
HOL:Foundations

Chapter 3

HOL:Foundations

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 223

HOL:Foundations

HOL:Introduction

Introduction to HOL The Language of Higher Order Logic The HOL system

Introduction

• Stands for Higher Order Logic
• Denotes both a logic and a system
• Logic is an evolution of Alonzo Church’s
Simple Theory of Types (1940)

• System is an evolution of LCF (1979)
• Intent of this lecture: give an overview of HOL

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 224

HOL:Foundations

HOL:Introduction

Introduction to HOL The Language of Higher Order Logic The HOL system

Some Logical History

• Frege was a logicist (math is a subset of logic)
• Proposed a system on which (he thought) all mathematics
could be derived (in principle)

• Bertrand Russell found paradox in Frege’s system
• Proposed the Ramified Theory of Types
• Wrote Principia Mathematica with Whitehead
• An attempt at developing basic mathematics completely
formally

“My intellect never recovered from the strain”

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 225

HOL:Foundations

HOL:Introduction

Introduction to HOL The Language of Higher Order Logic The HOL system

Russell’s Paradox

Definition
A set s does not contain itself if s /∈ s

Fact
Consider X = {s | s /∈ s}. X is the set of all sets that do not
contain themselves.

• If X ∈ X then X does not contain itself, i.e., X /∈ X
• If X /∈ X then X contains itself, i.e., X ∈ X

So X ∈ X iff X /∈ X. Contradiction.

• Gottlob, we have a problem!

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 226

HOL:Foundations

HOL:Introduction

Introduction to HOL The Language of Higher Order Logic The HOL system

Type Theory

• Problem: even allowing the expression of the notion of sets
that do not contain themselves leads to contradiction

• One solution: ban such self-referential expressions
(so-called vicious circles)

• Russell’s proposal: invent a hierarchy of types
• Elements of lower types could not be applied to elements
of higher types

• Blocks the paradox because X ∈ X no longer a
well-formed expression

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 227

HOL:Foundations

HOL:Introduction

Introduction to HOL The Language of Higher Order Logic The HOL system

Type Theories

• Russell’s Ramified Theory of Types was very complex
• Simplified by Frank Ramsey in 1920s
• A. Church used typed λ-calculus to give a sleek
presentation (Simple Theory of Types 1940)

• An earlier attempt by Church used untyped λ-calculus as a
foundation for mathematics. It was inconsistent.

• HOL is a version of Church’s 1940 logic.
• Many other variants as well, e.g., Calculus of Constructions

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 228

HOL:Foundations

HOL:Introduction

Introduction to HOL The Language of Higher Order Logic The HOL system

History of HOL Implementations

• Late 1960’s : Dana Scott’s Domain Theory
• Logic of Computable Functions: a (first order) logic for
Scott’s theory

• Implemented in Edinburgh LCF (mid-1970s)
• Early 1980’s : Mike Gordon swapped Scott’s logic for
Church’s

• Kept much of LCF implementation

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 229

HOL:Foundations

HOL:Introduction

Introduction to HOL The Language of Higher Order Logic The HOL system

Contemporary Implementations of HOL

• HOL-Light (Harrison)
• HOL-4 (Gordon, Slind, Norrish, others)
• Isabelle/HOL (Paulson,Nipkow)
• ProofPower (Arthan)
• reFLect (Intel)

Related systems:

• PVS (extension of Church’s logic with dependent types
and subtypes)

• ACL2 (built on Common Lisp subset)
• MIZAR (Tarski-Grothendieck set theory)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 230

HOL:Foundations

HOL:Introduction

Introduction to HOL The Language of Higher Order Logic The HOL system

Page of Logic Implementations

For a collection of logic implementations see

http://www.cs.ru.nl/~freek/digimath/index.html

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 231

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 616

Motivation
• Higher-order logic (HOL) is an expressive foundation for

mathematics: analysis, algebra, . . .
computer science: program correctness, hardware

verification, . . .

• Reasoning in HOL is classical.

• Still important: modeling of problems (now in HOL).

• Still important: deriving relevant reasoning principles.

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 232

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 617

Motivation (2)
• HOL offers safety through strength:

◦ small kernel of constants and axioms;

◦ Safety via conservative (definitional) extensions.

• Contrast with
◦ weak logics (e.g., propositional logic): can’t define much;

◦ axiomatic extensions: can lead to inconsistency

Bertrand Russell once likened the advantages of postulation
over definition to the advantages of theft over honest toil!

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 233

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 618

Alternatives to Isabelle/HOL
• We will use and focus on Isabelle/HOL.

• Could forgo the use of a meta-logic and employ
alternatives, e.g., HOL system or PVS. Or use constructive
alternatives such as Coq or Nuprl.

• Choice depends on culture and application.

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 234

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 619

Which Foundation?
• Set theory is often seen as the basis for mathematics.

◦ Zermelo-Fraenkel, Bernays-Gödel, . . .

◦ Set theories (both) distinguish between sets and classes.

◦ Consistency maintained as some collections are “too big” to be sets,
e.g., class of all sets is not a set. A class cannot belong to another
class (let alone a set)!

• HOL as an alternative (Church 1940, Henkin 1950).
◦ Rationale: one usually works with typed entities.

