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Introduction

• Stands for Higher Order Logic
• Denotes both a logic and a system
• Logic is an evolution of Alonzo Church’s
Simple Theory of Types (1940)

• System is an evolution of LCF (1979)
• Intent of this lecture: give an overview of HOL
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Some Logical History

• Frege was a logicist (math is a subset of logic)
• Proposed a system on which (he thought) all mathematics
could be derived (in principle)

• Bertrand Russell found paradox in Frege’s system
• Proposed the Ramified Theory of Types
• Wrote Principia Mathematica with Whitehead
• An attempt at developing basic mathematics completely
formally

“My intellect never recovered from the strain”
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Russell’s Paradox

Definition
A set s does not contain itself if s /∈ s

Fact
Consider X = {s | s /∈ s}. X is the set of all sets that do not
contain themselves.

• If X ∈ X then X does not contain itself, i.e., X /∈ X
• If X /∈ X then X contains itself, i.e., X ∈ X

So X ∈ X iff X /∈ X. Contradiction.

• Gottlob, we have a problem!
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Type Theory

• Problem: even allowing the expression of the notion of sets
that do not contain themselves leads to contradiction

• One solution: ban such self-referential expressions
(so-called vicious circles)

• Russell’s proposal: invent a hierarchy of types
• Elements of lower types could not be applied to elements
of higher types

• Blocks the paradox because X ∈ X no longer a
well-formed expression
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Type Theories

• Russell’s Ramified Theory of Types was very complex
• Simplified by Frank Ramsey in 1920s
• A. Church used typed λ-calculus to give a sleek
presentation (Simple Theory of Types 1940)

• An earlier attempt by Church used untyped λ-calculus as a
foundation for mathematics. It was inconsistent.

• HOL is a version of Church’s 1940 logic.
• Many other variants as well, e.g., Calculus of Constructions
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History of HOL Implementations

• Late 1960’s : Dana Scott’s Domain Theory
• Logic of Computable Functions: a (first order) logic for
Scott’s theory

• Implemented in Edinburgh LCF (mid-1970s)
• Early 1980’s : Mike Gordon swapped Scott’s logic for
Church’s

• Kept much of LCF implementation
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Contemporary Implementations of HOL

• HOL-Light (Harrison)
• HOL-4 (Gordon, Slind, Norrish, others)
• Isabelle/HOL (Paulson,Nipkow)
• ProofPower (Arthan)
• reFLect (Intel)

Related systems:

• PVS (extension of Church’s logic with dependent types
and subtypes)

• ACL2 (built on Common Lisp subset)
• MIZAR (Tarski-Grothendieck set theory)
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Page of Logic Implementations

For a collection of logic implementations see

http://www.cs.ru.nl/~freek/digimath/index.html
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Motivation
• Higher-order logic (HOL) is an expressive foundation for

mathematics: analysis, algebra, . . .
computer science: program correctness, hardware

verification, . . .

• Reasoning in HOL is classical.

• Still important: modeling of problems (now in HOL).

• Still important: deriving relevant reasoning principles.

(rev. 12275)
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Motivation (2)
• HOL offers safety through strength:

◦ small kernel of constants and axioms;

◦ Safety via conservative (definitional) extensions.

• Contrast with
◦ weak logics (e.g., propositional logic): can’t define much;

◦ axiomatic extensions: can lead to inconsistency

Bertrand Russell once likened the advantages of postulation
over definition to the advantages of theft over honest toil!

(rev. 12275)
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Alternatives to Isabelle/HOL
• We will use and focus on Isabelle/HOL.

• Could forgo the use of a meta-logic and employ
alternatives, e.g., HOL system or PVS. Or use constructive
alternatives such as Coq or Nuprl.

• Choice depends on culture and application.

(rev. 12275)
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Which Foundation?
• Set theory is often seen as the basis for mathematics.

◦ Zermelo-Fraenkel, Bernays-Gödel, . . .

◦ Set theories (both) distinguish between sets and classes.

◦ Consistency maintained as some collections are “too big” to be sets,
e.g., class of all sets is not a set. A class cannot belong to another
class (let alone a set)!

• HOL as an alternative (Church 1940, Henkin 1950).
◦ Rationale: one usually works with typed entities.

