Chapter 5

Sets, Functions, Relations, and Fixpoints

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic

・ 同 ト ・ ヨ ト ・ ヨ ト

Sets, Functions, Relations

see IHT 6.1, 6.2, 6.3

- Finite Set Notation
- Set Comprehension
- Binding Operators
- Finiteness and Cardinality
- Function update, Range, Injective Surjective
- Relations, Predicates

3

イロト イヨト イヨト イヨト

Overview

Set notation

Sets

Inductively defined sets

-2

() > () > () > () = () () =

Sets

Set notation

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic

-2

<ロト < 回 ト < 三 ト < 注¹³⁹

Sets

Sets over type 'a:

'a set

-2

<ロト < 回ト < 三ト < 三149.

Sets

Sets

Sets over type 'a:

$$a set = a \Rightarrow bool$$

-2

<ロト < 回ト < 巨ト < 巨¹⁴⁹

Sets

Sets over type 'a:

Sets

$$a set = a \Rightarrow bool$$

• {}, {
$$e_1, \ldots, e_n$$
}, { $x. P x$ }

-2

<ロト < 回ト < 三ト < 三149.

Sets

Sets over type 'a:

Sets

$$a set = a \Rightarrow bool$$

• {}, {
$$e_1, \ldots, e_n$$
}, { $x. P x$ }

-2

<ロト < 回ト < 回ト < 三ト < 三¹⁴9.

Sets

Sets over type 'a:

Sets

$$a set = a \Rightarrow bool$$

• {}, {
$$e_1, \ldots, e_n$$
}, { $x. P x$ }

•
$$e \in A$$
, $A \subseteq E$

•
$$A \cup B$$
, $A \cap B$, $A - B$, $-A$

-2

<ロト < 回ト < 三ト < 三149.

Sets

Sets over type 'a:

Sets

$$a set = a \Rightarrow bool$$

• {}, {
$$e_1, \ldots, e_n$$
}, { $x. P x$ }

•
$$e \in A$$
, $A \subseteq B$

•
$$A \cup B$$
, $A \cap B$, $A - B$, $-A$

•
$$\bigcup_{x\in A} Bx$$
, $\bigcap_{x\in A} Bx$

-2

<ロト < 回ト < 巨ト < 巨¹⁴⁹

Sets

Sets over type 'a:

Sets

$$a set = a \Rightarrow bool$$

• {}, {
$$e_1, \ldots, e_n$$
}, { $x. P x$ }

- $e \in A$, $A \subseteq B$
- $A \cup B$, $A \cap B$, A B, -A
- $\bigcup_{x \in A} Bx$, $\bigcap_{x \in A} Bx$
- {i..j}

<ロト < 回 ト < 臣 ト < 臣¹⁴⁹ 三臣 -

Sets

Sets over type 'a:

$$a set = a \Rightarrow bool$$

- {}, { e_1, \ldots, e_n }, {x. P x}
- $e \in A$, $A \subseteq B$
- $A \cup B$, $A \cap B$, A B, -A
- $\bigcup_{x\in \mathbb{A}} Bx$, $\bigcap_{x\in \mathbb{A}} Bx$
- {i..j}
- insert :: ' $a \Rightarrow$ 'a set \Rightarrow 'a set

▲ □ ▶ ▲ 圖 ▶ ▲ 臣 ▶ ▲ 臣149 ― 臣 …

Sets

Sets over type 'a:

Sets

 $a set = a \Rightarrow bool$

- {}, { e_1, \ldots, e_n }, {x. P x}
- $e \in A$, $A \subseteq B$
- $A \cup B$, $A \cap B$, A B, -A
- $\bigcup_{x\in A} Bx$, $\bigcap_{x\in A} Bx$
- {i..j}
- insert :: ' $a \Rightarrow$ 'a set \Rightarrow 'a set

• . . .