◦ Isabelle/HOL also supports like polymorphism and type classes.
HOL is weaker than ZF set theory, but for most applications this
does not matter. If you prefer ML to Lisp, you will probably prefer
HOL to ZF. —Larry Paulson

• Another alternative: category theory (Eilenberg, Mac Lane)
(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 235

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 620

Meaning of “Higher Order”

1st-order: quantification over individuals (0th-order objects).

∀x, y.R(x, y) −→ R(y, x)

2nd-order: quantification over predicates and functions.
false ≡ ∀P. P
P ∧Q ≡ ∀R. (P −→ Q −→ R) −→ R

3rd-order: quantify over variables whose arguments are pred-
icates.
...
“higher order” � union of all finite orders

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 236

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 621

Basic HOL Syntax (1)
• Types:

τ ::= bool | ind | τ ⇒ τ

◦ bool and ind are also called o and i in literature [Chu40, And86]

◦ Isabelle allows definitions of new type constructors, e.g., list(bool)
◦ Isabelle supports polymorphic type definitions, e.g., list(α)

• Terms: (V set of variables and C set of constants)

T ::= V | C | (T T) | λV. T

◦ Terms are simply-typed.

◦ Terms of type bool are called (well-formed) formulae.

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 237

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 622

Basic HOL Syntax (2)
• Constants are always supplied with types and include:

True,False : bool
= : τ ⇒ τ ⇒ bool (for all types τ)
−→ : bool ⇒ bool ⇒ bool

ι : (τ ⇒ bool)⇒ τ (for all types τ)

• Note that the description operator ιf yields the unique
element x for which f x is True, provided it exists.
Otherwise, it yields an arbitrary value.

• Note that in Isabelle, the provisos “for all types τ” can be
expressed by using polymorphic type variables α.

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 238

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 623

HOL Semantics
• Intuitively an extension of many-sorted semantics with

functions
◦ FOL: structure is domain and functions/relations

�D, (fi)i∈F , (ri)i∈R�

◦ Many-sorted FOL: domains are sort-indexed

�(Di)i∈S, (fi)i∈F , (ri)i∈R�

◦ HOL extends idea: domain D is indexed by (infinitely many) types

• Our presentation ignores polymorphism on the
object-logical level, it is treated on the meta-level, though
(a version covering object-level parametric polymorphism is
[GM93]).

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 239

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 624

Model Based on Universe of Sets U
Definition 1 (Universe):

U is a collection of sets, fulfilling closure conditions:

Inhab: Each X ∈ U is a nonempty set

Sub: If X ∈ U and Y �= ∅ ⊆ X, then Y ∈ U

Prod: If X, Y ∈ U then X × Y ∈ U .

X × Y is Cartesian product, {{x}, {x, y}} encodes (x, y)

Pow: If X ∈ U then P(X) = {Y : Y ⊆ X} ∈ U

Infty: U contains a distinguished infinite set I

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 240

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 625

Universe of Sets U (cont.)
• Function space:

X ⇒ Y is the set of (graphs of all total) functions from X
to Y
◦ For X and Y nonempty, X ⇒ Y is a nonempty subset of P(X × Y)
◦ From closure conditions: X, Y ∈ U then so is X ⇒ Y .

• Distinguished sets:
from Infty and Sub there is (at least one) set

Unit: A distinguished 1 element set {1}
Bool: A distinguished 2 element set {T, F}.

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 241

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 626

Definition 2 (Frame):

A frame is a collection (Dα)α∈τ with Dα ∈ U , for α ∈ τ and

• Dbool = {T, F}
• Dind = X where X is some infinite set of individuals

• Dα⇒β ⊆ Dα ⇒ Dβ, i.e., some collection of functions from
Dα to Dβ

Example: Dbool⇒bool is some nonempty subset of functions
from {T, F} to {T, F}. Some of these subsets contain, e.g.,
the identity function, others do not.

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 242

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 627

Definition 3 (Interpretation):

An interpretation �(Dα)α∈τ ,J � consists of a frame (Dα)α∈τ

and a denotation function J mapping each constant of type
α to an element of Dα where:

• J (True) = T and J (False) = F

• J (=α⇒α⇒bool) is the identity on Dα

• J (−→) denotes the implication function over Dbool , i.e.,

b → b� =
�

F if b = T and b� = F
T otherwise

• J (ι(α⇒bool)⇒α) ∈ (Dα ⇒ Dbool) ⇒ Dα denotes the function

the(f) =
�

a if f = (λx.x = a)
y otherwise (y ∈ Dα is arbitrary)

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 243

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 628

Definition 4 (Generalized Models):

An interpretation M = �(Dα)α∈τ ,J � is a (general) model for
HOL iff there is a binary function VM such that

• for all type-indexed families of substitutions σ = (σα)α∈τ

and terms t of type α, VM(σ, t) ∈ Dα, and

• for all type-indexed families of substitutions σ = (σα)α∈τ ,
(a) VM(σ, xα) = σα(xα)

(b) VM(σ, c) = J (c), for c a (primitive) constant

(c) VM(σ, sα⇒βtα) = VM(σ, s)VM(σ, t)
i.e., the value of the function VM(σ, s) at the argument VM(σ, t)

(d) VM(λxα. tβ) = “the function from Dα into Dβ whose value for
each z ∈ Dα is VM(σ[x ← z], t)”

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 244

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 629

Generalized Models - Facts (1)
• If M is a general model and σ a substitution,

then VM(σ, t) is uniquely determined, for every term t.

