
Proof system of Isabelle/HOL

Chapter 4

Proof system of
Isabelle/HOL

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 317

Proof system of Isabelle/HOL

Methods and Rules

Methods and Rules
Formulas, sequents, and rules revisited

Propositions can represent:
� formulas, generalized sequents: lemmas/theorems to be proven
� rules: to be applied in a proof step
� proof (sub-)goals, i.e., open leaves in a proof tree

Example: from Lecture.thy
� SPEC, SCHEMATIC (Warning)
� ARULE
� GOAL

A proven lemma/theorem is automatically transformed into a rule.
That is, the set of rules is not fixed in Isabelle/HOL.E.g. ARULE.

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 318

Proof system of Isabelle/HOL

Methods and Rules

Variables

Six kinds of variables:
� (logical) variables bound by the logic-quantifiers
� (logical) variables bound by the meta-quantifier
� free (logical) variables
� schematic variables (in rules and proofs)
� type variables
� schematic type variables

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 319

Proof system of Isabelle/HOL

Methods and Rules

Format of Goals and Rules
Format of Goals

�
�

x1...xk . [|A1; ...; Am|] =⇒ C
� xi are variables local to the subgoal (possibly none)
� Ai are called the assumptions (possibly none)
� C is called the conclusion
� usually first three types of variables sometimes also schematic

variables.

Format of Rules
� [|P1; ...; Pn|] =⇒ Q
� Pi are called the premises (possibly none)
� P1 is called the major premise
� Q is called the consequent (not standard)
� Schematic variables in Pi, Q.

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 320

Proof system of Isabelle/HOL

Methods and Rules

Application of rules
Methods are commands to work on the proof state
In particular, methods allow to apply rules. Whereas the set of rules is
not fixed, the basic methods are fixed in Isabelle/HOL.
Rule application:

� Applying rules is based on unification.
� Unification is done w.r.t. the schematic variables.
� The unifier is applied to the complete proof state!
� Unification may involve renaming of bound variables.

Example: (general idea of rule application)
� rule: [|P1; P2|] =⇒ Q
� subgoal: A =⇒ C
� if U unifies C and Q, then sufficient subgoals are:
� U(A) =⇒ U(P1), U(A) =⇒ U(P2)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 321

Proof system of Isabelle/HOL

Methods and Rules

Methods

Command: apply(method <parameters>)

Application of a rule to a subgoal depends on the method:
Methods are (for convenience) be classified into:

� introduction methods: decompose formulae to the right of =⇒
� elimination methods: decompose formulae to the left of =⇒

Method rule <rulename> :
� unify Q with C; fails if no unifier exists; otherwise unifier U
� remaining subgoals: For i = 1, ..., n
�

�
x1...xk . U([|A1; ...; Am|] =⇒ Pi)

� Example GOAL

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 322

Proof system of Isabelle/HOL

Methods and Rules

Methods

Method assumption:
� unify C with first possible Aj; fails if no Aj exists for unification
� subgoal is closed (discharged)
� Example GOAL

Method erule <rulename> :
� unify Q with C and simultanneously unify P1 with some Aj; fails if

no unifier exists; otherwise unifier U
� remaining subgoals: For i = 2, ..., n
�

�
x1...xk . U([|A1; ...; Am\Aj |] =⇒ Pi)

� Example GOAL

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 323

Proof system of Isabelle/HOL

Methods and Rules

Methods
Method drule <rulename> :

� unify P1 some Aj; fails if no unifier exists; otherwise unifier U
� remaining subgoals:
� For i = 2, ..., n

�
x1...xk . U([|A1; ...; Am\Aj |] =⇒ Pi)

�
�

x1...xk . U([|A1; ...; Am\Aj ; Q|] =⇒ C)

� Example C1

Method frule <rulename> :
� unify P1 some Aj; fails if no unifier exists; otherwise unifier U
� remaining subgoals:
� For i = 2, ..., n

�
x1...xk . U([|A1; ...; Am|] =⇒ Pi)

�
�

x1...xk . U([|A1; ...; Am; Q|] =⇒ C)

� Example C1

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 324

Proof system of Isabelle/HOL

Methods and Rules

Methods
Method [edf]rule_tac x= term in <rule> :

� are similar to the version above but allow to influence the
unification

� Example 5.8.2, p. 79, TAC
� FIXAX2

Method unfold <name_def> :
� unfolds the definition of a constant in all subgoals
� Example SPEC

Method induct_tac <freevar...> :
� uses the inductive definition of a function
� generates the corresponding subgoals

