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Proof system of Isabelle/HOL

Methods and Rules

Methods and Rules
Formulas, sequents, and rules revisited

Propositions can represent:
� formulas, generalized sequents: lemmas/theorems to be proven
� rules: to be applied in a proof step
� proof (sub-)goals, i.e., open leaves in a proof tree

Example: from Lecture.thy
� SPEC, SCHEMATIC (Warning)
� ARULE
� GOAL

A proven lemma/theorem is automatically transformed into a rule.
That is, the set of rules is not fixed in Isabelle/HOL.E.g. ARULE.
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Proof system of Isabelle/HOL

Methods and Rules

Variables

Six kinds of variables:
� (logical) variables bound by the logic-quantifiers
� (logical) variables bound by the meta-quantifier
� free (logical) variables
� schematic variables (in rules and proofs)
� type variables
� schematic type variables
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Proof system of Isabelle/HOL

Methods and Rules

Format of Goals and Rules
Format of Goals

�
�

x1...xk . [|A1; ...; Am|] =⇒ C
� xi are variables local to the subgoal (possibly none)
� Ai are called the assumptions (possibly none)
� C is called the conclusion
� usually first three types of variables sometimes also schematic

variables.

Format of Rules
� [|P1; ...; Pn|] =⇒ Q
� Pi are called the premises (possibly none)
� P1 is called the major premise
� Q is called the consequent (not standard)
� Schematic variables in Pi, Q.
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Proof system of Isabelle/HOL

Methods and Rules

Application of rules
Methods are commands to work on the proof state
In particular, methods allow to apply rules. Whereas the set of rules is
not fixed, the basic methods are fixed in Isabelle/HOL.
Rule application:

� Applying rules is based on unification.
� Unification is done w.r.t. the schematic variables.
� The unifier is applied to the complete proof state!
� Unification may involve renaming of bound variables.

Example: (general idea of rule application)
� rule: [|P1; P2|] =⇒ Q
� subgoal: A =⇒ C
� if U unifies C and Q, then sufficient subgoals are:
� U(A) =⇒ U(P1), U(A) =⇒ U(P2)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 321



Proof system of Isabelle/HOL

Methods and Rules

Methods

Command: apply(method <parameters>)

Application of a rule to a subgoal depends on the method:
Methods are (for convenience) be classified into:

� introduction methods: decompose formulae to the right of =⇒
� elimination methods: decompose formulae to the left of =⇒

Method rule <rulename> :
� unify Q with C; fails if no unifier exists; otherwise unifier U
� remaining subgoals: For i = 1, ..., n
�

�
x1...xk . U([|A1; ...; Am|] =⇒ Pi)

� Example GOAL
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Methods and Rules

Methods

Method assumption:
� unify C with first possible Aj; fails if no Aj exists for unification
� subgoal is closed (discharged)
� Example GOAL

Method erule <rulename> :
� unify Q with C and simultanneously unify P1 with some Aj; fails if

no unifier exists; otherwise unifier U
� remaining subgoals: For i = 2, ..., n
�

�
x1...xk . U([|A1; ...; Am\Aj |] =⇒ Pi)

� Example GOAL
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Proof system of Isabelle/HOL

Methods and Rules

Methods
Method drule <rulename> :

� unify P1 some Aj; fails if no unifier exists; otherwise unifier U
� remaining subgoals:
� For i = 2, ..., n

�
x1...xk . U([|A1; ...; Am\Aj |] =⇒ Pi)

�
�

x1...xk . U([|A1; ...; Am\Aj ; Q|] =⇒ C)

� Example C1

Method frule <rulename> :
� unify P1 some Aj; fails if no unifier exists; otherwise unifier U
� remaining subgoals:
� For i = 2, ..., n

�
x1...xk . U([|A1; ...; Am|] =⇒ Pi)

�
�

x1...xk . U([|A1; ...; Am; Q|] =⇒ C)

� Example C1
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Proof system of Isabelle/HOL

Methods and Rules

Methods
Method [edf]rule_tac x= term in <rule> :

� are similar to the version above but allow to influence the
unification

� Example 5.8.2, p. 79, TAC
� FIXAX2

Method unfold <name_def> :
� unfolds the definition of a constant in all subgoals
� Example SPEC

Method induct_tac <freevar...> :
� uses the inductive definition of a function
� generates the corresponding subgoals
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Proof system of Isabelle/HOL

Methods and Rules

Fundamental rules of Isabelle/HOl
See IsabelleHOLMain, Sect. 2.2

Remark
� Safe rules preserve provability
� e.g. conjI, impI, notI, iffI, refl, ccontr, classical, conjE, disjE
� Unsafe rules can turn a provable goal into an unprovable one
� e.g. disjI1, disjI2, impE, iffD1, iffD2, notE
� � Apply safe rules before unsafe ones