VM(σ, t) is value of t in M w.r.t. σ.

• Gives rise to the standard notion of satisfiability/validity:
◦ We write VM, σ |= φ for VM(σ, φ) = T .

◦ φ is satisfiable in M if VM, σ |= φ, for some substitution σ.

◦ φ is valid in M if VM, σ |= φ, for every substitution σ.

◦ φ is valid (in the general sense) if φ is valid in every general model
M.

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 245

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 630

Generalized Models - Facts (2)
• Not all interpretations are general models.

• Closure conditions guarantee every well-formed formula
has a value under every assignment, e.g.,

closure under functions: identity function from Dα to Dα

must belong to Dα⇒α so that VM(σ, λxα. x) is defined.
closure under application:
◦ if DN is set of natural numbers and

◦ DN⇒N⇒N contains addition function p where p x y = x + y

◦ then DN⇒N must contain k x = 2x + 5
since k = VM(σ, λx. f(f x x) y) where σ(f) = p and σ(y) = 5.

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 246

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 631

Standard Models
Definition 5 (Standard Models):

A general model is a standard model iff for all α, β ∈ τ ,
Dα⇒β is the set of all functions from Dα to Dβ.

• A standard model is a general model, but not necessary
vice versa.

• Analogous definitions for satisfiability and validity w.r.t.
standard models.

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 247

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 631

Standard Models
Definition 5 (Standard Models):

A general model is a standard model iff for all α, β ∈ τ ,
Dα⇒β is the set of all functions from Dα to Dβ.

• A standard model is a general model, but not necessary
vice versa.

• Analogous definitions for satisfiability and validity w.r.t.
standard models.

• We can now re-introduce HOL in Isabelle’s meta-logic.

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 248

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 632

Isabelle/HOL
The syntax of the core-language is introduced by:
consts

Not :: bool ⇒ bool (”¬ ” [40] 40)
True :: bool
False :: bool
If :: [bool, ’a, ’a] ⇒ ’a (”(if then else)”)
The :: (’a ⇒ bool) ⇒ ’a (binder ”THE ” 10)
All :: (’a ⇒ bool) ⇒ bool (binder ”∀ ” 10)
Ex :: (’a ⇒ bool) ⇒ bool (binder ”∃ ” 10)
= :: [’ a, ’a] ⇒ bool (infixl 50)
∧ :: [bool, bool] ⇒ bool (infixr 35)
∨ :: [bool, bool] ⇒ bool (infixr 30)
−→ :: [bool, bool] ⇒ bool (infixr 25)

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 249

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 633

The Axioms of HOL (1)
axioms

refl : ”t = t”
subst : ”[[s = t; P(s)]] =⇒ P(t)”

ext : ”(
�

x. f x = g x) =⇒ (λx. f x) = (λx. g x)”

impI: ”(P =⇒Q) =⇒P−→Q”
mp: ”[[P−→Q; P]] =⇒Q”

iff : ”(P−→Q) −→(Q−→P) −→(P=Q)”
True or False : ”(P=True) ∨(P=False)”

the eq trivial : ”(THE x. x = a) = (a::’a)”

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 250

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 634

The Axioms of HOL (2)
Additionally, there is:

• universal α, β, and η congruence on terms (implicitly),

• the axiom of infinity, and

• the axiom of choice (Hilbert operator).

• This is the entire basis!

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 251

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 635

Core Definitions of HOL
defs

True def : True ≡ ((λx::bool. x) = (λx. x))
All def : All (P) ≡ (P = (λx. True))
Ex def: Ex(P) ≡∀Q. (∀ x. P x−→Q) −→Q
False def : False ≡ (∀P. P)
not def : ¬ P ≡P−→False
and def: P ∧Q ≡∀R. (P−→Q−→R) −→R
or def : P ∨Q ≡∀R. (P−→R) −→(Q−→R) −→R
if def : If P x y ≡THE z::’a. (P=True −→z=x) ∧

(P=False −→z=y)

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 252

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 636

Meta-theoretic Properties of HOL
Theorem 1 (Soundness of HOL, [And86]):

HOL is sound w.r.t. to general models.
�HOL φ implies φ is valid

Theorem 2 (Completeness of HOL, [And86]):

• HOL is complete w.r.t. to general models.
φ is valid implies �HOL φ

• HOL is complete w.r.t. to standard models.

Theorem 3 (HOL with infinity, [And86]):

• HOL+infinity is complete w.r.t. general models.

• HOL+infinity is incomplete w.r.t. standard models.

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 253

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 637

Conclusions
• HOL generalizes semantics of FOL

◦ bool serves as type of propositions

◦ Syntax/semantics allows for higher-order functions

• Logic is rather minimal: 8 rules, more-or-less obvious

• Logic is very powerful in terms of what we can
represent/derive.
◦ Other “logical” syntax

◦ Rich theories via conservative extensions
(topic for next few weeks!)

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 254

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 638

Bibliography
• M. J. C. Gordon and T. F. Melham, Introduction to HOL:

A theorem proving environment for higher order logic,
Cambridge University Press, 1993.

• Peter B. Andrews, An Introduction to Mathematical Logic
and Type Theory: To Truth Through Proof, Academic
Press, 1986.