◦ Isabelle/HOL also supports like polymorphism and type classes.
HOL is weaker than ZF set theory, but for most applications this
does not matter. If you prefer ML to Lisp, you will probably prefer
HOL to ZF. —Larry Paulson

• Another alternative: category theory (Eilenberg, Mac Lane)
(rev. 12275)
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Meaning of “Higher Order”

1st-order: quantification over individuals (0th-order objects).

∀x, y.R(x, y) −→ R(y, x)

2nd-order: quantification over predicates and functions.
false ≡ ∀P. P
P ∧Q ≡ ∀R. (P −→ Q −→ R) −→ R

3rd-order: quantify over variables whose arguments are pred-
icates.
...
“higher order” � union of all finite orders

(rev. 12275)
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Basic HOL Syntax (1)
• Types:

τ ::= bool | ind | τ ⇒ τ

◦ bool and ind are also called o and i in literature [Chu40, And86]

◦ Isabelle allows definitions of new type constructors, e.g., list(bool)
◦ Isabelle supports polymorphic type definitions, e.g., list(α)

• Terms: (V set of variables and C set of constants)

T ::= V | C | (T T ) | λV. T

◦ Terms are simply-typed.

◦ Terms of type bool are called (well-formed) formulae.

(rev. 12275)
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Basic HOL Syntax (2)
• Constants are always supplied with types and include:

True,False : bool
= : τ ⇒ τ ⇒ bool (for all types τ)
−→ : bool ⇒ bool ⇒ bool

ι : (τ ⇒ bool)⇒ τ (for all types τ)

• Note that the description operator ιf yields the unique
element x for which f x is True, provided it exists.
Otherwise, it yields an arbitrary value.

• Note that in Isabelle, the provisos “for all types τ” can be
expressed by using polymorphic type variables α.

(rev. 12275)
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HOL Semantics
• Intuitively an extension of many-sorted semantics with

functions
◦ FOL: structure is domain and functions/relations

�D, (fi)i∈F , (ri)i∈R�

◦ Many-sorted FOL: domains are sort-indexed

�(Di)i∈S, (fi)i∈F , (ri)i∈R�

◦ HOL extends idea: domain D is indexed by (infinitely many) types

• Our presentation ignores polymorphism on the
object-logical level, it is treated on the meta-level, though
(a version covering object-level parametric polymorphism is
[GM93]).

(rev. 12275)
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Model Based on Universe of Sets U
Definition 1 (Universe):

U is a collection of sets, fulfilling closure conditions:

Inhab: Each X ∈ U is a nonempty set

Sub: If X ∈ U and Y �= ∅ ⊆ X, then Y ∈ U

Prod: If X, Y ∈ U then X × Y ∈ U .

X × Y is Cartesian product, {{x}, {x, y}} encodes (x, y)

Pow: If X ∈ U then P(X) = {Y : Y ⊆ X} ∈ U

Infty: U contains a distinguished infinite set I

(rev. 12275)
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Universe of Sets U (cont.)
• Function space:

X ⇒ Y is the set of (graphs of all total) functions from X
to Y
◦ For X and Y nonempty, X ⇒ Y is a nonempty subset of P(X × Y )
◦ From closure conditions: X, Y ∈ U then so is X ⇒ Y .

• Distinguished sets:
from Infty and Sub there is (at least one) set

Unit: A distinguished 1 element set {1}
Bool: A distinguished 2 element set {T, F}.

(rev. 12275)
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Definition 2 (Frame):

A frame is a collection (Dα)α∈τ with Dα ∈ U , for α ∈ τ and

• Dbool = {T, F}
• Dind = X where X is some infinite set of individuals

• Dα⇒β ⊆ Dα ⇒ Dβ, i.e., some collection of functions from
Dα to Dβ

Example: Dbool⇒bool is some nonempty subset of functions
from {T, F} to {T, F}. Some of these subsets contain, e.g.,
the identity function, others do not.

