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Sets

Sets, Functions, Relations

see IHT 6.1, 6.2, 6.3
� Finite Set Notation
� Set Comprehension
� Binding Operators
� Finiteness and Cardinality
� Function update, Range, Injective - Surjective
� Relations, Predicates
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Sets

Overview

• Set notation
• Inductively defined sets

138
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Sets

Set notation

139
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Sets

Sets over type ’a:
’a set

140
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Sets

Sets

Sets over type ’a:
’a set = ’a ⇒ bool
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Sets

Sets

Sets over type ’a:
’a set = ’a ⇒ bool

• {}, {e1,. . . ,en}, {x. P x}

140
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Sets

Sets

Sets over type ’a:
’a set = ’a ⇒ bool

• {}, {e1,. . . ,en}, {x. P x}
• e ∈ A, A ⊆ B

140
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Sets

Sets

Sets over type ’a:
’a set = ’a ⇒ bool

• {}, {e1,. . . ,en}, {x. P x}
• e ∈ A, A ⊆ B
• A ∪ B, A ∩ B, A - B, - A

140
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Sets

Sets

Sets over type ’a:
’a set = ’a ⇒ bool

• {}, {e1,. . . ,en}, {x. P x}
• e ∈ A, A ⊆ B
• A ∪ B, A ∩ B, A - B, - A
•

�
x∈A B x,

�
x∈A B x

140
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Sets

Sets

Sets over type ’a:
’a set = ’a ⇒ bool

• {}, {e1,. . . ,en}, {x. P x}
• e ∈ A, A ⊆ B
• A ∪ B, A ∩ B, A - B, - A
•

�
x∈A B x,

�
x∈A B x

• {i..j}

140
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Sets

Sets

Sets over type ’a:
’a set = ’a ⇒ bool

• {}, {e1,. . . ,en}, {x. P x}
• e ∈ A, A ⊆ B
• A ∪ B, A ∩ B, A - B, - A
•

�
x∈A B x,

�
x∈A B x

• {i..j}
• insert :: ’a ⇒ ’a set ⇒ ’a set

140
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Sets

Sets

Sets over type ’a:
’a set = ’a ⇒ bool

• {}, {e1,. . . ,en}, {x. P x}
• e ∈ A, A ⊆ B
• A ∪ B, A ∩ B, A - B, - A
•

�
x∈A B x,

�
x∈A B x

• {i..j}
• insert :: ’a ⇒ ’a set ⇒ ’a set
• . . .

140
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Proofs about sets

Natural deduction proofs:
• equalityI: [[A ⊆ B; B ⊆ A]] =⇒ A = B

141
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Sets

Proofs about sets

Natural deduction proofs:
• equalityI: [[A ⊆ B; B ⊆ A]] =⇒ A = B
• subsetI: (�x. x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

141
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Sets

Proofs about sets

Natural deduction proofs:
• equalityI: [[A ⊆ B; B ⊆ A]] =⇒ A = B
• subsetI: (�x. x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B
• . . . (see Tutorial)

141
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Sets

Demo: proofs about sets

142
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Sets

Bounded quantifiers

• ∀ x∈A. P x

143
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Sets

Bounded quantifiers

• ∀ x∈A. P x ≡ ∀ x. x∈A −→ P x

143
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Sets

Bounded quantifiers

• ∀ x∈A. P x ≡ ∀ x. x∈A −→ P x
• ∃ x∈A. P x

143
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Sets

Bounded quantifiers

• ∀ x∈A. P x ≡ ∀ x. x∈A −→ P x
• ∃ x∈A. P x ≡ ∃ x. x∈A ∧ P x

143
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Sets

Bounded quantifiers

• ∀ x∈A. P x ≡ ∀ x. x∈A −→ P x
• ∃ x∈A. P x ≡ ∃ x. x∈A ∧ P x
• ballI: (�x. x ∈ A =⇒ P x) =⇒ ∀ x∈A. P x
• bspec: [[∀ x∈A. P x; x ∈ A]] =⇒ P x