• Tobias Nipkow and Lawrence C. Paulson and Markus
Wenzel, Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, Springer-Verlag, LNCS 2283, 2002.

(rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 255

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 1190

References

[Acz77] Peter Aczel. Handbook of Mathematical Logic, chapter An Introduction to
Inductive Definitions, pages 739–782. North-Holland, 1977.

[And86] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory:
To Truth Through Proofs. Academic Press, 1986.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schliessen. Mathe-
matische Zeitschrift, 39:176–210, 405–431, 1935. English translation in
[Sza69].

No Short Title (rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 256

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 1191

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cam-
bridge University Press, 1989.

[GM93] Michael J. C. Gordon and Tom F. Melham, editors. Introduction to HOL.
Cambridge University Press, 1993.

[HHPW96] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philipp
Wadler. Type classes in Haskell. ACM Transactions on Programming
Languages and Systems, 18(2):109–138, 1996.

[Höl90] Steffen Hölldobler. Conditional equational theories and complete sets of
transformations. Theoretical Computer Science, 75(1&2):85–110, 1990.

[Klo93] Jan Willem Klop. Handbook of Logic in Computer Science, chapter ”Term
Rewriting Systems”. Oxford: Clarendon Press, 1993.

[LP81] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of
Computation. Prentice-Hall, 1981.

No Short Title (rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 257

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 1192

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17(3):348–375, 1978.

[Nip93] Tobias Nipkow. Logical Environments, chapter Order-Sorted Polymorphism
in Isabelle, pages 164–188. Cambridge University Press, 1993.

[NN99] Wolfgang Naraschewski and Tobias Nipkow. Type inference verified: Algo-
rithmW in isabelle/hol. Journal of Automated Reasoning, 23(3-4):299–318,
1999.

[Pau96] Lawrence C. Paulson. ML for the Working Programmer. Cambridge Univer-
sity Press, 1996.

[Pau03] Lawrence C. Paulson. The Isabelle Reference Manual. Computer Laboratory,
University of Cambridge, March 2003.

[PM68] Dag Prawitz and Per-Erik Malmnäs. A survey of some connections between
classical, intuitionistic and minimal logic. In A. Schmidt and H. Schütte, ed-

No Short Title (rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 258

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 1193

itors, Contributions to Mathematical Logic, pages 215–229. North-Holland,
1968.

[Pra65] Dag Prawitz. Natural Deduction: A proof theoretical study. Almqvist and
Wiksell, 1965.

[Sza69] M. E. Szabo. The Collected Papers of Gerhard Gentzen. North-Holland,
1969.

[Tho95] Simon Thompson. Miranda: The Craft of Functional Programming.
Addison-Wesley, 1995.

[Tho99] Simon Thompson. Haskell: The Craft of Functional Programming. Addison-
Wesley, 1999. Second Edition.

[vD80] Dirk van Dalen. Logic and Structure. Springer-Verlag, 1980. An introduc-
tory textbook on logic.

[Vel94] Daniel J. Velleman. How to Prove It. Cambridge University Press, 1994.

No Short Title (rev. 12275)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 259

HOL:Foundations

HOL:Foundations

Higher-order Logic: Foundations 1194

[vH67] Jean van Heijenoort, editor. From Frege to Gödel: A Source Book in
Mathematical Logic, 1879-193. Harvard University Press, 1967. Contains
translations of original works by David Hilbert.

[WB89] Phillip Wadler and Stephen Blott. How to make ad-hoc polymorphism less
ad-hoc. In Conference Record of the 16th ACM Symposium on Principles of
Programming Languages, pages 60–76, 1989.

[WR25] Alfred N. Whitehead and Bertrand Russell. Principia Mathematica, vol-
ume 1. Cambridge University Press, 1925. 2nd edition.

Computer-supported Modeling and Reasoning WS 06/07http://www.infsec.ethz.ch/education/ws0607/csmr/

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 260

HOL:Foundations

HOL:Conservative extensions

Higher-order Logic:
Conservative Extensions

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 261

HOL:Foundations

HOL:Conservative extensions

Higher-order Logic: Conservative Extensions 690

Outline
In the previous lecture, we have derived all well-known
inference rules. There is now the need to scale up. Today we
look at conservative theory extensions, an important method
for this purpose.

In the weeks to come, we will look at how mathematics is
encoded in the Isabelle/HOL library.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 262

HOL:Foundations

HOL:Conservative extensions

Conservative Theory Extensions: Basics 691

Conservative Theory Extensions: Basics

Terminology and basic definitions (c.f. [GM93]):

Definition 6 (theory):

A (syntactic) theory T is a triple (χ,Σ, A), where χ is a type
signature, Σ a signature, and A a set of axioms.

Definition 7 (consistent):

A theory T is consistent iff False is not provable in T .

Definition 8 (theory extension):

A theory T � = (χ�,Σ�, A�) is an extension of a theory
T = (χ,Σ, A) iff χ ⊆ χ� and Σ ⊆ Σ� and A ⊆ A�.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 263

HOL:Foundations

HOL:Conservative extensions

Conservative Theory Extensions: Basics 692

Definitions (Cont.)
Definition 9 (conservative extension):

A theory extension T � = (χ�,Σ�, A�) of a theory
T = (χ,Σ, A) is conservative iff for the set of provable
formulas Th we have

Th(T) = Th(T �) |Σ,

where |Σ filters away all formulas not belonging to Σ.