(rev. 12275)
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Definition 3 (Interpretation):

An interpretation �(Dα)α∈τ ,J � consists of a frame (Dα)α∈τ

and a denotation function J mapping each constant of type
α to an element of Dα where:

• J (True) = T and J (False) = F

• J (=α⇒α⇒bool) is the identity on Dα

• J (−→) denotes the implication function over Dbool , i.e.,

b → b� =
�

F if b = T and b� = F
T otherwise

• J (ι(α⇒bool)⇒α) ∈ (Dα ⇒ Dbool) ⇒ Dα denotes the function

the(f) =
�

a if f = (λx.x = a)
y otherwise (y ∈ Dα is arbitrary)

(rev. 12275)
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Definition 4 (Generalized Models):

An interpretation M = �(Dα)α∈τ ,J � is a (general) model for
HOL iff there is a binary function VM such that

• for all type-indexed families of substitutions σ = (σα)α∈τ

and terms t of type α, VM(σ, t) ∈ Dα, and

• for all type-indexed families of substitutions σ = (σα)α∈τ ,
(a) VM(σ, xα) = σα(xα)

(b) VM(σ, c) = J (c), for c a (primitive) constant

(c) VM(σ, sα⇒βtα) = VM(σ, s)VM(σ, t)
i.e., the value of the function VM(σ, s) at the argument VM(σ, t)

(d) VM(λxα. tβ) = “the function from Dα into Dβ whose value for
each z ∈ Dα is VM(σ[x ← z], t)”

(rev. 12275)
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Generalized Models - Facts (1)
• If M is a general model and σ a substitution,

then VM(σ, t) is uniquely determined, for every term t.

VM(σ, t) is value of t in M w.r.t. σ.

• Gives rise to the standard notion of satisfiability/validity:
◦ We write VM, σ |= φ for VM(σ, φ) = T .

◦ φ is satisfiable in M if VM, σ |= φ, for some substitution σ.

◦ φ is valid in M if VM, σ |= φ, for every substitution σ.

◦ φ is valid (in the general sense) if φ is valid in every general model
M.

(rev. 12275)
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Generalized Models - Facts (2)
• Not all interpretations are general models.

• Closure conditions guarantee every well-formed formula
has a value under every assignment, e.g.,

closure under functions: identity function from Dα to Dα

must belong to Dα⇒α so that VM(σ, λxα. x) is defined.
closure under application:
◦ if DN is set of natural numbers and

◦ DN⇒N⇒N contains addition function p where p x y = x + y

◦ then DN⇒N must contain k x = 2x + 5
since k = VM(σ, λx. f(f x x) y) where σ(f) = p and σ(y) = 5.

(rev. 12275)
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Standard Models
Definition 5 (Standard Models):

A general model is a standard model iff for all α, β ∈ τ ,
Dα⇒β is the set of all functions from Dα to Dβ.

• A standard model is a general model, but not necessary
vice versa.

• Analogous definitions for satisfiability and validity w.r.t.
standard models.

(rev. 12275)
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Standard Models
Definition 5 (Standard Models):

A general model is a standard model iff for all α, β ∈ τ ,
Dα⇒β is the set of all functions from Dα to Dβ.

• A standard model is a general model, but not necessary
vice versa.

• Analogous definitions for satisfiability and validity w.r.t.
standard models.

• We can now re-introduce HOL in Isabelle’s meta-logic.

(rev. 12275)
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Isabelle/HOL
The syntax of the core-language is introduced by:
consts

Not :: bool ⇒ bool (”¬ ” [40] 40)
True :: bool
False :: bool
If :: [bool, ’a, ’a] ⇒ ’a (”( if then else )”)
The :: (’a ⇒ bool) ⇒ ’a (binder ”THE ” 10)
All :: (’a ⇒ bool) ⇒ bool (binder ”∀ ” 10)
Ex :: (’a ⇒ bool) ⇒ bool (binder ”∃ ” 10)
= :: [’ a, ’a] ⇒ bool ( infixl 50)
∧ :: [bool, bool] ⇒ bool ( infixr 35)
∨ :: [bool, bool] ⇒ bool ( infixr 30)
−→ :: [bool, bool] ⇒ bool ( infixr 25)

(rev. 12275)
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The Axioms of HOL (1)
axioms

refl : ”t = t”
subst : ”[[ s = t; P(s) ]] =⇒ P(t)”

ext : ”(
�

x. f x = g x) =⇒ (λx. f x) = (λx. g x)”

impI: ”(P =⇒Q) =⇒P−→Q”
mp: ”[[ P−→Q; P ]] =⇒Q”

iff : ”(P−→Q) −→(Q−→P) −→(P=Q)”
True or False : ”(P=True) ∨(P=False)”

the eq trivial : ”(THE x. x = a) = (a::’a)”

(rev. 12275)
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The Axioms of HOL (2)
Additionally, there is:

• universal α, β, and η congruence on terms (implicitly),

• the axiom of infinity, and

• the axiom of choice (Hilbert operator).

