Specification and Verification in Higher Order Logic

Prof. Dr. K. Madlener

13. April 2011

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Organisation, **Overview**

- * ロ * * @ * * 目 * * 目 * … 目 … の < @

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic

《曰》《聞》《臣》《臣》 [臣]

Organisation

Contact

- Klaus Madlener
- Patrick Michel
- Christoph Feller
- http://www-madlener.informatik.uni-kl.de/teaching/ss2011/

Dates, Time, and Location

- 3C + 3R (8 ECTS-LP)
- Monday, 11:45-13:15, room 48-462
- Wednesday, 11:45-13:15, room 48-462 or room 32-411
- Thursday, 11:45-13:15, room 48-462

Introduction .

Course Webpage

http://www-madlener.informatik.uni-kl.de/teaching/ss2011/svhol/

Literature

《曰》《聞》《臣》《臣》 [臣]

Organisation (cont.)

- L. C. Paulson. *ML for the Working Programmer.* Cambridge University Press, 1996.
- R. Harper. Programming in Standard ML. Available at http://www.cs.cmu.edu/ rwh/smlbook/offline.pdf. Carnegie Mellon University, 2009.
- ► T. Nipkow, L. C. Paulson and M. Wenzel. *Isabelle/HOL A Proof* Assistant for Higher-Order Logic. Springer LNCS 2283, 2002
- Prof. Basin, Dr. Brucker, Dr. Smaus, Prof. Wolff Material of course CSMR http://www.infsec.ethz.ch/education/permanent/csmr/slides

イロト イ団ト イヨト イヨト

Organisation (cont.)

Acknowledgements

- ▶ to Dr. Jens Brandt who designed most of the slides
- > Prof. Dr. Arnd Poetzsch-Heffter for providing his course material
- Prof. Basin, Dr. Brucker, Dr. Smaus, Prof. Wolff, and the MMISS-project for the slides on CSMR
- Prof. Nipkow for the slides on Isabelle/HOL.
- to the Isabelle/HOL community

-

Overview

Overview

Course Outline

- Introduction
- Concepts of functional programming
- Higher-order logic
- Verification in Isabelle/HOL (and other theorem provers)
- Verification of algorithms: A case study
- Modeling and verification of finite software systems: A case study
- Specification of programming languages
- Verification of a Hoare logics
- Beyond interactive theorem proving

(4回) (4 注) (4 注) (注)

・ロット (四) マイロット (日) - 日 -

Overall structure

- 1. Introduction
- 2. Functional specification and programming
- 3. Language and semantical aspects of higher-order logic
- 4. Proof system for higher-order logic
- 5. Sets, functions, relations, and fixpoints
- 6. Verifying functions
- 7. Inductively defined sets
- 8. Specification of programming language semantics
- 9. Program verification and programming logic

Overall structure

Chapter 1: Introduction

- 1. Terminology: Specification, verification, logic
- 2. Language: Syntax and semantics
- 3. Proof systems
 - 3.1 Hilbert style proof systems
 - 3.2 Proof system for natural deduction

<ロ> (四) (四) (三) (三) (三) (三)

Chapter 2: Functional programming and specification

- 1. Functional programming in ML
- 2. A simple theorem prover: Structure and unification
- 3. Functional specification in isabelle/HOL
- » slides_02: 1-65
- » slides_02: 77-101
- » Chapter 2 and 3 of Isabelle/HOL Tutorial

Chapter 3: Language and semantical aspects of HOL

- 1. Introduction to higher-order logic
- 2. Foundation of higher-order logic
- 3. Conservative extension of theories

Chapter 4: Proof system for HOL

- 1. Formulas, sequents, and rules revisited
- 2. Application of rules
- 3. Fundamental methods of Isabelle/HOL
- 4. An overview of theory Main
 - 4.1 The structure of theory Main
 - 4.2 Set construction in Isabelle/HOL
 - 4.3 Natural numbers in Isabelle/HOL

Chapter 4: Proof system for HOL (cont.)