Counterexample:

∀f :: α ⇒ α. Y f = f (Y f)
fix

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 264

HOL:Foundations

HOL:Conservative extensions

Conservative Theory Extensions: Basics 693

Consistency Preserved
Lemma 1 (consistency):

If T � is a conservative extension of a consistent theory T ,
then

False /∈ Th(T �).

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 265

HOL:Foundations

HOL:Conservative extensions

Conservative Theory Extensions: Basics 694

Syntactic Schemata for Conservative
Extensions

• Constant definition

• Type definition

• Constant specification

• Type specification

Will look at first two schemata now.

For the other two see [GM93].

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 266

HOL:Foundations

HOL:Conservative extensions

Constant Definition 695

Constant Definition

Definition 10 (constant definition):

A theory extension T � = (χ�,Σ�, A�) of a theory
T = (χ,Σ, A) is a constant definition, iff

• χ� = χ and Σ� = Σ ∪ {c :: τ}, where c /∈ dom(Σ);
• A� = A ∪ {c = E};
• E does not contain c and is closed;

• no subterm of E has a type containing a type variable that
is not contained in the type of c.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 267

HOL:Foundations

HOL:Conservative extensions

Constant Definition 696

Constant Definitions are Conservative
Lemma 2 (constant definitions):

A constant definition is a conservative extension.

Proof Sketch:

• Th(T) ⊆ Th(T �) |Σ : trivial.

• Th(T) ⊇ Th(T �) |Σ : let π� be a proof for φ ∈ Th(T �) |Σ.
We unfold any subterm in π� that contains c via c = E
into π. π is a proof in T , i.e., φ ∈ Th(T).

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 268

HOL:Foundations

HOL:Conservative extensions

Constant Definition 697

Side Conditions
Where are those side conditions needed? What goes wrong?

Simple example: Let E ≡ ∃x :: α. ∃y :: α. x �= y and
suppose σ is a type inhabited by only one term, and τ is a
type inhabited by at least two terms. Then we would have:

c = c holds by refl
=⇒ (∃x :: σ. ∃y :: σ. x �= y) = (∃x :: τ. ∃y :: τ. x �= y)
=⇒ False = True
=⇒ False

Reconsider the definition of True.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 269

HOL:Foundations

HOL:Conservative extensions

Constant Definition 698

Constant Definition: Examples
Definitions of True, False, ¬, ∧, ∨, ∀, and ∃ revisited.
True def : True ≡ ((λx::bool. x) = (λx. x))
All def : All (P) ≡ (P = (λx. True))
Ex def: Ex(P) ≡∀Q. (∀ x. P x−→Q) −→Q
False def : False ≡ (∀P. P)
not def : ¬ P ≡P−→False
and def: P ∧Q ≡∀R. (P−→Q−→R) −→R
or def : P ∨Q ≡∀R. (P−→R) −→(Q−→R) −→R

Recall that All (P) is equivalent to ∀ x. P x and
Ex(P) is equivalent to ∃ x. P x.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 270

HOL:Foundations

HOL:Conservative extensions

Constant Definition 699

More Constant Definitions in Isabelle
let−in−, if−then−else, unique existence:

consts
Let :: [’ a, ’a ⇒ ’b] ⇒ ’b
If :: [bool, ’a, ’a] ⇒ ’a
Ex1 :: (’a ⇒ bool) ⇒ bool

defs
Let def : ”Let s f ≡ f(s)”
if def : ” If P x y ≡THE z::’a .(P=True−→z=x) ∧

(P=False−→z=y)”
Ex1 def: ”Ex1(P) ≡∃ x. P(x) ∧ (∀ y. P(y) −→ y=x)”

Note: ⇒ is function type arrow; recall syntax for [...] ⇒ ...

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 271

HOL:Foundations

HOL:Conservative extensions

Type Definitions 700

Type Definitions

Type definitions, explained intuitively: we have

• an existing type r;

• a predicate S :: r ⇒ bool , defining a non-empty “subset”
of r;

• axioms stating an isomorphism between S and the new
type t.

...
..

..................................
..............................
...........................
.........................
........................
........................
.......................
.......................
........................
........................
.........................
..........................

............................
................................

......................................
...

..............................r
...

................................
..........................
........................
.......................
........................
.........................
..............................

...
.......................S ...

................................
..........................
........................
.......................
.......................
.........................
..............................

...
......................t...

..
...

..
..

..
...�

Abs t :: r ⇒ t

...
..

...
...

..
...

.❦

Rept :: t⇒ r

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 272

HOL:Foundations

HOL:Conservative extensions

Type Definitions 701

Type Definition: Definition
Definition 11 (type definition):

Assume a theory T = (χ,Σ, A) and a type r and a term S
of type r ⇒ bool .
A theory extension T � = (χ�,Σ�, A�) of T is a type definition
for type t (where t fresh), iff

χ� = χ � {t},
Σ� = Σ ∪ {Abst :: r ⇒ t, Rept :: t ⇒ r}
A� = A ∪ {∀x.Abst(Rept x) = x,

∀x.S x −→ Rept(Abst x) = x}
Proof obligation T � ∃x. S x (inside HOL)

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 273

HOL:Foundations

HOL:Conservative extensions

Type Definitions 702

Type Definitions are Conservative
Lemma 3 (type definitions):

A type definition is a conservative extension.