• This is the entire basis!

(rev. 12275)
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Core Definitions of HOL
defs

True def : True ≡ ((λx::bool. x) = (λx. x))
All def : All (P) ≡ (P = (λx. True))
Ex def: Ex(P) ≡∀Q. (∀ x. P x−→Q) −→Q
False def : False ≡ (∀P. P)
not def : ¬ P ≡P−→False
and def: P ∧Q ≡∀R. (P−→Q−→R) −→R
or def : P ∨Q ≡∀R. (P−→R) −→(Q−→R) −→R
if def : If P x y ≡THE z::’a. (P=True −→z=x) ∧

(P=False −→z=y)

(rev. 12275)
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Meta-theoretic Properties of HOL
Theorem 1 (Soundness of HOL, [And86]):

HOL is sound w.r.t. to general models.
�HOL φ implies φ is valid

Theorem 2 (Completeness of HOL, [And86]):

• HOL is complete w.r.t. to general models.
φ is valid implies �HOL φ

• HOL is complete w.r.t. to standard models.

Theorem 3 (HOL with infinity, [And86]):

• HOL+infinity is complete w.r.t. general models.

• HOL+infinity is incomplete w.r.t. standard models.

(rev. 12275)
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Conclusions
• HOL generalizes semantics of FOL

◦ bool serves as type of propositions

◦ Syntax/semantics allows for higher-order functions

• Logic is rather minimal: 8 rules, more-or-less obvious

• Logic is very powerful in terms of what we can
represent/derive.
◦ Other “logical” syntax

◦ Rich theories via conservative extensions
(topic for next few weeks!)

(rev. 12275)
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Outline
In the previous lecture, we have derived all well-known
inference rules. There is now the need to scale up. Today we
look at conservative theory extensions, an important method
for this purpose.

In the weeks to come, we will look at how mathematics is
encoded in the Isabelle/HOL library.

(rev. 32934)
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Conservative Theory Extensions: Basics

Terminology and basic definitions (c.f. [GM93]):

Definition 6 (theory):

A (syntactic) theory T is a triple (χ,Σ, A), where χ is a type
signature, Σ a signature, and A a set of axioms.

Definition 7 (consistent):

A theory T is consistent iff False is not provable in T .

Definition 8 (theory extension):

A theory T � = (χ�,Σ�, A�) is an extension of a theory
T = (χ,Σ, A) iff χ ⊆ χ� and Σ ⊆ Σ� and A ⊆ A�.

(rev. 32934)
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Definitions (Cont.)
Definition 9 (conservative extension):

A theory extension T � = (χ�,Σ�, A�) of a theory
T = (χ,Σ, A) is conservative iff for the set of provable
formulas Th we have

Th(T ) = Th(T �) |Σ,

where |Σ filters away all formulas not belonging to Σ.

Counterexample:

∀f :: α ⇒ α. Y f = f (Y f)
fix
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Consistency Preserved
Lemma 1 (consistency):

If T � is a conservative extension of a consistent theory T ,
then

False /∈ Th(T �).
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Syntactic Schemata for Conservative
Extensions

• Constant definition

• Type definition

• Constant specification

• Type specification

Will look at first two schemata now.

For the other two see [GM93].

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 266



HOL:Foundations

HOL:Conservative extensions

Constant Definition 695

Constant Definition

Definition 10 (constant definition):

A theory extension T � = (χ�,Σ�, A�) of a theory
T = (χ,Σ, A) is a constant definition, iff

• χ� = χ and Σ� = Σ ∪ {c :: τ}, where c /∈ dom(Σ);
• A� = A ∪ {c = E};
• E does not contain c and is closed;

• no subterm of E has a type containing a type variable that
is not contained in the type of c.
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Constant Definitions are Conservative
Lemma 2 (constant definitions):

A constant definition is a conservative extension.

Proof Sketch:

• Th(T ) ⊆ Th(T �) |Σ : trivial.

• Th(T ) ⊇ Th(T �) |Σ : let π� be a proof for φ ∈ Th(T �) |Σ.
We unfold any subterm in π� that contains c via c = E
into π. π is a proof in T , i.e., φ ∈ Th(T ).
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Side Conditions
Where are those side conditions needed? What goes wrong?