- 5. Rewriting and simplification
- 6. Case analysis and structural induction
- 7. Proof automation
- 8. More proof methods
- » slides of Sessions 2, 3.1, 3.2, and 4 & 5 by T. Nipkow
- » Chapter 5 of Isabelle/HOL Tutorial til page 99

<ロ> (四) (四) (三) (三) (三) (三)

Overall structure

Chapter 5: Sets, functions, relations, and fixpoints

- 1. Sets
- 2. Functions
- 3. Relations
- 4. Well-founded relations
- 5. Fixpoints
- » Chapter 6 of Isabelle/HOL Tutorial til page 118

Chapter 6: Verifying functions

- 1. Conceptual aspects
- 2. Case study: Gcd
- 3. Case study: Quicksort Shallow embedding of algorithms
- » theories for Gcd and Quicksort

Chapter 7: Inductively defined sets

- 1. Defining sets inductively
- 2. Specification of transitions systems
 - 2.1 Transition systems
 - 2.2 Modeling: Case study Elevator
 - 2.3 Reasoning about finite transition systems
- » Section 7.1 of Isabelle/HOL Tutorial
- » slides of Sessions 6.1 T. Nipkow
- » theory for Elevator

Chapter 8: Specification of programming language semantics

- 1. Introduction to programming language semantics
- 2. Techniques to express semantics
 - 2.1 Natural semantics / big step semantics
 - 2.2 Structured operational semantics / small step semantics
 - 2.3 Denotational semantics
- 3. Formalizing semantics in HOL
- » slides about operational semantics by P. $M\tilde{A}\frac{1}{4}$ ller
- » theory for while-language

Chapter 9: Program verification and programming logic

- 1. Hoare logic
- 2. Program verification based on language semantics
- 3. Program verification with Hoare logic
- 4. Soundness of Hoare logic
- » theory for while-language
- » theory for Hoare logic

Chapter 1

Introduction

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic

Overview

Overview

Motivation

- ► Specifications: Models and properties ~→ Spec-formalisms
- How do we express/specify facts? ~> Languages
- What is a proof? What is a formal proof? ~ Logical calculus
- How do we prove a specified fact? ~> Proof search
- ► Why formal? What is the role of a theorem prover? ~> Tools

Goals

- role of formal specifications
- recapitulate logic
- introduce/review basic concepts

口 医牙骨下的 法法 医医子宫

Role of formal Specifications

- Software and hardware systems must accomplish well defined tasks (requirements).
- Software Engineering has as goal
 - Definition of criteria for the evaluation of SW-Systems
 - Methods and techniques for the development of SW-Systems, that accomplish such criteria
 - Characterization of SW-Systems
 - Development processes for SW-Systems
 - Measures and Supporting Tools
- Simplified view of a SD-Process:

Definition of a sequence of actions and descriptions for the SW-System to be developed. Process- and Product-Models

Goal: The group of documents that includes an executable program.

-

Organisation, Overview

Introduction .

Motivation

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Comment

- First Specification: Global Specification
 Fundament for the Development
 "Contract or Agreement" between Developers and Client
- Intermediate (partial) specifications:
 Base of the Communication between Developers.
- Programs: Final products.

Development paradigms

- Structured Programming
- Design + Program
- Transformation Methods

▶ ...

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Properties of Specifications

Consistency

Completeness

- Validation of the global specification regarding the requirements.
- Verification of intermediate specifications regarding the previous one.
- Verification of the programs regarding the specification.
- Verification of the integrated final system with respect to the global specification.
- Activities: Validation, Verification, Testing, Consistency- and Completeness-Check
- Tool support needed!

Requirements

- The global specification describes, as exact as possible, what must be done.
- Abstraction of the how Advantages
 - apriori: Reference document, compact and legible.
 - aposteriori: Possibility to follow and document design decisions traceability, reusability, maintenance.
- Problem: Size and complexity of the systems.

Principles to be supported

- Refinement principle: Abstraction levels
- Structuring mechanisms: Decomposition and modularization techniques
- Object orientation
- Verification and validation concepts

Requirements Description ~>> Specification Language

- Choice of the specification technique depends on the System.
 Frequently more than a single specification technique is needed.
 (What How).
- Type of Systems: Pure function oriented (I/O), reactive- embedded- real timesystems.
- Problem : Universal Specification Technique (UST) difficult to understand, ambiguities, tools, size ... e.g. UML
- Desired: Compact, legible and exact specifications

Here: functional specification techniques

-

・ロト ・ 同ト ・ ヨト ・ ヨト

Formal Specifications

- A specification in a formal specification language defines all the possible behaviors of the specified system.
- 3 Aspects: Syntax, Semantics, Inference System
 - Syntax: What's allowed to write: Text with structure, Properties often described by formulas from a logic, e.g equational logic.
 - ► Semantics: Which models are associated with the specification, ~→ Notion of models.
 - Inference System: Consequences (Derivation) of properties of the system. → Notion of consequence.