Proof see [GM93, pp.230].

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 274

HOL:Foundations

HOL:Conservative extensions

Type Definitions 703

HOL is Rich Enough!
This may seem fishy: if a new type is always isomorphic to a
subset of an existing type, how is this construction going to
lead to a “rich” collection of types for large-scale
applications?

But in fact, due to ind and ⇒, the types in HOL are already
very rich.

We now give three examples revealing the power of type
definitions.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 275

HOL:Foundations

HOL:Conservative extensions

Type Definitions 704

Example: Typed Sets
General scheme, substituting r ≡ α ⇒ bool (α is any type
variable), t ≡ α set (or set), S ≡ λx :: α ⇒ bool .True

χ� = χ � {set},
Σ� = Σ ∪ {Absset :: (α ⇒ bool) ⇒ α set ,

Repset :: α set ⇒ (α ⇒ bool)}
A� = A ∪ {∀x.Absset(Repset x) = x,

∀x. Repset(Absset x) = x}

Simplification since S ≡ λx.True. Proof obligation:
(∃x. S x) trivial since (∃x.True) = True. Inhabitation is
crucial!

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 276

HOL:Foundations

HOL:Conservative extensions

Type Definitions 705

Sets: Remarks
Any function f :: τ ⇒ bool can be interpreted as a set of τ ;
f is called characteristic function. That’s what Absset f
does; Absset is a wrapper saying “interpret f as set”.

S ≡ λx.True and so S is trivial in this case.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 277

HOL:Foundations

HOL:Conservative extensions

Type Definitions 706

More Constants for Sets
For convenient use of sets, we define more constants:

{x | f x} ∼= Collect f = Absset f
x ∈ A = (Repset A) x
A ∪B = {x | x ∈ A ∨ x ∈ B}

...
Consistent set theory adequate for most of mathematics and
computer science !

Here, sets are just an example to demonstrate type
definitions. Later we study them for their own sake.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 278

HOL:Foundations

HOL:Conservative extensions

Type Definitions 707

Example: Pairs
Consider type α⇒ β ⇒ bool . We can regard a term
f :: α⇒ β ⇒ bool as a representation of the pair (a, b),
where a :: α and b :: β, iff f x y is true exactly for x = a and
y = b. Observe:

• For given a and b, there is exactly one such f (namely,
λx :: α. λy :: β. x = a ∧ y = b).

• Some functions of type α⇒ β ⇒ bool represent pairs and
others don’t (e.g., the function λx. λy. True does not
represent a pair). The ones that do are are equal to
λx :: α. λy :: β. x = a ∧ y = b, for some a and b.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 279

HOL:Foundations

HOL:Conservative extensions

Type Definitions 708

Type Definition for Pairs
This gives rise to a type definition where S is non-trivial:

r ≡ α ⇒ β ⇒ bool
S ≡ λf :: α ⇒ β ⇒ bool .

∃a. ∃b. f = λx :: α. λy :: β. x = a ∧ y = b
t ≡ α× β (× infix)

It is convenient to define a constant Pair Rep (not to be
confused with Rep×) as follows:
Pair Rep a b = λx ::’ a. λ y ::’ b. x=a ∧y=b.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 280

HOL:Foundations

HOL:Conservative extensions

Type Definitions 709

Implementation in Isabelle
Isabelle provides a special syntax for type definitions:

typedef (T)
(typevars) T’ = ”{x. A(x)}”

How is this linked to our scheme:

• the new type is called T �;

• r is the type of x (inferred);

• S is λx.A x;

• constants Abs T and Rep T are automatically generated.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 281

HOL:Foundations

HOL:Conservative extensions

Type Definitions 710

Isabelle Syntax for Pair Example
constdefs
Pair Rep :: [’ a, ’b] ⇒ [’ a, ’b] ⇒ bool
”Pair Rep ≡ (λ a b. λ x y. x=a ∧y=b)”

typedef (Prod)
(’a, ’b) ”∗” (infixr 20)

= ”{f. ∃ a. ∃ b. f=Pair Rep(a::’a)(b ::’ b)}”
The keyword constdefs introduces a constant definition.
The definition and use of Pair Rep is for convenience. There
are “two names” ∗ and Prod.

See Product Type.thy.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 282

HOL:Foundations

HOL:Conservative extensions

Type Definitions 711

Example: Sums
An element of (α, β) sum is either Inl a ::’ a or Inr b ::’ b.

Consider type α⇒ β ⇒ bool ⇒ bool . We can regard
f :: α⇒ β ⇒ bool ⇒ bool as a
representation of . . . iff f x y i is true for . . .
Inl a x = a, y arbitrary, and i = True
Inr b x arbitrary, y = b, and i = False.

Similar to pairs.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 283

HOL:Foundations

HOL:Conservative extensions

Type Definitions 712

Isabelle Syntax for Sum Example
constdefs

Inl Rep :: [’ a, ’a, ’b, bool] ⇒ bool
”Inl Rep ≡ (λa. λx y p. x=a ∧p)”
Inr Rep :: [’ b, ’a, ’b, bool] ⇒ bool

”Inr Rep ≡ (λb. λx y p. y=b ∧¬p)”
typedef (Sum)
(’a ,’ b) ”+” (infixr 10)

= ”{f. (∃ a. f = Inl Rep(a ::’ a)) ∨
(∃ b. f = Inr Rep(b ::’ b))}”

See Sum Type.thy.