Simple example: Let E ≡ ∃x :: α. ∃y :: α. x �= y and
suppose σ is a type inhabited by only one term, and τ is a
type inhabited by at least two terms. Then we would have:

c = c holds by refl
=⇒ (∃x :: σ. ∃y :: σ. x �= y) = (∃x :: τ. ∃y :: τ. x �= y)
=⇒ False = True
=⇒ False

Reconsider the definition of True.
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Constant Definition: Examples
Definitions of True, False, ¬, ∧, ∨, ∀, and ∃ revisited.
True def : True ≡ ((λx::bool. x) = (λx. x))
All def : All (P) ≡ (P = (λx. True))
Ex def: Ex(P) ≡∀Q. (∀ x. P x−→Q) −→Q
False def : False ≡ (∀P. P)
not def : ¬ P ≡P−→False
and def: P ∧Q ≡∀R. (P−→Q−→R) −→R
or def : P ∨Q ≡∀R. (P−→R) −→(Q−→R) −→R

Recall that All (P) is equivalent to ∀ x. P x and
Ex(P) is equivalent to ∃ x. P x.
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More Constant Definitions in Isabelle
let−in−, if−then−else, unique existence:

consts
Let :: [’ a, ’a ⇒ ’b] ⇒ ’b
If :: [bool, ’a, ’a] ⇒ ’a
Ex1 :: (’a ⇒ bool) ⇒ bool

defs
Let def : ”Let s f ≡ f(s)”
if def : ” If P x y ≡THE z::’a .(P=True−→z=x) ∧

(P=False−→z=y)”
Ex1 def: ”Ex1(P) ≡∃ x. P(x) ∧ (∀ y. P(y) −→ y=x)”

Note: ⇒ is function type arrow; recall syntax for [...] ⇒ ...
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Type Definitions

Type definitions, explained intuitively: we have

• an existing type r;

• a predicate S :: r ⇒ bool , defining a non-empty “subset”
of r;

• axioms stating an isomorphism between S and the new
type t.
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Rept :: t⇒ r
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Type Definition: Definition
Definition 11 (type definition):

Assume a theory T = (χ,Σ, A) and a type r and a term S
of type r ⇒ bool .
A theory extension T � = (χ�,Σ�, A�) of T is a type definition
for type t (where t fresh), iff

χ� = χ � {t},
Σ� = Σ ∪ {Abst :: r ⇒ t, Rept :: t ⇒ r}
A� = A ∪ {∀x.Abst(Rept x) = x,

∀x.S x −→ Rept(Abst x) = x}
Proof obligation T � ∃x. S x (inside HOL)
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Type Definitions are Conservative
Lemma 3 (type definitions):

A type definition is a conservative extension.

Proof see [GM93, pp.230].
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HOL is Rich Enough!
This may seem fishy: if a new type is always isomorphic to a
subset of an existing type, how is this construction going to
lead to a “rich” collection of types for large-scale
applications?

But in fact, due to ind and ⇒, the types in HOL are already
very rich.

We now give three examples revealing the power of type
definitions.
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Example: Typed Sets
General scheme, substituting r ≡ α ⇒ bool (α is any type
variable), t ≡ α set (or set), S ≡ λx :: α ⇒ bool .True

χ� = χ � {set},
Σ� = Σ ∪ {Absset :: (α ⇒ bool) ⇒ α set ,

Repset :: α set ⇒ (α ⇒ bool)}
A� = A ∪ {∀x.Absset(Repset x) = x,

∀x. Repset(Absset x) = x}

Simplification since S ≡ λx.True. Proof obligation:
(∃x. S x) trivial since (∃x.True) = True. Inhabitation is
crucial!
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Sets: Remarks
Any function f :: τ ⇒ bool can be interpreted as a set of τ ;
f is called characteristic function. That’s what Absset f
does; Absset is a wrapper saying “interpret f as set”.

S ≡ λx.True and so S is trivial in this case.
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More Constants for Sets
For convenient use of sets, we define more constants:

{x | f x} ∼= Collect f = Absset f
x ∈ A = (Repset A) x
A ∪B = {x | x ∈ A ∨ x ∈ B}

...
Consistent set theory adequate for most of mathematics and
computer science !