▲ □ ▶ ▲ 圖 ▶ ▲ 臣 ▶ ▲ 臣149 ― 臣 …

Proofs about sets

Natural deduction proofs:

Sets

• equalityI: $\llbracket A \subseteq B; B \subseteq A \rrbracket \Longrightarrow A = B$

-

◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三¹⁴

Proofs about sets

Natural deduction proofs:

Sets

- equalityI: $\llbracket A \subseteq B; B \subseteq A \rrbracket \Longrightarrow A = B$
- subsetI: ($(x, x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$

-

◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三¹⁴

Proofs about sets

Natural deduction proofs:

Sets

- equalityI: $\llbracket A \subseteq B; B \subseteq A \rrbracket \Longrightarrow A = B$
- subsetI: ($(x, x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$
- ... (see Tutorial)

<ロト < 部 ト < 注 ト < 注4 二 三

Sets

Demo: proofs about sets

э

◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三149 ---

• ∀*x*∈*A*. *P x*

Sets

• $\forall x \in A. P x \equiv \forall x. x \in A \longrightarrow P x$

Sets

- $\forall x \in A. P x \equiv \forall x. x \in A \longrightarrow P x$
- ∃*x*∈*A*. *P x*

Sets

<ロト < 回 > < 回 > < 三 > < 三¹⁴³ 三三 -

- $\forall x \in A. P x \equiv \forall x. x \in A \longrightarrow P x$
- $\exists x \in A. Px \equiv \exists x. x \in A \land Px$

Sets

<ロト < 回 > < 回 > < 三 > < 三¹⁴³ 三三 -

- $\forall x \in A. P x \equiv \forall x. x \in A \longrightarrow P x$
- $\exists x \in A. Px \equiv \exists x. x \in A \land Px$
- ballI: $(\land x. x \in A \Longrightarrow P x) \Longrightarrow \forall x \in A. P x$
- bspec: $[\forall x \in A. P x; x \in A] \implies P x$

< □ > < □ > < □ > < ⊇ > < ⊇¹⁴³ □ ⊇ □

- $\forall x \in A. P x \equiv \forall x. x \in A \longrightarrow P x$
- $\exists x \in A. Px \equiv \exists x. x \in A \land Px$
- ballI: $(\land x. x \in A \Longrightarrow P x) \Longrightarrow \forall x \in A. P x$
- bspec: $[\![\forall x \in A. \ P \ x; x \in A]\!] \Longrightarrow P \ x$
- bexI: $\llbracket P x; x \in A \rrbracket \Longrightarrow \exists x \in A. P x$
- bexe: $[\![\exists x \in A. \ P \ x; \land x. \ [\![x \in A; P \ x]\!] \Longrightarrow Q]\!] \Longrightarrow Q$

<ロト < 部 ト < 注 ト < 注¹⁴³ 三三 -

Sets

Inductively defined sets

э

Informally:

Sets

<ロト < 回 ト < 臣 ト < 臣¹⁴⁹ 臣 の 9

Informally:

Sets

0 is even

э

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三¹⁴5

Informally:

Sets

- 0 is even
- If n is even, so is n+2

3

<ロト < 部ト < 三ト < 三¹⁴⁵

Informally:

Sets

- 0 is even
- If n is even, so is n+2
- · These are the only even numbers

3

<ロト < 部ト < 三ト < 三¹⁴⁵

Informally:

Sets

- 0 is even
- If n is even, so is n+2
- These are the only even numbers

In Isabelle/HOL:

inductive_set Ev :: nat set - The set of all even numbers

<ロト < 回ト < 回ト < 三ト < 三¹⁴⁵

Informally:

Sets

- 0 is even
- If n is even, so is n+2
- · These are the only even numbers

In Isabelle/HOL:

```
inductive_set Ev :: nat set — The set of all even numbers
where
0 \in Ev /
n \in Ev \implies n+2 \in Ev
```

-

<ロト < 回ト < 回ト < 三ト < 三¹⁴⁵

Format of inductive definitions

inductive_set $S :: \tau$ set

Sets

Format of inductive definitions

```
inductive_set S :: \tau set
where
[ a_1 \in S; \dots; a_n \in S; A_1; \dots; A_k ] \implies a \in S /
\vdots
```