Example
� lemma UNSAFE: “A ∨ ¬A��

� apply (rule disI1)
� sorry
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Proof system of Isabelle/HOL

Methods and Rules

An overview of theory Main

The structure of theory Main: p. 23

Set construction in Isabelle/HOL: Sect. 6

Natural numbers in Isabelle/HOL: Sect. 15

Remark
Working with theory Main:

� The programmer cannot know the complete library
� The “verificator” cannot know all rules.
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Rewriting and simplification

taken from IsabelleTutorial, Sect. 3.1) »> slidesNipkow:

apply(simp add: eq1 . . . eqn)

»> Demo: MyDemo, Simp
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Overview

• Term rewriting foundations
• Term rewriting in Isabelle/HOL

• Basic simplification
• Extensions

80
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Term rewriting foundations

81
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Term rewriting means . . .

Using equations l = r from left to right

82

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 331



Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Term rewriting means . . .

Using equations l = r from left to right
As long as possible

82
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Term rewriting means . . .

Using equations l = r from left to right
As long as possible

Terminology: equation ❀ rewrite rule

82
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Isabelle: Rewriting and simplification

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

83
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x

83
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x
(1)
=

Suc 0 ≤ Suc 0 + x

83

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 336



Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x
(1)
=

Suc 0 ≤ Suc 0 + x
(2)
=

Suc 0 ≤ Suc (0 + x)

83
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Isabelle: Rewriting and simplification

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x
(1)
=

Suc 0 ≤ Suc 0 + x
(2)
=

Suc 0 ≤ Suc (0 + x)
(3)
=

0 ≤ 0 + x

83
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Isabelle: Rewriting and simplification

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x
(1)
=

Suc 0 ≤ Suc 0 + x
(2)
=

Suc 0 ≤ Suc (0 + x)
(3)
=

0 ≤ 0 + x
(4)
=

True

83
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

84
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]
if there is a substitution σ such that σ(l) = s

84
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Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]
if there is a substitution σ such that σ(l) = s

• Result: t[σ(r)]

84

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 342



Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]
if there is a substitution σ such that σ(l) = s

• Result: t[σ(r)]

• Note: t[s] = t[σ(r)]

84
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Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]
if there is a substitution σ such that σ(l) = s

• Result: t[σ(r)]

• Note: t[s] = t[σ(r)]

Example:
Equation: 0 + n = n

Term: a + (0 + (b + c))

84
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Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]
if there is a substitution σ such that σ(l) = s

• Result: t[σ(r)]

• Note: t[s] = t[σ(r)]

Example:
Equation: 0 + n = n

Term: a + (0 + (b + c))

σ = {n �→ b + c}

84
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]
if there is a substitution σ such that σ(l) = s

• Result: t[σ(r)]

• Note: t[s] = t[σ(r)]

Example:
Equation: 0 + n = n

Term: a + (0 + (b + c))

σ = {n �→ b + c}
Result: a + (b + c) 84
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Extension: conditional rewriting

Rewrite rules can be conditional:

[[P1 . . . Pn]] =⇒ l = r

85
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Extension: conditional rewriting

Rewrite rules can be conditional:

[[P1 . . . Pn]] =⇒ l = r

is applicable to term t[s] with σ if
• σ(l) = s and
• σ(P1), . . . , σ(Pn) are provable (again by rewriting).

85
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Interlude: Variables in Isabelle

86
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Schematic variables

Three kinds of variables:
• bound: ∀ x. x = x
• free: x = x

87

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 350



Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Schematic variables

Three kinds of variables:
• bound: ∀ x. x = x
• free: x = x
• schematic: ?x = ?x (“unknown”)

87
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Schematic variables

Three kinds of variables:
• bound: ∀ x. x = x
• free: x = x
• schematic: ?x = ?x (“unknown”)

Schematic variables:

87
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Isabelle: Rewriting and simplification

Schematic variables

Three kinds of variables:
• bound: ∀ x. x = x
• free: x = x
• schematic: ?x = ?x (“unknown”)

Schematic variables:

• Logically: free = schematic

87
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Isabelle: Rewriting and simplification

Schematic variables

Three kinds of variables:
• bound: ∀ x. x = x
• free: x = x
• schematic: ?x = ?x (“unknown”)

Schematic variables:

• Logically: free = schematic
• Operationally:

• free variables are fixed
• schematic variables are instantiated by substitutions