Here, sets are just an example to demonstrate type
definitions. Later we study them for their own sake.
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Example: Pairs
Consider type α⇒ β ⇒ bool . We can regard a term
f :: α⇒ β ⇒ bool as a representation of the pair (a, b),
where a :: α and b :: β, iff f x y is true exactly for x = a and
y = b. Observe:

• For given a and b, there is exactly one such f (namely,
λx :: α. λy :: β. x = a ∧ y = b).

• Some functions of type α⇒ β ⇒ bool represent pairs and
others don’t (e.g., the function λx. λy. True does not
represent a pair). The ones that do are are equal to
λx :: α. λy :: β. x = a ∧ y = b, for some a and b.
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Type Definition for Pairs
This gives rise to a type definition where S is non-trivial:

r ≡ α ⇒ β ⇒ bool
S ≡ λf :: α ⇒ β ⇒ bool .

∃a. ∃b. f = λx :: α. λy :: β. x = a ∧ y = b
t ≡ α× β (× infix)

It is convenient to define a constant Pair Rep (not to be
confused with Rep×) as follows:
Pair Rep a b = λx ::’ a. λ y ::’ b. x=a ∧y=b.
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Implementation in Isabelle
Isabelle provides a special syntax for type definitions:

typedef (T)
( typevars ) T’ = ”{x. A(x)}”

How is this linked to our scheme:

• the new type is called T �;

• r is the type of x (inferred);

• S is λx.A x;

• constants Abs T and Rep T are automatically generated.
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Isabelle Syntax for Pair Example
constdefs
Pair Rep :: [’ a, ’b] ⇒ [’ a, ’b] ⇒ bool
”Pair Rep ≡ (λ a b. λ x y. x=a ∧y=b)”

typedef (Prod)
(’a, ’b) ”∗” ( infixr 20)

= ”{f. ∃ a. ∃ b. f=Pair Rep(a::’a)(b ::’ b)}”
The keyword constdefs introduces a constant definition.
The definition and use of Pair Rep is for convenience. There
are “two names” ∗ and Prod.

See Product Type.thy.
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Example: Sums
An element of (α, β) sum is either Inl a ::’ a or Inr b ::’ b.

Consider type α⇒ β ⇒ bool ⇒ bool . We can regard
f :: α⇒ β ⇒ bool ⇒ bool as a
representation of . . . iff f x y i is true for . . .
Inl a x = a, y arbitrary, and i = True
Inr b x arbitrary, y = b, and i = False.

Similar to pairs.
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Isabelle Syntax for Sum Example
constdefs

Inl Rep :: [’ a, ’a, ’b, bool] ⇒ bool
”Inl Rep ≡ (λa. λx y p. x=a ∧p)”
Inr Rep :: [’ b, ’a, ’b, bool] ⇒ bool

”Inr Rep ≡ (λb. λx y p. y=b ∧¬p)”
typedef (Sum)
(’a ,’ b) ”+” ( infixr 10)

= ”{f. (∃ a. f = Inl Rep(a ::’ a)) ∨
(∃ b. f = Inr Rep(b ::’ b))}”

See Sum Type.thy.

Exercise: How would you define a type even based on nat?
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Summary
• We have presented a method to safely build up larger

theories:
◦ Constant definitions;

◦ Type definitions.

• Subtle side conditions.

• A new type must be isomorphic to a “subset” of an
existing type.
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More Detailed Explanations
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Axioms or Rules
Inside Isabelle, axioms are thm’s, and they may include Isabelle’s
metalevel implication =⇒. For this reason, it is not required to mention
rules explicitly.

But speaking more generally about HOL, not just its Isabelle
implementation, one should better say “rules” here, i.e., objects with a
horizontal line and zero or more formulas above the line and one formula
below the line.
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Provable Formulas
The provable formulas are terms of type bool derivable using the
inference rules of HOL and the empty assumption list. We write Th(T )
for the derivable formulas of a theory T .
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Closed Terms
A term is closed or ground if it does not contain any free variables.
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Definition of True Is Type-Closed
True is defined as λx :: bool . x = λx. x and not λx :: α.x = λx. x. The
definition must be type-closed.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 290



HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 719

Fixpoint Combinator
Given a function f : α ⇒ α, a fixpoint of f is a term t such that f t = t.
Now Y is supposed to be a fixpoint combinator, i.e., for any function f ,
the term Y f should be a fixpoint of f . This is what the rule

∀f :: α ⇒ α.Y f = f (Y f)
fix

says. Consider the example f ≡ ¬. Then the axiom allows us to infer
Y (¬) = ¬(Y (¬)), and it is easy to derive False from this. This axiom is
a standard example of a non-conservative extension of a theory.