Sets

<ロト < 部 ト < 注 ト < 注¹⁴⁹ 三三 -

Format of inductive definitions

```
inductive_set S :: \tau set
where
[[a_1 \in S; ...; a_n \in S; A_1; ...; A_k]] \implies a \in S /
\vdots
where A_1; ...; A_k are side conditions not involving S.
```

Sets

<ロト < 回 > < 回 > < 三 > < 三¹⁴9 三三 -

Proving properties of even numbers

Easy: $4 \in Ev$ $0 \in Ev \Longrightarrow 2 \in Ev \Longrightarrow 4 \in Ev$

Sets

<ロト < 回 > < 回 > < 三 > < 三¹⁴ 三 三 -

Proving properties of even numbers

Easy:
$$4 \in Ev$$

 $0 \in Ev \Longrightarrow 2 \in Ev \Longrightarrow 4 \in Ev$

Trickier: $m \in Ev \implies m+m \in Ev$

Sets

<ロト < 部ト < 目と < 目4 二重

Proving properties of even numbers

Easy:
$$4 \in Ev$$

 $0 \in Ev \Longrightarrow 2 \in Ev \Longrightarrow 4 \in Ev$

Trickier: $m \in Ev \implies m+m \in Ev$

Sets

Idea: induction on the length of the derivation of $m \in Ev$

-

Easy:
$$4 \in Ev$$

 $0 \in Ev \Longrightarrow 2 \in Ev \Longrightarrow 4 \in Ev$

Trickier: $m \in Ev \implies m+m \in Ev$

Sets

Idea: induction on the length of the derivation of $m \in Ev$ Better: induction on the *structure* of the derivation

3

◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三¹⁴⁷

Easy: $4 \in Ev$ $0 \in Ev \Longrightarrow 2 \in Ev \Longrightarrow 4 \in Ev$

Trickier: $m \in Ev \implies m+m \in Ev$

Idea: induction on the length of the derivation of $m \in Ev$ Better: induction on the *structure* of the derivation Two cases: $m \in Ev$ is proved by

• rule *0* ∈ *Ev*

(ロ) (同) (ヨ) (ヨ) (ヨ)

Easy: $4 \in Ev$ $0 \in Ev \Longrightarrow 2 \in Ev \Longrightarrow 4 \in Ev$

Trickier: $m \in Ev \implies m+m \in Ev$

Idea: induction on the length of the derivation of $m \in Ev$ Better: induction on the *structure* of the derivation Two cases: $m \in Ev$ is proved by

• rule
$$0 \in Ev$$

 $\implies m = 0 \implies 0+0 \in Ev$

< □ ▶ < 同 ▶ < 글 ▶ < ⊒¹⁴7

Easy: $4 \in Ev$ $0 \in Ev \Longrightarrow 2 \in Ev \Longrightarrow 4 \in Ev$

Trickier: $m \in Ev \implies m+m \in Ev$

Idea: induction on the length of the derivation of $m \in Ev$ Better: induction on the *structure* of the derivation

Two cases: $m \in Ev$ is proved by

- rule $0 \in Ev$ $\implies m = 0 \implies 0+0 \in Ev$
- rule $n \in Ev \implies n+2 \in Ev$

(ロ) (同) (ヨ) (ヨ) (ヨ)

Easy: $4 \in Ev$ $0 \in Ev \Longrightarrow 2 \in Ev \Longrightarrow 4 \in Ev$

Trickier: $m \in Ev \implies m+m \in Ev$

Idea: induction on the length of the derivation of $m \in Ev$ Better: induction on the *structure* of the derivation Two cases: $m \in Ev$ is proved by

- rule $0 \in Ev$ $\implies m = 0 \implies 0+0 \in Ev$
- rule $n \in Ev \implies n+2 \in Ev$ $\implies m = n+2$ and $n+n \in Ev$ (ind. hyp.!)