87
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

From x to ?x

State lemmas with free variables:
lemma app_Nil2[simp]: xs @ [] = xs

88
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

From x to ?x

State lemmas with free variables:
lemma app_Nil2[simp]: xs @ [] = xs
...
done

88
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

From x to ?x

State lemmas with free variables:
lemma app_Nil2[simp]: xs @ [] = xs
...
done

After the proof: Isabelle changes xs to ?xs (internally):
?xs @ [] = ?xs

Now usable with arbitrary values for ?xs

88
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

From x to ?x

State lemmas with free variables:
lemma app_Nil2[simp]: xs @ [] = xs
...
done

After the proof: Isabelle changes xs to ?xs (internally):
?xs @ [] = ?xs

Now usable with arbitrary values for ?xs
Example: rewriting

rev(a @ []) = rev a
using app_Nil2 with σ = {?xs �→ a}

88
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Term rewriting in Isabelle

89
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Basic simplification

Goal: 1. [[ P1; . . . ; Pm ]] =⇒ C

apply(simp add: eq1 . . . eqn)

90
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Basic simplification

Goal: 1. [[ P1; . . . ; Pm ]] =⇒ C

apply(simp add: eq1 . . . eqn)
Simplify P1 . . . Pm and C using

• lemmas with attribute simp

90
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Basic simplification

Goal: 1. [[ P1; . . . ; Pm ]] =⇒ C

apply(simp add: eq1 . . . eqn)
Simplify P1 . . . Pm and C using

• lemmas with attribute simp
• rules from primrec, fun and datatype

90
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Isabelle: Rewriting and simplification

Basic simplification

Goal: 1. [[ P1; . . . ; Pm ]] =⇒ C

apply(simp add: eq1 . . . eqn)
Simplify P1 . . . Pm and C using

• lemmas with attribute simp
• rules from primrec, fun and datatype
• additional lemmas eq1 . . . eqn

90
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Isabelle: Rewriting and simplification

Basic simplification

Goal: 1. [[ P1; . . . ; Pm ]] =⇒ C

apply(simp add: eq1 . . . eqn)
Simplify P1 . . . Pm and C using

• lemmas with attribute simp
• rules from primrec, fun and datatype
• additional lemmas eq1 . . . eqn

• assumptions P1 . . . Pm

90
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Isabelle: Rewriting and simplification

Basic simplification

Goal: 1. [[ P1; . . . ; Pm ]] =⇒ C

apply(simp add: eq1 . . . eqn)
Simplify P1 . . . Pm and C using

• lemmas with attribute simp
• rules from primrec, fun and datatype
• additional lemmas eq1 . . . eqn

• assumptions P1 . . . Pm

Variations:
• (simp . . . del: . . . ) removes simp-lemmas
• add and del are optional

90
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Isabelle: Rewriting and simplification

auto versus simp

• auto acts on all subgoals
• simp acts only on subgoal 1
• auto applies simp and more

91
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Isabelle: Rewriting and simplification

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

92
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.
Example: f(x) = g(x), g(x) = f(x)

92
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Isabelle: Rewriting and simplification

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.
Example: f(x) = g(x), g(x) = f(x)

[[P1 . . . Pn]] =⇒ l = r

is suitable as a simp-rule only
if l is “bigger” than r and each Pi

92
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Isabelle: Rewriting and simplification

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.
Example: f(x) = g(x), g(x) = f(x)

[[P1 . . . Pn]] =⇒ l = r

is suitable as a simp-rule only
if l is “bigger” than r and each Pi

n < m =⇒ (n < Suc m) = True
Suc n < m =⇒ (n < m) = True

92
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Isabelle: Rewriting and simplification

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.
Example: f(x) = g(x), g(x) = f(x)

[[P1 . . . Pn]] =⇒ l = r

is suitable as a simp-rule only
if l is “bigger” than r and each Pi

n < m =⇒ (n < Suc m) = True YES
Suc n < m =⇒ (n < m) = True NO

92
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Isabelle: Rewriting and simplification

Rewriting with definitions

Definitions do not have the simp attribute.

93
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Isabelle: Rewriting and simplification

Rewriting with definitions

Definitions do not have the simp attribute.