143
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Sets

Bounded quantifiers

• ∀ x∈A. P x ≡ ∀ x. x∈A −→ P x
• ∃ x∈A. P x ≡ ∃ x. x∈A ∧ P x
• ballI: (�x. x ∈ A =⇒ P x) =⇒ ∀ x∈A. P x
• bspec: [[∀ x∈A. P x; x ∈ A]] =⇒ P x
• bexI: [[P x; x ∈ A]] =⇒ ∃ x∈A. P x
• bexE: [[∃ x∈A. P x; �x. [[x ∈ A; P x ]] =⇒ Q]] =⇒ Q

143
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Sets

Inductively defined sets

144
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Sets

Example: even numbers

Informally:

145
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Sets

Example: even numbers

Informally:
• 0 is even

145
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Sets

Example: even numbers

Informally:
• 0 is even
• If n is even, so is n + 2

145
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Sets

Example: even numbers

Informally:
• 0 is even
• If n is even, so is n + 2

• These are the only even numbers

145
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Sets

Example: even numbers

Informally:
• 0 is even
• If n is even, so is n + 2

• These are the only even numbers

In Isabelle/HOL:
inductive set Ev :: nat set — The set of all even numbers

145
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Sets

Example: even numbers

Informally:
• 0 is even
• If n is even, so is n + 2

• These are the only even numbers

In Isabelle/HOL:
inductive set Ev :: nat set — The set of all even numbers
where
0 ∈ Ev |
n ∈ Ev =⇒ n + 2 ∈ Ev

145
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Sets

Format of inductive definitions

inductive set S :: τ set

146
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Sets

Format of inductive definitions

inductive set S :: τ set
where

[[ a1 ∈ S; . . . ; an ∈ S; A1; . . . ; Ak ]] =⇒ a ∈ S |
...

146
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Sets

Format of inductive definitions

inductive set S :: τ set
where

[[ a1 ∈ S; . . . ; an ∈ S; A1; . . . ; Ak ]] =⇒ a ∈ S |
...

where A1; . . . ; Ak are side conditions not involving S.

146
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Sets

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

147

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 444



Sets, Functions, Relations, and Fixpoints

Sets

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

Trickier: m ∈ Ev =⇒ m+m ∈ Ev

147
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Sets

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

Trickier: m ∈ Ev =⇒ m+m ∈ Ev
Idea: induction on the length of the derivation of m ∈ Ev

147
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Sets

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

Trickier: m ∈ Ev =⇒ m+m ∈ Ev
Idea: induction on the length of the derivation of m ∈ Ev
Better: induction on the structure of the derivation

147
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Sets

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

Trickier: m ∈ Ev =⇒ m+m ∈ Ev
Idea: induction on the length of the derivation of m ∈ Ev
Better: induction on the structure of the derivation
Two cases: m ∈ Ev is proved by

• rule 0 ∈ Ev

147
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Sets

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

Trickier: m ∈ Ev =⇒ m+m ∈ Ev
Idea: induction on the length of the derivation of m ∈ Ev
Better: induction on the structure of the derivation
Two cases: m ∈ Ev is proved by

• rule 0 ∈ Ev
=⇒ m = 0 =⇒ 0+0 ∈ Ev

147
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Sets

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

Trickier: m ∈ Ev =⇒ m+m ∈ Ev
Idea: induction on the length of the derivation of m ∈ Ev
Better: induction on the structure of the derivation
Two cases: m ∈ Ev is proved by

• rule 0 ∈ Ev
=⇒ m = 0 =⇒ 0+0 ∈ Ev

• rule n ∈ Ev =⇒ n+2 ∈ Ev

147
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Sets

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

Trickier: m ∈ Ev =⇒ m+m ∈ Ev
Idea: induction on the length of the derivation of m ∈ Ev
Better: induction on the structure of the derivation
Two cases: m ∈ Ev is proved by

• rule 0 ∈ Ev
=⇒ m = 0 =⇒ 0+0 ∈ Ev

• rule n ∈ Ev =⇒ n+2 ∈ Ev
=⇒ m = n+2 and n+n ∈ Ev (ind. hyp.!)