Easy: $4 \in Ev$ $0 \in Ev \Longrightarrow 2 \in Ev \Longrightarrow 4 \in Ev$

Trickier: $m \in Ev \implies m+m \in Ev$

Idea: induction on the length of the derivation of $m \in Ev$ Better: induction on the *structure* of the derivation Two cases: $m \in Ev$ is proved by

- rule $0 \in Ev$ $\implies m = 0 \implies 0+0 \in Ev$
- rule $n \in Ev \implies n+2 \in Ev$

 \implies *m* = *n*+2 and *n*+*n* \in *Ev* (ind. hyp.!)

 \implies m+m = (n+2)+(n+2) = ((n+n)+2)+2 \in Ev

To prove

Sets

$$n \in Ev \Longrightarrow P n$$

by *rule induction* on $n \in Ev$ we must prove

3

<ロト < 回ト < 国ト < 三ト < 三¹⁴9

To prove

Sets

$$n \in Ev \Longrightarrow P n$$

by *rule induction* on $n \in Ev$ we must prove

• P 0

3

<ロト < 回ト < 国ト < 三ト < 三¹⁴9

To prove

Sets

$$n \in Ev \Longrightarrow P n$$

by *rule induction* on $n \in Ev$ we must prove

- P 0
- $P n \Longrightarrow P(n+2)$

-

<ロト < 回ト < 巨ト < 三¹⁴⁹

To prove

Sets

$$n \in Ev \Longrightarrow P n$$

by *rule induction* on $n \in Ev$ we must prove

- P 0
- $P n \Longrightarrow P(n+2)$

Rule Ev.induct:

$$\llbracket n \in Ev; P 0; \bigwedge n. P n \Longrightarrow P(n+2) \rrbracket \Longrightarrow P n$$

3

<ロト < 部ト < 三ト < 三¹⁴9.

Set S is defined inductively.

Sets

3

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三¹⁴9

Set S is defined inductively. To prove

Sets

$$x \in S \Longrightarrow P x$$

by *rule induction* on $x \in S$

Ŀ

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三¹⁴9

Set S is defined inductively. To prove

Sets

$$x \in S \Longrightarrow P x$$

by *rule induction* on $x \in S$ we must prove for every rule $\llbracket a_1 \in S; \dots; a_n \in S \rrbracket \Longrightarrow a \in S$ that *P* is preserved:

<ロト < 部ト < 三ト < 三¹⁴9.

Set S is defined inductively. To prove

$$x \in S \Longrightarrow P x$$

by *rule induction* on $x \in S$ we must prove for every rule

$$\llbracket extbf{a}_1 \in extbf{S}; \dots extbf{; } extbf{a}_n \in extbf{S}
rbracket
ightarrow extbf{a} \in extbf{S}$$

that *P* is preserved:

 $\llbracket P a_1; \ldots; P a_n \rrbracket \Longrightarrow P a$

<ロト < 部ト < 三ト < 三¹⁴9.

Set S is defined inductively. To prove

$$x \in S \Longrightarrow P x$$

by *rule induction* on $x \in S$ we must prove for every rule

$$\llbracket extbf{a}_1 \in extbf{S}; \dots extbf{; } extbf{a}_n \in extbf{S}
rbracket
ightarrow extbf{a} \in extbf{S}$$

that P is preserved:

 $\llbracket P a_1; \ldots; P a_n \rrbracket \Longrightarrow P a$

In Isabelle/HOL:

apply (induct rule: S.induct)

Sets

Demo: inductively defined sets

э

<ロト < 回ト < 三ト < 三¹⁵9

 $x \in S \rightsquigarrow Sx$

Sets

<ロト < 部ト < 注入 < 注料 - 注)

 $x \in S \rightsquigarrow Sx$ Example: inductive $Ev :: nat \Rightarrow bool$ where $Ev 0 \ l$ $Ev n \Longrightarrow Ev (n + 2)$

Sets

<ロト < 部 ト < 注 ト < 注¹⁵ 二 注 。

 $x \in S \rightsquigarrow Sx$ Example: inductive $Ev :: nat \Rightarrow bool$ where $Ev \ 0 \quad l$ $Ev \ n \Longrightarrow Ev \ (n + 2)$ Comparison:

predicate:simpler syntaxset:direct usage of \cup etc

Sets

 $x \in S \iff Sx$ Example: inductive $Ev :: nat \Rightarrow bool$ where $Ev \ 0 \quad l$ $Ev \ n \Longrightarrow Ev \ (n + 2)$ Comparison: predicate: simpler syntax set: direct usage of \cup etc