They must be used explicitly: (simp add: f_def . . . )

93
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Isabelle: Rewriting and simplification

Extensions of rewriting

94
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Isabelle: Rewriting and simplification

Local assumptions

Simplification of A −→ B:
1. Simplify A to A�

2. Simplify B using A�

95

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 375



Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Case splitting with simp

P(if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))

96
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Isabelle: Rewriting and simplification

Case splitting with simp

P(if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))
Automatic

96
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Isabelle: Rewriting and simplification

Case splitting with simp

P(if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))
Automatic

P(case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P(a)) ∧ (∀n. e = Suc n −→ P(b))

96
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Isabelle: Rewriting and simplification

Case splitting with simp

P(if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))
Automatic

P(case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P(a)) ∧ (∀n. e = Suc n −→ P(b))
By hand: (simp split: nat.split)

96
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Isabelle: Rewriting and simplification

Case splitting with simp

P(if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))
Automatic

P(case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P(a)) ∧ (∀n. e = Suc n −→ P(b))
By hand: (simp split: nat.split)

Similar for any datatype t : t.split

96

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 380



Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Ordered rewriting

Problem: ?x + ?y = ?y + ?x does not terminate

97
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Isabelle: Rewriting and simplification

Ordered rewriting

Problem: ?x + ?y = ?y + ?x does not terminate
Solution: permutative simp-rules are used only if the term
becomes lexicographically smaller.

97
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Isabelle: Rewriting and simplification

Ordered rewriting

Problem: ?x + ?y = ?y + ?x does not terminate
Solution: permutative simp-rules are used only if the term
becomes lexicographically smaller.
Example: b + a ❀ a + b but not a + b ❀ b + a.
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Ordered rewriting

Problem: ?x + ?y = ?y + ?x does not terminate
Solution: permutative simp-rules are used only if the term
becomes lexicographically smaller.
Example: b + a ❀ a + b but not a + b ❀ b + a.
For types nat, int etc:

• lemmas add_ac sort any sum (+)
• lemmas times_ac sort any product (∗)
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Ordered rewriting

Problem: ?x + ?y = ?y + ?x does not terminate
Solution: permutative simp-rules are used only if the term
becomes lexicographically smaller.
Example: b + a ❀ a + b but not a + b ❀ b + a.
For types nat, int etc:

• lemmas add_ac sort any sum (+)
• lemmas times_ac sort any product (∗)

Example: (simp add: add_ac) yields

(b + c) + a ❀ · · · ❀ a + (b + c)
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Preprocessing

simp-rules are preprocessed (recursively) for maximal
simplification power:

¬A �→ A = False

A −→ B �→ A =⇒ B

A ∧ B �→ A, B

∀x.A(x) �→ A(?x)

A �→ A = True
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Preprocessing

simp-rules are preprocessed (recursively) for maximal
simplification power:

¬A �→ A = False

A −→ B �→ A =⇒ B

A ∧ B �→ A, B

∀x.A(x) �→ A(?x)

A �→ A = True

Example:

(p −→ q ∧ ¬ r) ∧ s �→
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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

Preprocessing

simp-rules are preprocessed (recursively) for maximal
simplification power:

¬A �→ A = False

A −→ B �→ A =⇒ B

A ∧ B �→ A, B

∀x.A(x) �→ A(?x)

A �→ A = True

Example:

(p −→ q ∧ ¬ r) ∧ s �→






p =⇒ q = True
p =⇒ r = False

s = True





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Proof system of Isabelle/HOL

Isabelle: Rewriting and simplification

When everything else fails: Tracing

Set trace mode on/off in Proof General:

Isabelle → Settings → Trace simplifier

Output in separate trace buffer

99
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Proof system of Isabelle/HOL

Case analysis and structural induction

Case analysis and structural induction

taken from IsabelleTutorial, Sect. 2, Sect. 3.2, Sect. 3.5
»> slidesNipkow:»> Demo: MyDemo,Trees

Slides for Session 3.2, 1-12 (slidesNipkow 87-93)
»>MyDemo, Induction Heuristics

Slides for Session 2, 57-79
»>MyDemo, Fun
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Proof system of Isabelle/HOL

Case analysis and structural induction

Basic heuristics

Theorems about recursive functions are proved by
induction

102
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Proof system of Isabelle/HOL

Case analysis and structural induction

Basic heuristics

Theorems about recursive functions are proved by
induction

Induction on argument number i of f
if f is defined by recursion on argument number i
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Proof system of Isabelle/HOL

Case analysis and structural induction

A tail recursive reverse

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list

103
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Proof system of Isabelle/HOL

Case analysis and structural induction

A tail recursive reverse

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list where
itrev [] ys = ys |
itrev (x#xs) ys =
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Proof system of Isabelle/HOL

Case analysis and structural induction

A tail recursive reverse

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list where
itrev [] ys = ys |
itrev (x#xs) ys = itrev xs (x#ys)
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Proof system of Isabelle/HOL

Case analysis and structural induction

A tail recursive reverse

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list where
itrev [] ys = ys |
itrev (x#xs) ys = itrev xs (x#ys)
lemma itrev xs [] = rev xs
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Proof system of Isabelle/HOL