-

Formal Specifications

Two main classes:

Model oriented

(constructive) e.g.VDM, Z, ASM Construction of a non-ambiguous model from available data structures and construction rules Concept of correctness **Property oriented**

(declarative) signature (functions, predicates) Properties (formulas, axioms)

models algebraic specification AFFIRM, OBJ, ASF, HOL,...

- 4 回 ト 4 回 ト

 Operational specifications: Petri nets, process algebras, automata based (SDL).

3

・ロット (四) ・ (日) ・ (日) ・ (日)

Tool support

- Syntactic support (grammars, parser,...)
- Verification: theorem proving (proof obligations)
- Prototyping (executable specifications)
- Code generation (out of the specifications generate C code)
- Testing (from the specification generate test cases for the program)

Desired:

To generate the tools out of the syntax and semantics of the specification language

Example: declarative

Example 1.1. Restricted logic: e.g. equational logic

- Axioms: $\forall X \ t_1 = t_2$ t_1, t_2 terms.
- Rules: Equals are replaced with equals. (directed).
- ► Terms ≈ names for objects (identifier), structuring, construction of the object.
- ► Abstraction: Terms as elements of an algebra, term algebra.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Formal Specifications

Stack: algebraic specification

Example 1.2. Elements of an algebraic specification: Signature (sorts (types), operation names with arities), Axioms (often only equations)

SPEC STACK USING NATURAL, BOOLEAN "Names of known SPECs" SORT stack "Principal type" OPS init : \rightarrow stack "Constant of the type *stack*, empty stack" push : stack nat \rightarrow stack pop : stack \rightarrow stack top : stack \rightarrow stack top : stack \rightarrow nat is_empty? : stack \rightarrow bool stack_error : \rightarrow stack nat_error : \rightarrow nat

(Signature fixed)

-

Formal Specifications

Axioms for Stack

FORALL s : stack n : nat AXIOMS is_empty? (init) = true is_empty? (push (s, n)) = false pop (init) = stack_error pop (push (s, n)) = s top (init) = nat_error top (push (s,n)) = n

Terms or expressions: top (push (push (init, 2), 3)) "means" 3

Semantics? Operationalization?

Apply equations as rules from left to right-----

Notion of rules and rewriting

Example: Sorting of lists over arbitrary types

Example 1.3.

	spec	ELEMENT
	use	BOOL
	sorts	elem
Formal :: <	ops	$. \leq .:$ elem, elem $ ightarrow$ bool
	eqns	$x \le x = $ true
		$imp(x \le y \text{ and } y \le z, x \le z) = true$
		$x \leq y$ or $y \leq x = $ true

Formal Specifications

Example (Cont.)

spec LIST[ELEMENT] use ELEMENT sorts list

Example (Cont.)

```
eqns case(true, l_1, l_2) = l_1
case(false, l_1, l_2) = l_2
```

insert(x, nil) = x.nil $insert(x, y.l) = case(x \le y, x.y.l, y.insert(x, l))$

insertsort(nil) = nil
insertsort(x.l) = insert(x, insertsort(l))

sorted(nil) = true sorted(x.nil) = true sorted(x.y.l) = if $x \le y$ then sorted(y.l) else false

Property: sorted(insertsort(*I*)) = true

Language: Syntax and Semantics

Syntax

Aspects of syntax

- used to designate things and express facts
- terms and formulas are formed from variables and function symbols
- function symbols map a tupel of terms to another term
- constant symbols: no arguments
- constant can be seen as functions with zero arguments
- predicate symbols are considered as boolean functions
- set of variables

Language: Syntax and Semantics

Example 1.4. Natural Numbers

- constant symbol: 0
- function symbol suc : $\mathbb{N} \to \mathbb{N}$
- function symbol plus : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$
- function symbol ...