147
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Sets

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

Trickier: m ∈ Ev =⇒ m+m ∈ Ev
Idea: induction on the length of the derivation of m ∈ Ev
Better: induction on the structure of the derivation
Two cases: m ∈ Ev is proved by

• rule 0 ∈ Ev
=⇒ m = 0 =⇒ 0+0 ∈ Ev

• rule n ∈ Ev =⇒ n+2 ∈ Ev
=⇒ m = n+2 and n+n ∈ Ev (ind. hyp.!)
=⇒ m+m = (n+2)+(n+2) = ((n+n)+2)+2 ∈ Ev

147
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Sets

Rule induction for Ev

To prove
n ∈ Ev =⇒ P n

by rule induction on n ∈ Ev we must prove

148
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Sets

Rule induction for Ev

To prove
n ∈ Ev =⇒ P n

by rule induction on n ∈ Ev we must prove
• P 0

148
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Sets

Rule induction for Ev

To prove
n ∈ Ev =⇒ P n

by rule induction on n ∈ Ev we must prove
• P 0
• P n =⇒ P(n+2)

148
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Sets

Rule induction for Ev

To prove
n ∈ Ev =⇒ P n

by rule induction on n ∈ Ev we must prove
• P 0
• P n =⇒ P(n+2)

Rule Ev.induct:

[[ n ∈ Ev; P 0;
�
n. P n =⇒ P(n+2) ]] =⇒ P n

148

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 456



Sets, Functions, Relations, and Fixpoints

Sets

Rule induction in general

Set S is defined inductively.

149
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Sets

Rule induction in general

Set S is defined inductively.
To prove

x ∈ S =⇒ P x
by rule induction on x ∈ S

149
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Sets

Rule induction in general

Set S is defined inductively.
To prove

x ∈ S =⇒ P x
by rule induction on x ∈ S
we must prove for every rule

[[ a1 ∈ S; . . . ; an ∈ S ]] =⇒ a ∈ S
that P is preserved:

149
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Sets

Rule induction in general

Set S is defined inductively.
To prove

x ∈ S =⇒ P x
by rule induction on x ∈ S
we must prove for every rule

[[ a1 ∈ S; . . . ; an ∈ S ]] =⇒ a ∈ S
that P is preserved:

[[ P a1; . . . ; P an ]] =⇒ P a

149
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Sets

Rule induction in general

Set S is defined inductively.
To prove

x ∈ S =⇒ P x
by rule induction on x ∈ S
we must prove for every rule

[[ a1 ∈ S; . . . ; an ∈ S ]] =⇒ a ∈ S
that P is preserved:

[[ P a1; . . . ; P an ]] =⇒ P a

In Isabelle/HOL:
apply(induct rule: S.induct)

149
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Sets

Demo: inductively defined sets

150
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Sets

Inductive predicates

x ∈ S ❀ S x

151
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Sets

Inductive predicates

x ∈ S ❀ S x
Example:
inductive Ev :: nat ⇒ bool
where
Ev 0 |
Ev n =⇒ Ev (n + 2)

151
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Sets

Inductive predicates

x ∈ S ❀ S x
Example:
inductive Ev :: nat ⇒ bool
where
Ev 0 |
Ev n =⇒ Ev (n + 2)

Comparison:
predicate: simpler syntax
set: direct usage of ∪ etc

151
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Sets

Inductive predicates

x ∈ S ❀ S x
Example:
inductive Ev :: nat ⇒ bool
where
Ev 0 |
Ev n =⇒ Ev (n + 2)

Comparison:
predicate: simpler syntax
set: direct usage of ∪ etc
Inductive predicates can be of type τ1 ⇒ ... ⇒ τn ⇒ bool

151
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Sets

Automating it

152
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Sets

simp and auto

simp rewriting and a bit of arithmetic
auto rewriting and a bit of arithmetic, logic & sets

153

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 468



Sets, Functions, Relations, and Fixpoints

Sets

simp and auto

simp rewriting and a bit of arithmetic
auto rewriting and a bit of arithmetic, logic & sets

• Show you where they got stuck

153
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Sets

simp and auto

simp rewriting and a bit of arithmetic
auto rewriting and a bit of arithmetic, logic & sets

• Show you where they got stuck
• highly incomplete wrt logic

153
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Sets

blast

• A complete (for FOL) tableaux calculus implementation

154
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Sets

blast

• A complete (for FOL) tableaux calculus implementation
• Covers logic, sets, relations, . . .