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 325

Proof system of Isabelle/HOL

Methods and Rules

Fundamental rules of Isabelle/HOl
See IsabelleHOLMain, Sect. 2.2

Remark
� Safe rules preserve provability
� e.g. conjI, impI, notI, iffI, refl, ccontr, classical, conjE, disjE
� Unsafe rules can turn a provable goal into an unprovable one
� e.g. disjI1, disjI2, impE, iffD1, iffD2, notE
� � Apply safe rules before unsafe ones

Example
� lemma UNSAFE: “A ∨ ¬A��

� apply (rule disI1)
� sorry

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 326

Proof system of Isabelle/HOL

Methods and Rules

An overview of theory Main

The structure of theory Main: p. 23

Set construction in Isabelle/HOL: Sect. 6

Natural numbers in Isabelle/HOL: Sect. 15

Remark
Working with theory Main:

� The programmer cannot know the complete library
� The “verificator” cannot know all rules.

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 327

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Rewriting and simplification

taken from IsabelleTutorial, Sect. 3.1) »> slidesNipkow:

apply(simp add: eq1 . . . eqn)

»> Demo: MyDemo, Simp

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 328

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Overview

• Term rewriting foundations
• Term rewriting in Isabelle/HOL

• Basic simplification
• Extensions

80

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 329

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Term rewriting foundations

81

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 330

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Term rewriting means . . .

Using equations l = r from left to right

82

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 331

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Term rewriting means . . .

Using equations l = r from left to right
As long as possible

82

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 332

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Term rewriting means . . .

Using equations l = r from left to right
As long as possible

Terminology: equation ❀ rewrite rule

82

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 333

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

83

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 334

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x

83

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 335

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x
(1)
=

Suc 0 ≤ Suc 0 + x

83

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 336

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x
(1)
=

Suc 0 ≤ Suc 0 + x
(2)
=

Suc 0 ≤ Suc (0 + x)

83

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 337

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x
(1)
=

Suc 0 ≤ Suc 0 + x
(2)
=

Suc 0 ≤ Suc (0 + x)
(3)
=

0 ≤ 0 + x

83

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 338

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x
(1)
=

Suc 0 ≤ Suc 0 + x
(2)
=

Suc 0 ≤ Suc (0 + x)
(3)
=

0 ≤ 0 + x
(4)
=

True

83

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 339

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

84

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 340

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]
if there is a substitution σ such that σ(l) = s

84

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 341

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]
if there is a substitution σ such that σ(l) = s

• Result: t[σ(r)]

84

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 342

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]
if there is a substitution σ such that σ(l) = s

• Result: t[σ(r)]

• Note: t[s] = t[σ(r)]

84

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 343

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]
if there is a substitution σ such that σ(l) = s

• Result: t[σ(r)]

• Note: t[s] = t[σ(r)]

Example:
Equation: 0 + n = n

Term: a + (0 + (b + c))

84

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 344

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]
if there is a substitution σ such that σ(l) = s

• Result: t[σ(r)]

• Note: t[s] = t[σ(r)]

Example:
Equation: 0 + n = n

Term: a + (0 + (b + c))

σ = {n �→ b + c}

84

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 345

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]
if there is a substitution σ such that σ(l) = s

• Result: t[σ(r)]

• Note: t[s] = t[σ(r)]

Example:
Equation: 0 + n = n

Term: a + (0 + (b + c))

σ = {n �→ b + c}
Result: a + (b + c) 84

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 346

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Extension: conditional rewriting

Rewrite rules can be conditional:

[[P1 . . . Pn]] =⇒ l = r

85

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 347

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Extension: conditional rewriting

Rewrite rules can be conditional:

[[P1 . . . Pn]] =⇒ l = r

is applicable to term t[s] with σ if
• σ(l) = s and
• σ(P1), . . . , σ(Pn) are provable (again by rewriting).

85

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 348

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Interlude: Variables in Isabelle

86

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 349

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Schematic variables

Three kinds of variables:
• bound: ∀ x. x = x
• free: x = x

87

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 350

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Schematic variables

Three kinds of variables:
• bound: ∀ x. x = x
• free: x = x
• schematic: ?x = ?x (“unknown”)

87

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 351

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Schematic variables

Three kinds of variables:
• bound: ∀ x. x = x
• free: x = x
• schematic: ?x = ?x (“unknown”)

Schematic variables:

87

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 352

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Schematic variables

Three kinds of variables:
• bound: ∀ x. x = x
• free: x = x
• schematic: ?x = ?x (“unknown”)

Schematic variables:

• Logically: free = schematic

87

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 353

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Schematic variables

Three kinds of variables:
• bound: ∀ x. x = x
• free: x = x
• schematic: ?x = ?x (“unknown”)