Exercise: How would you define a type even based on nat?

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 284

HOL:Foundations

HOL:Conservative extensions

Type Definitions 713

Summary
• We have presented a method to safely build up larger

theories:
◦ Constant definitions;

◦ Type definitions.

• Subtle side conditions.

• A new type must be isomorphic to a “subset” of an
existing type.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 285

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 714

More Detailed Explanations

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 286

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 715

Axioms or Rules
Inside Isabelle, axioms are thm’s, and they may include Isabelle’s
metalevel implication =⇒. For this reason, it is not required to mention
rules explicitly.

But speaking more generally about HOL, not just its Isabelle
implementation, one should better say “rules” here, i.e., objects with a
horizontal line and zero or more formulas above the line and one formula
below the line.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 287

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 716

Provable Formulas
The provable formulas are terms of type bool derivable using the
inference rules of HOL and the empty assumption list. We write Th(T)
for the derivable formulas of a theory T .

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 288

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 717

Closed Terms
A term is closed or ground if it does not contain any free variables.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 289

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 718

Definition of True Is Type-Closed
True is defined as λx :: bool . x = λx. x and not λx :: α.x = λx. x. The
definition must be type-closed.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 290

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 719

Fixpoint Combinator
Given a function f : α ⇒ α, a fixpoint of f is a term t such that f t = t.
Now Y is supposed to be a fixpoint combinator, i.e., for any function f ,
the term Y f should be a fixpoint of f . This is what the rule

∀f :: α ⇒ α.Y f = f (Y f)
fix

says. Consider the example f ≡ ¬. Then the axiom allows us to infer
Y (¬) = ¬(Y (¬)), and it is easy to derive False from this. This axiom is
a standard example of a non-conservative extension of a theory.

This inconsistency is not surprising: Not every function has a fixpoint, so
there cannot be a combinator returning a fixpoint of any function.

Nevertheless, fixpoints are important and must be realized in some way,
as we will see later.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 291

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 720

Side Conditions
By side conditions we mean

• E does not contain c and is closed;

• no subterm of E has a type containing a type variable that is not
contained in the type of c;

in the definition.

The second condition also has a name: one says that the definition must
be type-closed.

The notion of having a type is defined by the type assignment calculus.
Since E is required to be closed, all variables occurring in E must be
λ-bound, and so the type of those variables is given by the type
superscripts.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 292

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 721

Domains of Σ, Γ
The domain of Σ, denoted dom(Σ), is {c | (c :: A) ∈ Σ for some A}.
Likewise, the domain of Γ, denoted dom(Γ), is
{x | (x :: A) ∈ Γ for some A}.
Note the slight abuse of notation.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 293

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 722

constdefs
In Isabelle theory files, consts is the keyword preceding a sequence of
constant declarations (i.e., this is where the Σ is defined), and defs is
the keyword preceding the constant definitions defining these constants
(i.e., this is where the A is defined.

constdefs combines the two, i.e. it allows for a sequence of both
constant declarations and definitions, and the theorem identifier c def is
generated automatically. E.g.

constdefs
id :: ”’a ⇒ ’a”

”id ≡λ x. x”

will bind id def to id ≡ λx.x.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 294

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 723

S
Here, S is any “predicate”, i.e., a term of type r ⇒ bool , not necessarily
a constant.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 295

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 724

Fresh t
The type constructor t must not occur in χ.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 296

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 725

What Is t?
We use the letter χ to denote the set of type constructors (where the
arity and fixity is indicated in some way). So since t ∈ χ�, we have that t
should be a type constructor. However, we abuse notation and also use t
for the type obtained by applying the type constructor t to a vector of
different type variables (as many as t requires).

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 297

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 726

�
The symbol � denotes disjoint union, so the expression A �B is
well-formed only when A and B have no elements in common.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 298

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 727

What Are Abst and Rept?
Of course we are giving a schematic definition here, so any letters we use
are meta-notation.

Notice that Abst and Rept stand for new constants. For any new type t
to be defined, two such constants must be added to the signature to
provide a generic way of obtaining terms of the new type. Since the new
type is isomorphic to the “subset” S, whose members are of type r, one
can say that Abst and Rept provide a type conversion between (the
subset S of) r and t.

So we have a new type t, and we can obtain members of the new type by
applying Abst to a term u of type t for which S u holds.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 299

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 728

Isomorphism
The formulas

∀x.Abst(Rept x) = x
∀x.S x −→ Rept(Abst x) = x

state that the “set” S and the new type t are isomorphic. Note that
Abst should not be applied to a term not in “set” S. Therefore we have
the premise S x in the above equation.

Note also that S could be the “trivial filter” λx.True. In this case, Abst

and Rept would provide an isomorphism between the entire type r and
the new type t.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 300

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 729

Proof Obligation
We have said previously that S should be a non-empty “subset” of t.
Therefore it must be proven that ∃x. S x. This is related to the
semantics.