Inductive predicates can be of type $\tau_1 \Rightarrow ... \Rightarrow \tau_n \Rightarrow bool$

Sets

< ロ ト < 部 ト < 注 ト < 注¹⁵ 二 注

Sets

Automating it

↓ ↓ ⊕ ↓ ↓ ≡ ↓ ↓ ≡¹⁵
 Ξ

simp and auto

simp rewriting and a bit of arithmetic *auto* rewriting and a bit of arithmetic, logic & sets

Sets

3

() > () > () > () > () = () () = () > () = () > () = () > () = () > () > () = () > () > () = () > () > () = () > () > () = () > () > () = () >

simp and auto

simp rewriting and a bit of arithmetic *auto* rewriting and a bit of arithmetic, logic & sets

Show you where they got stuck

Sets

3

() > () > () > () > () = () () = () > () = () > () = () > () = () > () > () = () > () > () = () > () > () = () > () > () = () > () > () = () >

simp and auto

simp rewriting and a bit of arithmetic *auto* rewriting and a bit of arithmetic, logic & sets

- Show you where they got stuck
- highly incomplete wrt logic

Sets

3

() > () > () > () > () = () () = () > () = () > () = () > () = () > () > () = () > () > () = () > () > () = () > () > () = () > () > () = () >

• A complete (for FOL) tableaux calculus implementation

Sets

э

() > () < () > () = () < () = 154.</p>

- A complete (for FOL) tableaux calculus implementation
- Covers logic, sets, relations, ...

Sets

3

イロト イタト イヨト イヨ!!!

- A complete (for FOL) tableaux calculus implementation
- Covers logic, sets, relations, ...

Sets

Extensible with intro/elim rules

3

<ロト < 回ト < 回ト < 注ト < 注¹⁵⁴

- A complete (for FOL) tableaux calculus implementation
- Covers logic, sets, relations, ...
- Extensible with intro/elim rules
- Almost no "="

Sets

-

◆ □ ▶ ◆ ⑦ ▶ ◆ 注 ▶ ◆ 注19

Sets

Demo: blast

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic

< □ > < □ > < □ > < ≡ > < ≡¹⁵

Well founded relations

Well founded relations

see IHT 6.4

- Well founded orderings: Induction
- Complete Lattices Fixpoints
- Knaster-Tarski Theorem

3

イロト イロト イヨト イヨト

Importance

- Inductive definitions of sets and relations
- Reminder: relations are sets in Isabelle/HOL
- ► E.g.: 0 ∈ even
- ▶ $n \in even ==> n+2 \in even$

<ロ> <回> <回> <回> <三> <三</p>

Properties of Orderings and Functions

Definition 5.1. Monotone Function Let D be a set with an ordering relation \leq . A function $f : D \rightarrow D$ is called monotone, if $x \leq y \longrightarrow f(x) \leq f(y)$

Remark

Fixpoints

The inductive definition above induces a monotone function on sets with the subset relation as ordering:

- f_even :: nat set -> nat set
- f_even (A) = $A \cup \{0\} \cup \{n+2 | n \in A\}$

《曰》《聞》《臣》《臣》 三臣

Well-founded Orderings

Fixpoints

• Partial-order $\leq \subseteq X \times X$ well-founded iff

 $(\forall Y \subseteq X : Y \neq \emptyset \rightarrow (\exists y \in Y : y \text{ minimal in } Y \text{ in respect of } \leq))$

- Quasi-order \leq well-founded iff strict part of \leq is well-founded.
- ▶ Initial segment: $Y \subseteq X$, left-closed i.e.

$$(\forall y \in Y : (\forall x \in X : x \leq y \rightarrow x \in Y))$$

► Initial section of *x*: sec(*x*) = {*y* : *y* < *x*}

《曰》《聞》《臣》《臣》 [臣]