<ロ> (四) (四) (三) (三) (三) (三)

Syntax of propositional logic

Definition 1.5. Symbols

- $\mathcal{V} = \{a, b, c, \ldots\}$ is a set of propositional variables
- two function symbols: \neg and \rightarrow

Definition 1.6. Language

- each $P \in V$ is a formula
- if ϕ is a formula, then $\neg \phi$ is a formula
- if ϕ and ψ are formulas, then $\phi \rightarrow \psi$ is a formula

Semantics

Purpose

- syntax only specifies the structure of terms and formulas
- symbols and terms are assigned a meaning
- variables are assigned a value
- ▶ in particular, propositional variables are assigned a truth value

Bottom-Up Approach

- assignments give variables a value
- terms/formulas are evaluated based on the meaning of the function symbols

Interpretations/Structures

Definition 1.7. Assignment in Propositional Logic A variable assignment in propositionan logic is a mapping

► $I : \mathcal{V} \to \{\text{true}, \text{false}\}$

Definition 1.8. Valuation of Propositional Logic

The valuation V takes an assignment I and a formula and yiels a true or false:

• if
$$\phi \in \mathcal{V}$$
: $V(\phi) = I(\phi)$

$$V(\neg \phi) = f_{\neg}(V(\phi))$$

$$\mathsf{V}(\phi \to \psi) = \mathsf{f}_{\to}(\mathsf{V}(\phi), \mathsf{V}(\psi))$$

where

f_		f_{\rightarrow}	false	true
false	true	false	true	true
true	false	true	false	true

Problem 1.9. Is V a well defined function?

Language: Syntax and Semantics

Validity

Definition 1.10. Validity of formulas in propositional logic

- a formula φ is valid if VIφ evaluates to true for all assigments I
- notation: $\models \phi$

Example 1.11. Tautology in Propositional Logic

•
$$\phi = a \lor \neg a$$
 (where $a \in \mathcal{V}$) is valid

- I(a) =false: $V(a \lor \neg a) =$ true
- $I(a) = \text{true: } V(a \lor \neg a) = \text{true}$

イロン イロン イヨン イヨン 二日 二

Syntactic Sugar

Purpose

- additions to the language that do not affect its expressiveness
- more practical way of description

Example 1.12. Abbreviations in Propositional Logic

- True denotes $\phi \rightarrow \phi$
- ► False denotes ¬True
- $\phi \lor \psi$ denotes $(\neg \phi) \to \psi$
- $\phi \land \psi$ denotes $\neg((\neg \phi) \lor (\neg \psi))$
- $\phi \leftrightarrow \psi$ denotes $((\phi \rightarrow \psi) \land (\psi \rightarrow \phi))$

Proof Systems/Logical Calculi: Introduction

General Concept

- purely syntactical manipulations based on designated transformation rules
- starting point: set of formulas, often a given set of axioms
- deriving new formulas by deduction rules from given formulas Γ
- φ is provable from Γ if φ can be obtained by a finite number of derivation steps assuming the formulas in Γ
- notation: $\Gamma \vdash \phi$ means ϕ is *provable* from Γ
- notation: $\vdash \phi$ means ϕ is *provable* from a given set of axioms

-

Proof Systems/Logical Calculi

Proof System Styles

Hilbert Style

- easy to understand
- hard to use

Natural Deduction

- easy to use
- hard to understand

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof Systems/Logical Calculi

Hilbert-Style Deduction Rules

Definition 1.13. Deduction Rule

deduction rule d is a n + 1-tuple

$$\phi_1 \cdots \phi_n$$

 ψ

- formulas $\phi_1 \dots \phi_n$, called premises of rule
- formula ψ , called conclusion of rule

Hilbert-Style Proofs

Definition 1.14. Proof

- let D be a set of deduction rules, including the axioms as rules without premisses
- proofs in D are (natural) trees such that
 - axioms are proofs

► if
$$P_1, ..., P_n$$
 are proofs with roots $\phi_1 ... \phi_n$ and

$$\frac{\phi_1 \cdots \phi_n}{\psi}$$
 is in D, then

$$\frac{P_1 \cdots P_n}{\psi}$$
 is a proof in D

can also be written in a line-oriented style

《曰》《聞》《臣》《臣》 [] 臣]

Proof Systems/Logical Calculi

Hilbert-Style Deduction Rules

Axioms

- ▶ let Γ be a set of axioms, ψ ∈ Γ, then $\overline{ψ}$ is a proof
- axioms allow to construct trivial proofs

Rule example

• Modus Ponens:
$$\frac{\phi \rightarrow \psi, \phi}{\psi}$$

 $\blacktriangleright\,$ if $\phi \rightarrow \psi$ and ϕ have already been proven, ψ can be deduced