154
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Sets

blast

• A complete (for FOL) tableaux calculus implementation
• Covers logic, sets, relations, . . .
• Extensible with intro/elim rules

154
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Sets

blast

• A complete (for FOL) tableaux calculus implementation
• Covers logic, sets, relations, . . .
• Extensible with intro/elim rules
• Almost no “=”

154
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Sets

Demo: blast

155

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 475



Sets, Functions, Relations, and Fixpoints

Well founded relations

Well founded relations

see IHT 6.4
� Well founded orderings: Induction
� Complete Lattices Fixpoints
� Knaster-Tarski Theorem

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 476



Sets, Functions, Relations, and Fixpoints

Fixpoints

Fixpoints

Importance
� Inductive definitions of sets and relations
� Reminder: relations are sets in Isabelle/HOL
� E.g.: 0 ∈ even
� n ∈ even ==> n+2 ∈ even
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Fixpoints

Properties of Orderings and Functions

Definition 5.1. Monotone Function
Let D be a set with an ordering relation ≤. A function f : D → D is
called monotone, if x ≤ y −→ f (x) ≤ f (y)

Remark
The inductive definition above induces a monotone function on sets
with the subset relation as ordering:

� f_even :: nat set -> nat set
� f_even (A) = A ∪ {0} ∪ {n + 2|n ∈ A}
�
�
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Fixpoints

Well-founded Orderings

� Partial-order ≤⊆ X × X well-founded iff

(∀Y ⊆ X : Y �= ∅ → (∃y ∈ Y : y minimal in Y in respect of ≤))

� Quasi-order � well-founded iff strict part of � is well-founded.
� Initial segment: Y ⊆ X , left-closed i.e.

(∀y ∈ Y : (∀x ∈ X : x � y → x ∈ Y ))

� Initial section of x : sec(x) = {y : y < x}
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Fixpoints

Supremum

� Let (X ,≤) be a partial-order and Y ⊆ X
� S ⊆ X is a chain iff elements of S are linearly ordered through ≤.
� y is an upper bound of Y iff

∀y � ∈ Y : y � ≤ y

� Supremum: y is a supremum of Y iff y is an upper bound of Y
and

∀y � ∈ X : ((y � upper bound of Y ) → y ≤ y �)

� Analog: lower bound, Infimum inf(Y )
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Fixpoints

CPO

� A Partial-order (D,�) is a complete partial ordering (CPO) iff
� ∃ the smallest element ⊥ of D (with respect of �)
� Each chain S has a supremum sup(S).
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Fixpoints

Example

Example 5.2. .
� (P(X ),⊆) is CPO.
� (D,�) is CPO with

� D = X � Y : set of all the partial functions f with dom(f ) ⊆ X and
cod(f ) ⊆ Y .

� Let f , g ∈ X � Y .

f � g iff dom(f ) ⊆ dom(g) ∧ (∀x ∈ dom(f ) : f (x) = g(x))
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Fixpoints

Monotonous, continuous

� (D,�), (E ,��) CPOs
� f : D → E monotonous iff

(∀d , d � ∈ D : d � d � → f (d) �� f (d �))

� f : D → E continuous iff f monotonous and

(∀S ⊆ D : S chain → f (sup(S)) = sup(f (S)))

� X ⊆ D is admissible iff

(∀S ⊆ X : S chain → sup(S) ∈ X )
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Fixpoints

Fixpoint

� (D,�) CPO, f : D → D
� d ∈ D fixpoint of f iff

f (d) = d

� d ∈ D smallest fixpoint of f iff d fixpoint of f and

(∀d � ∈ D : d � fixpoint → d � d �)
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Fixpoints

Fixpoint-Theorem

Theorem 5.3 (Fixpoint-Theorem:). (D,�) CPO, f : D → D
continuous, then f has a smallest fixpoint µf and

µf = sup{f i(⊥) : i ∈ N}

Proof: (Sketch)
� sup{f i(⊥) : i ∈ N} fixpoint:

f (sup{f i(⊥) : i ∈ N}) = sup{f i+1(⊥) : i ∈ N}
(continuous)

= sup{sup{f i+1(⊥) : i ∈ N},⊥}
= sup{f i(⊥) : i ∈ N}

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 485



Sets, Functions, Relations, and Fixpoints

Fixpoints

Fixpoint-Theorem (Cont.)

