−1

Machine n−2

Machine n−3

Machine 1

Edsger W. Dijkstra, W. H. J. Feijen, and A.J.M. van Gasteren.
Derivation of a Termination Detection Algorithm for Distributed
Computations. IPL 16 (1983).
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Dijkstras termination detection algorithm

Assumptions for distributed termination detection
Rules for a probe

Rule 0 When active, Machinei+1 keeps the token; when passive, it
hands over the token to Machinei .

Rule 1 A machine sending a message makes itself red.
Rule 2 When Machinei+1 propagates the probe, it hands over a red

token to Machinei when it is red itself, whereas while being white
it leaves the color of the token unchanged.

Rule 3 After the completion of an unsuccessful probe, Machine 0
initiates a next probe.

Rule 4 Machine 0 initiates a probe by making itself white and sending to
Machinen−1 a white token.

Rule 5 Upon transmission of the token to Machinei ,
Machinei+1becomes white. (Notice that the original color of
Machinei+1 may have affected the color of the token).
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Dijkstras termination detection algorithm

Correctness of the abstract version: Dijkstra

Assumptions
The machines constitute a closed system, i.e. messages can only be
dispatched among each other (no outside messages). The system in
the initial state can have any color and several machines can be
active. The token is located in the 0’th. machine.
The given rules describe the transfer of the token and the coloration
of the machines upon certain activities.
The task is to determine a state in which all the machines are passive
(not active). This is a stable state of the system, because only active
machines can dispatch messages and passive machines can only
become active by receiving a message.
The invariant: Let t be the position on which the token is, then
following invariant holds:
(∀i : t < i < n Machinei is passive)∨(∃j : 0 ≤ j ≤ t Machinej is red)∨
(Token is red)
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Dijkstras termination detection algorithm

Distributed Termination Detection: Correctness

(∀i : t < i < n Machinei is passive)∨(∃j : 0 ≤ j ≤ t Machinej is red)∨
(Token is red)

Correctness argument
When the token reaches Machineo, t = 0 and the invariant holds.
If
(Machineo is passive) ∧ (Machineo is white) ∧ (Token is white)
then
(∀i : 0 < i < n Machinei is passive) must hold, i.e. termination.

Proof of the invariant Induction over t:
The case t = n - 1 is easy.
Assume the invariant is valid for 0 < t < n, prove it is valid for t − 1.
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Dijkstras termination detection algorithm

Distributed Abstract State Machines: Model

Signature:

static
COLOR = {red ,white} TOKEN = {redToken,whiteToken}
MACHINE = {0,1,2, . . . ,n − 1}
next : MACHINE → MACHINE
e.g. with next(0) = n − 1,next(n − 1) = n − 2, . . . ,next(1) = 0

controlled
color : MACHINE → COLOR token : MACHINE → TOKEN
RedTokenEvent ,WhiteTokenEvent : MACHINE → BOOL

monitored Active : MACHINE → BOOL
SendMessageEvent : MACHINE → BOOL
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Dijkstras termination detection algorithm

Distributed Termination Detection: DASM-Procedure
Macros: (Rule definitions)

I ReactOnEvents(m : MACHINE) =
if RedTokenEvent(m) then

token(m) := redToken
RedTokenEvent(m) := undef

if WhiteTokenEvent(m) then
token(m) := whiteToken
WhiteTokenEvent(m) := undef

if SendMessageEvent(m) then color(m) := red Rule 1

I Forward(m : MACHINE , t : TOKEN) =
if t = whiteToken then

WhiteTokenEvent(next(m)) := true
else

RedTokenEvent(next(m)) := true
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Dijkstras termination detection algorithm

Distributed Termination Detection: DASM-Procedure

Programs

I RegularMachineProgram =

ReactOnEvents(me)
if¬ Active(me) ∧ token(me) 6= undef then Rule 0

InitializeMachine(me) Rule 5
if color(me) = red then

Forward(me, redToken) Rule 2
else

Forward(me, token(me)) Rule 2
I With InitializeMachine(m : MACHINE) =

token(m) := undef
color(m) := white
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Dijkstras termination detection algorithm

Distributed Termination Detection: Procedure

Programs
I SupervisorMachineProgram =

ReactOnEvents(me)
if¬ Active(me) ∧ token(me) 6= undef then

if color(me) = white ∧ token(me) = whiteToken then
ReportGlobalTermination

else Rule 3
InitializeMachine(me) Rule 4
Forward(me,whiteToken) Rule 4
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Dijkstras termination detection algorithm

Distributed Termination Detection
Initial states

∃m0 ∈ MACHINE
(program(m0) = SupervisorMachineProgram ∧
token(m0) = redToken ∧
(∀m ∈ MACHINE)(m 6= m0 ⇒

(program(m) = RegularMachineProgram ∧ token(m) = undef )))

Environment constraints For all the executions and all linearizations
holds:

G (∀m ∈ MACHINE)
(SendMessageEvent(m) = true⇒ (P(Active(m)) ∧ Active(m)))
∧ ((Active(m) = true ∧ P(¬Active(m))⇒

(∃m′ ∈ MACHINE) (m′ 6= m ∧ SendMessageEvent(m′))))

Nextconstraints
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Chapter 10

Conclusions: Overall
structure
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Overall structure

1. Introduction
2. Functional specification and programming
3. Language and semantical aspects of higher-order logic
4. Proof system for higher-order logic
5. Sets, functions, relations, and fixpoints
6. Verifying functions
7. Inductively defined sets
8. Specification of programming language semantics
9. Program verification and programming logic
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Questions

Chapter 1: Introduction

1. Give an overview of the course.

2. Explain the terms model, specification, verification.

3. Explain language and semantics of propositional logic.

4. Give and explain a logical rule. How is this rule applied?

5. What is a Hilbert style, what a natural deduction style proof
system?

6. What is the advantage of a Hilbert style proof system?

7. Why is a natural deduction style proof system chosen for
interactive proof assistants?
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Questions

Chapter 2: Functional programming and specification

1. What is the relationship between the data type construct and the
case expression? Illustrate the relationship by an example.