Schematic variables:

• Logically: free = schematic
• Operationally:

• free variables are fixed
• schematic variables are instantiated by substitutions

87

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 354

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

From x to ?x

State lemmas with free variables:
lemma app_Nil2[simp]: xs @ [] = xs

88

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 355

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

From x to ?x

State lemmas with free variables:
lemma app_Nil2[simp]: xs @ [] = xs
...
done

88

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 356

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

From x to ?x

State lemmas with free variables:
lemma app_Nil2[simp]: xs @ [] = xs
...
done

After the proof: Isabelle changes xs to ?xs (internally):
?xs @ [] = ?xs

Now usable with arbitrary values for ?xs

88

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 357

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

From x to ?x

State lemmas with free variables:
lemma app_Nil2[simp]: xs @ [] = xs
...
done

After the proof: Isabelle changes xs to ?xs (internally):
?xs @ [] = ?xs

Now usable with arbitrary values for ?xs
Example: rewriting

rev(a @ []) = rev a
using app_Nil2 with σ = {?xs �→ a}

88

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 358

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Term rewriting in Isabelle

89

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 359

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Basic simplification

Goal: 1. [[P1; . . . ; Pm]] =⇒ C

apply(simp add: eq1 . . . eqn)

90

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 360

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Basic simplification

Goal: 1. [[P1; . . . ; Pm]] =⇒ C

apply(simp add: eq1 . . . eqn)
Simplify P1 . . . Pm and C using

• lemmas with attribute simp

90

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 361

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Basic simplification

Goal: 1. [[P1; . . . ; Pm]] =⇒ C

apply(simp add: eq1 . . . eqn)
Simplify P1 . . . Pm and C using

• lemmas with attribute simp
• rules from primrec, fun and datatype

90

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 362

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Basic simplification

Goal: 1. [[P1; . . . ; Pm]] =⇒ C

apply(simp add: eq1 . . . eqn)
Simplify P1 . . . Pm and C using

• lemmas with attribute simp
• rules from primrec, fun and datatype
• additional lemmas eq1 . . . eqn

90

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 363

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Basic simplification

Goal: 1. [[P1; . . . ; Pm]] =⇒ C

apply(simp add: eq1 . . . eqn)
Simplify P1 . . . Pm and C using

• lemmas with attribute simp
• rules from primrec, fun and datatype
• additional lemmas eq1 . . . eqn

• assumptions P1 . . . Pm

90

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 364

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Basic simplification

Goal: 1. [[P1; . . . ; Pm]] =⇒ C

apply(simp add: eq1 . . . eqn)
Simplify P1 . . . Pm and C using

• lemmas with attribute simp
• rules from primrec, fun and datatype
• additional lemmas eq1 . . . eqn

• assumptions P1 . . . Pm

Variations:
• (simp . . . del: . . .) removes simp-lemmas
• add and del are optional

90

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 365

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

auto versus simp

• auto acts on all subgoals
• simp acts only on subgoal 1
• auto applies simp and more

91

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 366

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

92

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 367

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.
Example: f(x) = g(x), g(x) = f(x)

92

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 368

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.
Example: f(x) = g(x), g(x) = f(x)

[[P1 . . . Pn]] =⇒ l = r

is suitable as a simp-rule only
if l is “bigger” than r and each Pi

92

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 369

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.
Example: f(x) = g(x), g(x) = f(x)

[[P1 . . . Pn]] =⇒ l = r

is suitable as a simp-rule only
if l is “bigger” than r and each Pi

n < m =⇒ (n < Suc m) = True
Suc n < m =⇒ (n < m) = True

92

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 370

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.
Example: f(x) = g(x), g(x) = f(x)

[[P1 . . . Pn]] =⇒ l = r

is suitable as a simp-rule only
if l is “bigger” than r and each Pi

n < m =⇒ (n < Suc m) = True YES
Suc n < m =⇒ (n < m) = True NO

92

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 371

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Rewriting with definitions

Definitions do not have the simp attribute.

93

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 372

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Rewriting with definitions

Definitions do not have the simp attribute.

They must be used explicitly: (simp add: f_def . . .)