Fixpoint-Theorem: (D,�) CPO, f : D → D continuous, then f has a
smallest fixpoint µf and

µf = sup{f i(⊥) : i ∈ N}

Proof: (Continuation)
� sup{f i(⊥) : i ∈ N} smallest fixpoint:

1. d � fixpoint of f
2. ⊥� d �

3. f monotonous, d � FP: f (⊥) � f (d �) = d �

4. Induction: ∀i ∈ N : f i(⊥) � f i(d �) = d �

5. sup{f i(⊥) : i ∈ N} � d �
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Induction over N

Induction’s principle:

(∀X ⊆ N : ((0 ∈ X ∧ (∀x ∈ X : x ∈ X → x + 1 ∈ X ))) → X = N)

Correctness:
1. Let’s assume no, so ∃X ⊆ N : N \ X �= ∅
2. Let y be minimum in N \ X (with respect to <).
3. y �= 0
4. y − 1 ∈ X ∧ y �∈ X
5. Contradiction
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Induction over N (Alternative)

Induction’s principle:

(∀X ⊆ N : (∀x ∈ N : sec(x) ⊆ X → x ∈ X ) → X = N)

Correctness:
1. Let’s assume no, so ∃X ⊆ N : N \ X �= ∅
2. Let y be minimum in N \ X (with respect to <).
3. sec(y) ⊆ X , y �∈ X
4. Contradiction
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Well-founded induction

Induction’s principle: Let (Z ,≤) be a well-founded partial order.

(∀X ⊆ Z : (∀x ∈ Z : sec(x) ⊆ X → x ∈ X ) → X = Z )

Correctness:
1. Let’s assume no, so Z \ X �= ∅
2. Let z be a minimum in Z \ X (in respect of ≤).
3. sec(z) ⊆ X , z �∈ X
4. Contradiction
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FP-Induction: Proving properties of fixpoints

Induction’s principle: Let (D,�) CPO, f : D → D continuous.

(∀X ⊆ D admissible : (⊥∈ X ∧ (∀y : y ∈ X → f (y) ∈ X )) → µf ∈ X )

Correctness: Let X ⊆ D admissible.

µf ∈ X ⇔ sup{f i(⊥) : i ∈ N} ∈ X (FP-theorem)
⇐ ∀i ∈ N : f i(⊥) ∈ X (X admissible )
⇐ ⊥∈ X ∧ (∀n ∈ N : f n(⊥) ∈ X → f (f n(⊥)) ∈ X )

(Induction N)
⇐ ⊥∈ X ∧ (∀y ∈ X → f (y) ∈ X ) (Ass.)
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Exercise 5.4. Let (D,�) CPO with
� X = Y = N
� D = X � Y : set all partial functions f with dom(f ) ⊆ X and

cod(f ) ⊆ Y .
� Let f , g ∈ X � Y .

f � g iff dom(f ) ⊆ dom(g) ∧ (∀x ∈ dom(f ) : f (x) = g(x))

Consider

F : D → P(N× N)

g �→
�
{(0, 1)} g = ∅
{(x , x · g(x − 1)) : x − 1 ∈ dom(g)} ∪ {(0, 1)} otherwise
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Prove:
1. ∀g ∈ D : F (g) ∈ D, i.e. F : D → D
2. F : D → D continuous
3. ∀n ∈ N : µF (n) = n!

Note:
� µF can be understood as the semantics of a function’s definition

function Fac(n : N⊥) : N⊥ =def
if n = 0 then 1
else n · Fac(n − 1)

� Keyword: ’ functions’ in Isabelle
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Exercise 5.5. Prove: Let G = (V , E) be an infinite directed graph with
� G has finitely many roots (nodes without incoming edges).
� Each node has finite out-degree.
� Each node is reachable from a root.