2. What is the meaning of “fun f x = f x” in ML, what is the meaning
of the corresponding definition in Isabelle/HOL?

3. Why are there different forms of function definitions in
Isabelle/HOL, but only one in ML?

4. Why is there a distinction between types with equality and types
without equality in ML, but not in Isabelle/HOL?
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Questions

Chapter 3: Language and semantical aspects of HOL

1. What is the foundational reason that HOL is typed? Are there
other reasons w.r.t. an application in computer science?

2. What does “higher-order” mean?

3. Why is predicate logic not sufficient? Give an example?

4. What are the types in HOL?

5. What are the terms in HOL? Give examples of constants.

6. Explain the description operator.

7. What is a frame? What is an interpretation?

8. How is satisfiability defined?
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Questions

9. What is a standard model?
10. Give and explain one of the axioms of HOL?
11. Can the constants True and False be defined in HOL?
12. What does it mean that HOL+infinity is incomplete wrt. standard

models?
13. What is a conservative extension?
14. What is the advantage of conservative extensions over axiomatic

definitions?
15. Which syntactic schemata for conservative extensions were

treated in the lecture?
16. Give examples of constant definitions.
17. Explain the definitions of new types?
18. Does a data type definition in Isabelle/HOL lead to a new type?
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Questions

Chapter 4: Proof system for HOL
1. A natural deduction proof system distinguishes between

formulas, sequents, and rules. What are the differences?
2. Isabelle/HOL has nor clear distinction between sequents and

rules. Why?
3. Explain the different kinds of variables.
4. What is a proof state?
5. What is the distinction between a rule and a method?
6. Explain the method “rule” and show in detail how it can be

applied in a proof state?
7. What is an elimination rule?
8. Here is a proof state (shown on the screen). What is a rule that

can be applied?
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Questions

9. Name some rule and their uses.
10. What does it mean that a rule is safe?
11. Why is verification in Isabelle/HOL usually based on theory Main

and not directly on the HOL axioms?
12. What is rewriting and simplification?
13. How can an Isabelle/HOL user influence the simplification

process?
14. What is case analysis?
15. How differ methods for proof automation?
16. Explain a method for proof automation.
17. What is a forward proof step?

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 616



Application: Verification of distributed systems Conclusions: Overall structure

Questions

Chapter 5: Sets, functions, relations, and fixpoints

1. What is the relationship between sets and functions?

2. What is set comprehension?

3. How are sets be realized in Isabelle/HOL?

4. Whare is the relationship between sets and types (in
Isabelle/HOL)?

5. What is the principle of extensionality for functions? Why is it
important for verification?

6. Define injectivity as a predicate in Isabelle/HOL.

7. How are relations represented in Isabelle/HOL. What would be a
different representation?
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Questions

8. How can the reflexive and transitive closure of a relation be
defined? Can this be done in first order logic?

9. What is a well-founded relation?

10. What is a measure function?

11. Explain an application of well-founded relations?

12. What is a complete lattice? Give an example of a complete
lattice.

13. Explain the Kaster/Tarski theorem. Why is it important? What is
the relationship to inductive definitions?
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Questions

Chapter 6: Verifying functions

1. Explain the difference between verification and testing.

2. What is the advantage of formal proofs over paper and pencil
proofs?

3. Property specifications can be wrong. Does this mean that
verification is useless?

4. What is the relationship between termination and
well-definedness of functions?

5. How is termination usually proved? Sketch this for gcd and
quicksort.

6. What are the properties we proved for quicksort?

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 619



Application: Verification of distributed systems Conclusions: Overall structure

Questions

7. Explain shallow embedding.

8. How can functional properties of algorithms are proven in
Isabelle/HOL?

9. Can Isabelle/HOL be used to prove the complexity of an
algorithm? What would be needed (together with Chapter 8)?

10. What does structural induction over the function parameters
mean?
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Questions

Chapter 7: Inductively defined sets

1. Explain the inductive definition of sets. What is the syntactic
schema used?

2. Why is it necessary to constrain inductive definition to the
syntactic schema?

3. Give an example of an inductive definition.

4. What is the relationsship between recursive and inductive
definitions?

5. What is a coinductive definition?
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Questions

6. For which situation are coinductive definitions needed?

7. What is a transition system? Give examples.

8. Explain the syntax of LTL defined in the lecture.

9. What is a Kripke structure? How is it related to transition
systems?

10. What is a liveness property?
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Questions

Chapter 8:
Specification of programming language semantics

1. What is a programming language semantics? Who is a typical
user of a semantics?

2. What is a deep embedding of a language into a specification
framework such as Isabelle/HOL?

3. Explain big step semantics.

4. What can be expressed in small step semantics that is not
directly expressable in big step semantics?
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Questions

5. Show how the semantics of parallel statement execution can be
handled in small step semantics.

6. What does compositionality mean in the context of denotational
semantics?

7. How is operational semantics formalized in Isabelle/HOL?
Explain motivations for such formalizations.

8. Can programming language semantics be used for program
verification?
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Questions

Chapter 9:
Program verification and programming logic

1. What does it mean that a Hoare triple is valid? How can validity
be formalized?

2. How can a programming logic be expressed in HOL?

3. Why are assertions in Hoare logic be formalized as functions?

4. Can Hoare logic proofs be done in Isabelle/HOL? Explain a rule
application?

5. What does soundness mean for a Hoare logic? How is
soundness proved?
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