93

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 373

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Extensions of rewriting

94

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 374

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Local assumptions

Simplification of A −→ B:
1. Simplify A to A�

2. Simplify B using A�

95

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 375

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Case splitting with simp

P(if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))

96

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 376

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Case splitting with simp

P(if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))
Automatic

96

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 377

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Case splitting with simp

P(if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))
Automatic

P(case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P(a)) ∧ (∀n. e = Suc n −→ P(b))

96

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 378

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Case splitting with simp

P(if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))
Automatic

P(case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P(a)) ∧ (∀n. e = Suc n −→ P(b))
By hand: (simp split: nat.split)

96

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 379

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Case splitting with simp

P(if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))
Automatic

P(case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P(a)) ∧ (∀n. e = Suc n −→ P(b))
By hand: (simp split: nat.split)

Similar for any datatype t : t.split

96

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 380

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Ordered rewriting

Problem: ?x + ?y = ?y + ?x does not terminate

97

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 381

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Ordered rewriting

Problem: ?x + ?y = ?y + ?x does not terminate
Solution: permutative simp-rules are used only if the term
becomes lexicographically smaller.

97

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 382

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Ordered rewriting

Problem: ?x + ?y = ?y + ?x does not terminate
Solution: permutative simp-rules are used only if the term
becomes lexicographically smaller.
Example: b + a ❀ a + b but not a + b ❀ b + a.

97

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 383

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Ordered rewriting

Problem: ?x + ?y = ?y + ?x does not terminate
Solution: permutative simp-rules are used only if the term
becomes lexicographically smaller.
Example: b + a ❀ a + b but not a + b ❀ b + a.
For types nat, int etc:

• lemmas add_ac sort any sum (+)
• lemmas times_ac sort any product (∗)

97

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 384

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Ordered rewriting

Problem: ?x + ?y = ?y + ?x does not terminate
Solution: permutative simp-rules are used only if the term
becomes lexicographically smaller.
Example: b + a ❀ a + b but not a + b ❀ b + a.
For types nat, int etc:

• lemmas add_ac sort any sum (+)
• lemmas times_ac sort any product (∗)

Example: (simp add: add_ac) yields

(b + c) + a ❀ · · · ❀ a + (b + c)

97

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 385

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Preprocessing

simp-rules are preprocessed (recursively) for maximal
simplification power:

¬A �→ A = False

A −→ B �→ A =⇒ B

A ∧ B �→ A, B

∀x.A(x) �→ A(?x)

A �→ A = True

98

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 386

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Preprocessing

simp-rules are preprocessed (recursively) for maximal
simplification power:

¬A �→ A = False

A −→ B �→ A =⇒ B

A ∧ B �→ A, B

∀x.A(x) �→ A(?x)

A �→ A = True

Example:

(p −→ q ∧ ¬ r) ∧ s �→

98

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 387

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Preprocessing

simp-rules are preprocessed (recursively) for maximal
simplification power:

¬A �→ A = False

A −→ B �→ A =⇒ B

A ∧ B �→ A, B

∀x.A(x) �→ A(?x)

A �→ A = True

Example:

(p −→ q ∧ ¬ r) ∧ s �→

p =⇒ q = True
p =⇒ r = False

s = True

98

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 388

Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

When everything else fails: Tracing

Set trace mode on/off in Proof General:

Isabelle → Settings → Trace simplifier

Output in separate trace buffer

99

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 389

Proof system of Isabelle/HOL

Case analysis and structural induction

Case analysis and structural induction

taken from IsabelleTutorial, Sect. 2, Sect. 3.2, Sect. 3.5
»> slidesNipkow:»> Demo: MyDemo,Trees

Slides for Session 3.2, 1-12 (slidesNipkow 87-93)
»>MyDemo, Induction Heuristics

Slides for Session 2, 57-79
»>MyDemo, Fun

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 390

Proof system of Isabelle/HOL

Case analysis and structural induction

Basic heuristics

Theorems about recursive functions are proved by
induction

102

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 391

Proof system of Isabelle/HOL

Case analysis and structural induction

Basic heuristics

Theorems about recursive functions are proved by
induction

Induction on argument number i of f
if f is defined by recursion on argument number i

102

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 392

Proof system of Isabelle/HOL

Case analysis and structural induction

A tail recursive reverse

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list

103

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 393

Proof system of Isabelle/HOL

Case analysis and structural induction

A tail recursive reverse

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list where
itrev [] ys = ys |
itrev (x#xs) ys =

103

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 394

Proof system of Isabelle/HOL

Case analysis and structural induction

A tail recursive reverse

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list where
itrev [] ys = ys |
itrev (x#xs) ys = itrev xs (x#ys)

103

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 395

Proof system of Isabelle/HOL

Case analysis and structural induction

A tail recursive reverse

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list where
itrev [] ys = ys |
itrev (x#xs) ys = itrev xs (x#ys)
lemma itrev xs [] = rev xs

103

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 396

Proof system of Isabelle/HOL

Case analysis and structural induction

A tail recursive reverse

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list where
itrev [] ys = ys |
itrev (x#xs) ys = itrev xs (x#ys)
lemma itrev xs [] = rev xs
Why in this direction?