イロン イロン イヨン イヨン 二日 二

Proof Systems/Logical Calculi

Proof Example

Example 1.15. Hilbert Proof

- ► language formed with the four proposition symbols P, Q, R, S
- axioms: $P, Q, Q \rightarrow R, P \rightarrow (R \rightarrow S)$

イロン イロン イヨン イヨン

Proof Systems/Logical Calculi

Hilbert Calculus for Propositional Logic

Definition 1.16. Axioms of Propositional Logic All instantiations of the following schemas:

$$\blacktriangleright A \to (B \to A)$$

$$\blacktriangleright (A \to (B \to C)) \to ((A \to B) \to (A \to C))$$

$$\blacktriangleright \ (\neg B \to \neg A) \to ((\neg B \to A) \to B)$$

Rules: All instantiations of modus ponens.

-

Natural Deduction

Motivation

- introducing a hypothesis is a natural step in a proof
- Hilbert proofs do not permit this directly
- $\blacktriangleright\,$ can be only encoded by using $\rightarrow\,$
- proofs are much longer and not very natural

Natural Deduction

- alternative definition where introduction of a hypothesis is a deduction rule
- deduction step can modify not only the proven propositions but also the assumptions Γ

(本間) (本臣) (本臣) (王臣)

Proof Systems/Logical Calculi

Natural Deduction Rules

Definition 1.17. Natural Deduction Rule

deduction rule d is a n + 1-tuple

$$\frac{\Gamma_1 \vdash \phi_1 \quad \cdots \quad \Gamma_n \vdash \phi_n}{\Gamma \vdash \psi}$$

- pairs of Γ (set of formulas) and ϕ (formulas): sequents
- proof: tree of sequents with rule instantiations as nodes

Natural Deduction Rules

Natural Deduction Rules

- rich set of rules
- elimination rules eliminate a logical symbol from a premise
- introduction rules introduce a logical symbol into the conclusion
- reasoning from assumptions
- Assumption Introduction, Assumption weakening:

$$\hline \Gamma \vdash \phi \quad \phi \in \Gamma \qquad \qquad \frac{\Gamma \vdash \phi}{\Gamma, \psi \vdash \phi}$$

(日)
 (日)

Proof Systems/Logical Calculi

Natural Deduction Rules

Definition 1.18. Natural Deduction Rules for Propositional Logic

V-introduction

$$\frac{\Gamma \vdash \phi}{\Gamma \vdash \phi \lor \psi} \qquad \frac{\Gamma \vdash \psi}{\Gamma \vdash \phi \lor \psi}$$

► ∨-elimination

$$\begin{array}{c|c} \Gamma \vdash \phi \lor \psi & \Gamma, \phi \vdash \xi & \Gamma, \psi \vdash \xi \\ \hline \Gamma \vdash \xi \end{array}$$

 \blacktriangleright \rightarrow -introduction

$$\frac{ \mathsf{\Gamma}, \phi \vdash \psi}{\mathsf{\Gamma} \vdash \phi \to \psi}$$

→-elimination

$$\frac{\Gamma \vdash \phi \to \psi \qquad \Gamma \vdash \phi}{\Gamma \vdash \psi}$$

イロン イロン イヨン イヨン

Natural Deduction Example

Example 1.19.
$$\{A \rightarrow C, B \rightarrow C\} \vdash (A \lor B) \rightarrow C$$

$$\frac{\overline{\Gamma, A \vdash A \to C} \quad \overline{\Gamma, A \vdash A}}{\Gamma, A \vdash C} \quad \frac{\overline{\Gamma, A \vdash A}}{\Gamma, B \vdash C} \\
\frac{\overline{\Gamma := \{A \to C, B \to C, A \lor B\} \vdash C}}{\{A \to C, B \to C\} \vdash (A \lor B) \to C}$$

-2

Summary

・ロット (四) ・ (日) ・ (日) ・ (日)

Summary

Specification and verification

Algebraic specification - Functional specification

Theorem-Proving Fundamentals

- syntax: symbols, terms, formulas
- semantics: (mathematical structures,) variable assignments, denotations for terms and formulas
- proof system/(logical) calculus: axioms, deduction rules, proofs, theories

Fundamental Principle of Logic: "Establish truth by calculation" (APH, 2010)