This inconsistency is not surprising: Not every function has a fixpoint, so
there cannot be a combinator returning a fixpoint of any function.

Nevertheless, fixpoints are important and must be realized in some way,
as we will see later.
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Side Conditions
By side conditions we mean

• E does not contain c and is closed;

• no subterm of E has a type containing a type variable that is not
contained in the type of c;

in the definition.

The second condition also has a name: one says that the definition must
be type-closed.

The notion of having a type is defined by the type assignment calculus.
Since E is required to be closed, all variables occurring in E must be
λ-bound, and so the type of those variables is given by the type
superscripts.
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Domains of Σ, Γ
The domain of Σ, denoted dom(Σ), is {c | (c :: A) ∈ Σ for some A}.
Likewise, the domain of Γ, denoted dom(Γ), is
{x | (x :: A) ∈ Γ for some A}.
Note the slight abuse of notation.
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constdefs
In Isabelle theory files, consts is the keyword preceding a sequence of
constant declarations (i.e., this is where the Σ is defined), and defs is
the keyword preceding the constant definitions defining these constants
(i.e., this is where the A is defined.

constdefs combines the two, i.e. it allows for a sequence of both
constant declarations and definitions, and the theorem identifier c def is
generated automatically. E.g.

constdefs
id :: ”’a ⇒ ’a”

”id ≡λ x. x”

will bind id def to id ≡ λx.x.
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S
Here, S is any “predicate”, i.e., a term of type r ⇒ bool , not necessarily
a constant.
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Fresh t
The type constructor t must not occur in χ.
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What Is t?
We use the letter χ to denote the set of type constructors (where the
arity and fixity is indicated in some way). So since t ∈ χ�, we have that t
should be a type constructor. However, we abuse notation and also use t
for the type obtained by applying the type constructor t to a vector of
different type variables (as many as t requires).

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 297



HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 726

�
The symbol � denotes disjoint union, so the expression A �B is
well-formed only when A and B have no elements in common.
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What Are Abst and Rept?
Of course we are giving a schematic definition here, so any letters we use
are meta-notation.

Notice that Abst and Rept stand for new constants. For any new type t
to be defined, two such constants must be added to the signature to
provide a generic way of obtaining terms of the new type. Since the new
type is isomorphic to the “subset” S, whose members are of type r, one
can say that Abst and Rept provide a type conversion between (the
subset S of) r and t.

So we have a new type t, and we can obtain members of the new type by
applying Abst to a term u of type t for which S u holds.
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Isomorphism
The formulas

∀x.Abst(Rept x) = x
∀x.S x −→ Rept(Abst x) = x

state that the “set” S and the new type t are isomorphic. Note that
Abst should not be applied to a term not in “set” S. Therefore we have
the premise S x in the above equation.

Note also that S could be the “trivial filter” λx.True. In this case, Abst

and Rept would provide an isomorphism between the entire type r and
the new type t.
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Proof Obligation
We have said previously that S should be a non-empty “subset” of t.
Therefore it must be proven that ∃x. S x. This is related to the
semantics.

Whenever a type definition is introduced in Isabelle, the proof obligation
must be shown inside Isabelle/HOL. Isabelle provides the typedef
syntax for type definitions, as we will see later.
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Inhabitation in the set Example
We have S ≡ λx :: α ⇒ bool .True, and so in (∃x.Sx), the variable x
has type α ⇒ bool . The proposition (∃x.Sx) is true since the type
α ⇒ bool is inhabited, e.g. by the term λx :: α.True or λx :: α.False.

Beware of a confusion: This does not mean that the new type α set,
defined by this construction, is the type of non-empty sets. There is a
term for the empty set: The empty set is the term Absset (λx.False).
Recall a previous argument for the importance of inhabitation.
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Trivial S
We said that in the general formalism for defining a new type, there is a
term S of type r ⇒ bool that defines a “subset” of a type r. In other
words, it filters some terms from type r. Thus the idea that a predicate
can be interpreted as a set is present in the general formalism for
defining a new type.