There exists an infinite path that begins on a root.
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Complete Lattices and Existence of Fixpoints

Definition 5.6. Complete Lattice
A partially ordered set (L,≤) is a complete lattice if every subset A of
L has both a greatest lower bound (the infimum, also called the meet)
and a least upper bound (the supremum, also called the join) in
(L,≤). The meet is denoted by

�
A, and the join by

�
A.

Lemma 5.7. Complete lattices are non empty.

Theorem 5.8. Knaster-Tarski
Let (L,≤) be a complete lattice and let f : L → L be a monotone
function. Then the set of fixed points of f in L is also a complete
lattice.

Consequence 5.9. The Knaster-Tarski theorem guarantees the
existence of least and greatest fixpoints.
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Proof of the Knaster-Tarski theorem

Reformulation
For a complete lattice (L,≤) and a monotone function f : L → L on L,
the set of all fixpoints of f is also a complete lattice (P,≤), with:

�
�

P =
�
{x ∈ L|x ≤ f (x)} as the greatest fixpoint of f

�
�

P =
�
{x ∈ L|f (x) <= x} as the least fixpoint of f

Proof: We begin by showing that P has least and greatest elements.
Let D = {y ∈ L|y ≤ f (y)} and x ∈ D. Then, because f is monotone,
we have f (x) ≤ f (f (x)), that is f (x) ∈ D.
Now let u =

�
D. Then x ≤ u and f (x) ≤ f (u), so x ≤ f (x) ≤ f (u).

Therefore f (u) is an upper bound of D, but u is the least upper bound,
so u ≤ f (u), i.e. u ∈ D. Then f (u) ∈ D (from above) and f (u) ≤ u
hence f (u) = u. Because every fixpoint is in D we have that u is the
greatest fixpoint of f.
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Proof of the Knaster-Tarski theorem (cont.)

The function f is monotone on the dual (complete) lattice (Lop,≥). As
we have just proved, its greatest fixpoint there exists. It is the least
one on L, so P has least and greatest elements, or more generally
that every monotone function on a complete lattice has least and
greatest fixpoints.

If a ∈ L and b ∈ L, a ≤ b, we’ll write [a, b] for the closed interval with
bounds a and b : {x ∈ L|a ≤ x ≤ b}. The closed intervals are also
complete lattices.

It remains to prove that P is complete lattice.
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Proof of the Knaster-Tarski theorem (cont.)

Let W ⊂ P and w =
�

W . We construct a least upper bound of W in
P. (The reasoning for the greatest lower bound is analogue.)
For every x ∈ W , we have x = f (x) ≤ f (w), i.e., f (w) is an upper
bound of W . Since w is the least upper bound of W , w ≤ f (w).
Furthermore, for y ∈ [w ,

�
L], we have w ≤ f (w) ≤ f (y). Thus,

f ([w ,
�

L]) ⊂ [w ,
�

L] , and we can consider f to be a monotone
function on the complete lattice [w ,

�
L]. Then,

v =
�
{x ∈ [w ,

�
L]|f (x) ≤ x} is the least fixpoint of f in [w ,

�
L].

We show that v is the least upper bound of W in P.
a) v is in P.
b) v is an upper bound of W , because v ∈ [w ,

�
L], i.e., w ≤ v .

c) v is least. Let z be another upper bound of W in P. Then,
w ≤ z, z ∈ [w ,

�
L], z is fixpoint, hence v ≤ z
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Lattices in Isabelle

Monotony and Fixpoints
� mono f ≡ ∀AB. A ≤ B −→ f A ≤ f B (mono_def)
� Usually subset relation as ordering
� lfp f ≡ Inf{u| f u ≤ u} (lfp_def)
� mono f =⇒ lfp f = f (lfp f ) (lfp_unfold)
� [|mono ?f ; ?f (inf (lfp ?f ) ?P) ≤ ?P|] =⇒ lfp?f ≤ ?P

(lfp_induct)
� gfp f ≡ Sup{u| u ≤ f u} (gfp_def)
� mono f =⇒ gfp f = f (gfp f ) (gfp_unfold)
� [|mono ?f ; ?X ≤ ?f (sup ?X (gfp ?f ))|] =⇒?X ≤ gfp ?f

(coinduct)
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