Case analysis and structural induction

A tail recursive reverse

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list where
itrev [] ys = ys |
itrev (x#xs) ys = itrev xs (x#ys)
lemma itrev xs [] = rev xs
Why in this direction?
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Proof system of Isabelle/HOL

Case analysis and structural induction

A tail recursive reverse

primrec itrev :: ’a list ⇒ ’a list ⇒ ’a list where
itrev [] ys = ys |
itrev (x#xs) ys = itrev xs (x#ys)
lemma itrev xs [] = rev xs
Why in this direction?
Because the lhs is “more complex” than the rhs.
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Proof system of Isabelle/HOL

Case analysis and structural induction

Demo

104

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 399



Proof system of Isabelle/HOL

Case analysis and structural induction

Generalisation

• Replace constants by variables

105
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Proof system of Isabelle/HOL

Case analysis and structural induction

Generalisation

• Replace constants by variables

• Generalize free variables
• by ∀ in formula
• by arbitrary in induction proof
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Proof system of Isabelle/HOL

Proof automation

Proof search automation
taken from IsabelleTutorial, Sect. 5.12, 5.13

Proof automation tries to apply rules either
� to finish the proof of (sub-)goal
� to simplify the subgoals

We call this the success criterion.

Methods for proof automation are different in
� the success criterion
� the rules they use
� the way in which these rule are applied

Simplification applies rewrite rules repeatedly as long as possible.
Classical reasoning uses search and backtracking with rules from
predicate logic.
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Proof system of Isabelle/HOL

Proof automation

General Methods (Tactics)

blast:
� tries to finish proof of (sub-)goal
� classical reasoner

clarify:
� tries to perform obvious proof steps
� classical reasoner (only safe rule, no splitting of (sub-)goal)

safe:
� tries to perform obvious proof steps
� classical reasoner (only safe rule, splitting)
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Proof system of Isabelle/HOL

Proof automation

General Methods (Tactics)

clarsimp:
� tries to finish proof of (sub-)goal
� classical reasoner interleaved with simplification (only safe rule,

no splitting)

force:
� tries to finish proof of (sub-)goal
� classical reasoner and simplification

auto:
� tries to perform proof steps on all subgoals
� classical reasoner and simplification (splitting)
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Proof system of Isabelle/HOL

Proof automation

More proof methods

Forward proof step in backward proof:
� apply rules to assumptions

Forward proofs (Hilbert style proofs):
� directly prove a theorem from proven theorems

Directives/attributes:
� of: instantiates the variables of a rule to a list of terms
� OF: applies a rule to a list of theorems
� THEN: gives a theorem to named rule and returns the conclusion
� simplified: applies the simplifier to a theorem
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Proof system of Isabelle/HOL

Proof automation

More proof methods

Forward proof step in backward proof:
� apply rules to assumptions

Forward proofs (Hilbert style proofs):
� directly prove a theorem from proven theorems

Directives/attributes:
� of: instantiates the variables of a rule to a list of terms
� OF: applies a rule to a list of theorems
� THEN: gives a theorem to named rule and returns the conclusion
� simplified: applies the simplifier to a theorem
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Proof system of Isabelle/HOL

Proof automation

Forward proofs: OF

r[OF r 1 . . . rn]

Prove assumption 1 of theorem r with theorem r 1,
and assumption 2 with theorem r 2, and . . .

134
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Proof system of Isabelle/HOL

Proof automation

Forward proofs: OF

r[OF r 1 . . . rn]

Prove assumption 1 of theorem r with theorem r 1,
and assumption 2 with theorem r 2, and . . .

Rule r [[ A1; . . . ; Am ]] =⇒ A
Rule r 1 [[ B1; . . . ; Bn ]] =⇒ B
Substitution σ(B) ≡ σ(A1)
r[OF r 1]

134
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Proof system of Isabelle/HOL

Proof automation

Forward proofs: OF

r[OF r 1 . . . rn]

Prove assumption 1 of theorem r with theorem r 1,
and assumption 2 with theorem r 2, and . . .

Rule r [[ A1; . . . ; Am ]] =⇒ A
Rule r 1 [[ B1; . . . ; Bn ]] =⇒ B
Substitution σ(B) ≡ σ(A1)
r[OF r 1] σ( [[ B1; . . . ; Bn; A2; . . . ; Am ]] =⇒ A)
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Proof system of Isabelle/HOL

Proof automation

More proof methods

Method insert:
� inserts a theorem as a new assumption into current subgoal

Method subgoal_tac:
� inserts an arbitrary formula F as assumption
� F becomes additional subgoal

»>MyDemo, subgoal_tac
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