103

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 397

Proof system of Isabelle/HOL

Case analysis and structural induction

A tail recursive reverse

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list where
itrev [] ys = ys |
itrev (x#xs) ys = itrev xs (x#ys)
lemma itrev xs [] = rev xs
Why in this direction?
Because the lhs is “more complex” than the rhs.

103

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 398

Proof system of Isabelle/HOL

Case analysis and structural induction

Demo

104

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 399

Proof system of Isabelle/HOL

Case analysis and structural induction

Generalisation

• Replace constants by variables

105

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 400

Proof system of Isabelle/HOL

Case analysis and structural induction

Generalisation

• Replace constants by variables

• Generalize free variables
• by ∀ in formula
• by arbitrary in induction proof

105

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 401

Proof system of Isabelle/HOL

Proof automation

Proof search automation
taken from IsabelleTutorial, Sect. 5.12, 5.13

Proof automation tries to apply rules either
� to finish the proof of (sub-)goal
� to simplify the subgoals

We call this the success criterion.

Methods for proof automation are different in
� the success criterion
� the rules they use
� the way in which these rule are applied

Simplification applies rewrite rules repeatedly as long as possible.
Classical reasoning uses search and backtracking with rules from
predicate logic.

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 402

Proof system of Isabelle/HOL

Proof automation

General Methods (Tactics)

blast:
� tries to finish proof of (sub-)goal
� classical reasoner

clarify:
� tries to perform obvious proof steps
� classical reasoner (only safe rule, no splitting of (sub-)goal)

safe:
� tries to perform obvious proof steps
� classical reasoner (only safe rule, splitting)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 403

Proof system of Isabelle/HOL

Proof automation

General Methods (Tactics)

clarsimp:
� tries to finish proof of (sub-)goal
� classical reasoner interleaved with simplification (only safe rule,

no splitting)

force:
� tries to finish proof of (sub-)goal
� classical reasoner and simplification

auto:
� tries to perform proof steps on all subgoals
� classical reasoner and simplification (splitting)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 404

Proof system of Isabelle/HOL

Proof automation

More proof methods

Forward proof step in backward proof:
� apply rules to assumptions

Forward proofs (Hilbert style proofs):
� directly prove a theorem from proven theorems

Directives/attributes:
� of: instantiates the variables of a rule to a list of terms
� OF: applies a rule to a list of theorems
� THEN: gives a theorem to named rule and returns the conclusion
� simplified: applies the simplifier to a theorem

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 405

Proof system of Isabelle/HOL

Proof automation

More proof methods

Forward proof step in backward proof:
� apply rules to assumptions

Forward proofs (Hilbert style proofs):
� directly prove a theorem from proven theorems

Directives/attributes:
� of: instantiates the variables of a rule to a list of terms
� OF: applies a rule to a list of theorems
� THEN: gives a theorem to named rule and returns the conclusion
� simplified: applies the simplifier to a theorem

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 406

Proof system of Isabelle/HOL

Proof automation

Forward proofs: OF

r[OF r 1 . . . rn]

Prove assumption 1 of theorem r with theorem r 1,
and assumption 2 with theorem r 2, and . . .

134

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 407

Proof system of Isabelle/HOL

Proof automation

Forward proofs: OF

r[OF r 1 . . . rn]

Prove assumption 1 of theorem r with theorem r 1,
and assumption 2 with theorem r 2, and . . .

Rule r [[A1; . . . ; Am]] =⇒ A
Rule r 1 [[B1; . . . ; Bn]] =⇒ B
Substitution σ(B) ≡ σ(A1)
r[OF r 1]

134

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 408

Proof system of Isabelle/HOL

Proof automation

Forward proofs: OF

r[OF r 1 . . . rn]

Prove assumption 1 of theorem r with theorem r 1,
and assumption 2 with theorem r 2, and . . .

Rule r [[A1; . . . ; Am]] =⇒ A
Rule r 1 [[B1; . . . ; Bn]] =⇒ B
Substitution σ(B) ≡ σ(A1)
r[OF r 1] σ([[B1; . . . ; Bn; A2; . . . ; Am]] =⇒ A)

134

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 409

Proof system of Isabelle/HOL

Proof automation

More proof methods

Method insert:
� inserts a theorem as a new assumption into current subgoal

Method subgoal_tac:
� inserts an arbitrary formula F as assumption
� F becomes additional subgoal

»>MyDemo, subgoal_tac

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 410