Now we are talking about a particular example, the type α set. Having
the idea “predicates are sets” in mind, one is tempted to think that in
the particular example, S will take the role of defining particular sets,
i.e., terms of type α set. This is not the case!

Rather, S is λx.True and hence trivial in this example. Moreover, in the
example, r is α⇒ bool , and any term f of type r defines a set whose
elements are of type α; Absset f is that set.
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Collect
We have seen Collect before in the theory file exercise 03 (näıve set
theory).

Collect f is the set whose characteristic function is f . The usual
concrete syntax is {x | f x}. The construct is called set comprehension.

Note also that Collect is the same as Absset here, so there is no need to
have them as separate constants, and for this reason Isabelle theory file
Set.thy only provides Collect.
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The ∈-Sign
We define

x ∈ A = (Repset A) x

Since Repset has type α set⇒ (α⇒ bool), this means that x is of type
α and A is of type (α⇒ bool). Therefore ∈ is of type
α⇒ (α set)⇒ bool (but written infix).

In the the Isabelle theory Set.thy, you will indeed find that the constant
op : (Isabelle syntax for ∈) has type [α, α set]⇒ bool . However, you will
not find anything directly corresponding to Repset.

One can see that this setup is equivalent to the one we have here (which
was presented like that for the sake of generality). There are two axioms
in Set.thy:

axioms
mem Collect eq [ iff ]: ”(a : {x. P(x)}) = P(a)”

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 305



HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 734

Collect mem eq [simp]: ”{x. x:A} = A”

These axioms can be translated into definitions as follows:

a ∈ {x | P x} = P a �
a ∈ (Collect P ) = P a �
a ∈ (Absset P ) = P a �
Repset(Absset P ) a = P a � Repset(Absset P ) = P

The last step uses extensionality.

Now the second one:

{x | x ∈ A} = A �
{x | (RepsetA) x} = A �
Collect(RepsetA) = A

Ignoring some universal quantifications (these are implicit in Isabelle),
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these are the isomorphy axioms for set.
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Consistent Set Theory
Typed set theory is a conservative extension of HOL and hence
consistent.

Recall the problems with untyped set theory.
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“Exactly one” Term
When we say that there is “exactly one” f , this is meant modulo equality
in HOL. This means that e.g. λx :: α y :: β.y = b ∧ x = a is also such a
term since (λx :: α y :: β.x = a ∧ y = b) = (λx :: αy :: β. y = b ∧ x = a)
is derivable in HOL.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 309



HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 738

Rep×
Rep× would be the generic name for one of the two
isomorphism-defining functions.

Since Rep× cannot be represented directly for lexical reasons, type
definitions in Isabelle provide two names for a type, one if the type is
used as such, and one for the purpose of generating the names of the
isomorphism-defining functions.
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Iteration of λ’s
We write λa :: α b :: β. λx :: α y :: β. x = a ∧ y = b rather than
λa :: α b :: β x :: α y :: β.x = a ∧ y = b to emphasize the idea that one
first applies Pair Rep to a and b, and the result is a function
representing a pair, wich can then be applied to x and y.

(rev. 32934)
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Sum Types
Idea of sum or union type: t is in the sum of τ and σ if t is either in τ or
in σ. To do this formally in our type system, and also in the type system
of functional programming languages like ML, t must be wrapped to
signal if it is of type τ or of type σ.

For example, in ML one could define

datatype (α, β) sum = Inl α | Inr β

So an element of (α, β) sum is either Inl a where a :: α or Inr b where
b :: β.
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Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 312



HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 741

Defining even
Suppose we have a type nat and a constant + with the expected
meaning. We want to define a type even of even numbers. What is an
even number?
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Defining even
Suppose we have a type nat and a constant + with the expected
meaning. We want to define a type even of even numbers. What is an
even number?

The following choice of S is adequate:

S ≡ λx.∃n. x = n + n

Using the Isabelle scheme, this would be

typedef (Even)
even = ”{x. ∃ y.x=y+y}”

We could then go on by defining an operation PLUS on even, say as
follows:

constdefs
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PLUS::[even,even] → even ( infixl 56)
PLUS def ”op PLUS ≡λxy. Abs Even(Rep Even(x)+Rep Even(x))”

Note that we chose to use names even and Even, but we could have
used the same name twice as well.
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