Whenever a type definition is introduced in Isabelle, the proof obligation
must be shown inside Isabelle/HOL. Isabelle provides the typedef
syntax for type definitions, as we will see later.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 301

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 730

Inhabitation in the set Example
We have S ≡ λx :: α ⇒ bool .True, and so in (∃x.Sx), the variable x
has type α ⇒ bool . The proposition (∃x.Sx) is true since the type
α ⇒ bool is inhabited, e.g. by the term λx :: α.True or λx :: α.False.

Beware of a confusion: This does not mean that the new type α set,
defined by this construction, is the type of non-empty sets. There is a
term for the empty set: The empty set is the term Absset (λx.False).
Recall a previous argument for the importance of inhabitation.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 302

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 731

Trivial S
We said that in the general formalism for defining a new type, there is a
term S of type r ⇒ bool that defines a “subset” of a type r. In other
words, it filters some terms from type r. Thus the idea that a predicate
can be interpreted as a set is present in the general formalism for
defining a new type.

Now we are talking about a particular example, the type α set. Having
the idea “predicates are sets” in mind, one is tempted to think that in
the particular example, S will take the role of defining particular sets,
i.e., terms of type α set. This is not the case!

Rather, S is λx.True and hence trivial in this example. Moreover, in the
example, r is α⇒ bool , and any term f of type r defines a set whose
elements are of type α; Absset f is that set.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 303

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 732

Collect
We have seen Collect before in the theory file exercise 03 (näıve set
theory).

Collect f is the set whose characteristic function is f . The usual
concrete syntax is {x | f x}. The construct is called set comprehension.

Note also that Collect is the same as Absset here, so there is no need to
have them as separate constants, and for this reason Isabelle theory file
Set.thy only provides Collect.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 304

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 733

The ∈-Sign
We define

x ∈ A = (Repset A) x

Since Repset has type α set⇒ (α⇒ bool), this means that x is of type
α and A is of type (α⇒ bool). Therefore ∈ is of type
α⇒ (α set)⇒ bool (but written infix).

In the the Isabelle theory Set.thy, you will indeed find that the constant
op : (Isabelle syntax for ∈) has type [α, α set]⇒ bool . However, you will
not find anything directly corresponding to Repset.

One can see that this setup is equivalent to the one we have here (which
was presented like that for the sake of generality). There are two axioms
in Set.thy:

axioms
mem Collect eq [iff]: ”(a : {x. P(x)}) = P(a)”

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 305

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 734

Collect mem eq [simp]: ”{x. x:A} = A”

These axioms can be translated into definitions as follows:

a ∈ {x | P x} = P a �
a ∈ (Collect P) = P a �
a ∈ (Absset P) = P a �
Repset(Absset P) a = P a � Repset(Absset P) = P

The last step uses extensionality.

Now the second one:

{x | x ∈ A} = A �
{x | (RepsetA) x} = A �
Collect(RepsetA) = A

Ignoring some universal quantifications (these are implicit in Isabelle),

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 306

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 735

these are the isomorphy axioms for set.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 307

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 736

Consistent Set Theory
Typed set theory is a conservative extension of HOL and hence
consistent.

Recall the problems with untyped set theory.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 308

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 737

“Exactly one” Term
When we say that there is “exactly one” f , this is meant modulo equality
in HOL. This means that e.g. λx :: α y :: β.y = b ∧ x = a is also such a
term since (λx :: α y :: β.x = a ∧ y = b) = (λx :: αy :: β. y = b ∧ x = a)
is derivable in HOL.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 309

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 738

Rep×
Rep× would be the generic name for one of the two
isomorphism-defining functions.

Since Rep× cannot be represented directly for lexical reasons, type
definitions in Isabelle provide two names for a type, one if the type is
used as such, and one for the purpose of generating the names of the
isomorphism-defining functions.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 310

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 739

Iteration of λ’s
We write λa :: α b :: β. λx :: α y :: β. x = a ∧ y = b rather than
λa :: α b :: β x :: α y :: β.x = a ∧ y = b to emphasize the idea that one
first applies Pair Rep to a and b, and the result is a function
representing a pair, wich can then be applied to x and y.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 311

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 740

Sum Types
Idea of sum or union type: t is in the sum of τ and σ if t is either in τ or
in σ. To do this formally in our type system, and also in the type system
of functional programming languages like ML, t must be wrapped to
signal if it is of type τ or of type σ.

For example, in ML one could define

datatype (α, β) sum = Inl α | Inr β

So an element of (α, β) sum is either Inl a where a :: α or Inr b where
b :: β.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 312

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 741

Defining even
Suppose we have a type nat and a constant + with the expected
meaning. We want to define a type even of even numbers. What is an
even number?

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 313

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 741

Defining even
Suppose we have a type nat and a constant + with the expected
meaning. We want to define a type even of even numbers. What is an
even number?

The following choice of S is adequate:

S ≡ λx.∃n. x = n + n

Using the Isabelle scheme, this would be

typedef (Even)
even = ”{x. ∃ y.x=y+y}”

We could then go on by defining an operation PLUS on even, say as
follows:

constdefs

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 314

HOL:Foundations

HOL:Conservative extensions

More Detailed Explanations 742

PLUS::[even,even] → even (infixl 56)
PLUS def ”op PLUS ≡λxy. Abs Even(Rep Even(x)+Rep Even(x))”

Note that we chose to use names even and Even, but we could have
used the same name twice as well.

(rev. 32934)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 315