Supremum

- Let (X, \leq) be a partial-order and $Y \subseteq X$
- $S \subseteq X$ is a chain iff elements of S are linearly ordered through \leq .
- y is an upper bound of Y iff

$$\forall y' \in Y : y' \leq y$$

Supremum: y is a supremum of Y iff y is an upper bound of Y and

$$\forall y' \in X : ((y' \text{ upper bound of } Y) \rightarrow y \leq y')$$

Analog: lower bound, Infimum inf(Y)

▶ A Partial-order (D, \sqsubseteq) is a complete partial ordering (CPO) iff

- ▶ \exists the smallest element \bot of *D* (with respect of \sqsubseteq)
- ► Each chain *S* has a supremum sup(*S*).

Example 5.2. .

- ▶ $(\mathcal{P}(X), \subseteq)$ is CPO.
- ▶ (*D*, ⊆) is CPO with
 - $D = X \rightarrow Y$: set of all the partial functions f with dom(f) $\subseteq X$ and $cod(f) \subseteq Y$.
 - Let $f, g \in X \nrightarrow Y$.

 $f \sqsubseteq g \text{ iff } \operatorname{dom}(f) \subseteq \operatorname{dom}(g) \land (\forall x \in \operatorname{dom}(f) : f(x) = g(x))$

Monotonous, continuous

- ► (D, ⊆), (E, ⊆') CPOs
- $f: D \rightarrow E$ monotonous iff

$$(\forall d, d' \in D : d \sqsubseteq d' \rightarrow f(d) \sqsubseteq' f(d'))$$

• $f: D \rightarrow E$ continuous iff f monotonous and

$$(\forall S \subseteq D : S \text{ chain } \rightarrow f(\sup(S)) = \sup(f(S)))$$

• $X \subseteq D$ is admissible iff

$$(\forall S \subseteq X : S \text{ chain } \rightarrow \sup(S) \in X)$$

Fixpoint

•
$$(D, \sqsubseteq)$$
 CPO, $f : D \rightarrow D$

• $d \in D$ fixpoint of f iff

$$f(d) = d$$

• $d \in D$ smallest fixpoint of f iff d fixpoint of f and

$$(\forall d' \in D : d' \text{ fixpoint } \rightarrow d \sqsubseteq d')$$

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Fixpoint-Theorem

Theorem 5.3 (Fixpoint-Theorem:). (D, \sqsubseteq) *CPO,* $f : D \rightarrow D$ *continuous, then* f *has a smallest fixpoint* μf *and*

 $\mu f = \sup\{f^i(\bot) : i \in \mathbb{N}\}$

Proof: (Sketch)

▶
$$\sup\{f^i(\bot): i \in \mathbb{N}\}$$
 fixpoint:
 $f(\sup\{f^i(\bot): i \in \mathbb{N}\}) = \sup\{f^{i+1}(\bot): i \in \mathbb{N}\}$
(continuous)
 $= \sup\{\sup\{f^{i+1}(\bot): i \in \mathbb{N}\}, \bot\}$
 $= \sup\{f^i(\bot): i \in \mathbb{N}\}$

Fixpoint-Theorem (Cont.)

Fixpoint-Theorem: (D, \sqsubseteq) CPO, $f : D \rightarrow D$ continuous, then f has a smallest fixpoint μf and

 $\mu f = \sup\{f^i(\bot) : i \in \mathbb{N}\}$

Proof: (Continuation)

- $\sup\{f^i(\bot): i \in \mathbb{N}\}$ smallest fixpoint:
 - 1. d' fixpoint of f
 - **2**. ⊥⊑ *d*′
 - 3. *f* monotonous, $d' \operatorname{FP}: f(\bot) \sqsubseteq f(d') = d'$
 - 4. Induction: $\forall i \in \mathbb{N} : f^i(\bot) \sqsubseteq f^i(d') = d'$
 - 5. $\sup\{f^i(\bot): i \in \mathbb{N}\} \sqsubseteq d'$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Induction over $\ensuremath{\mathbb{N}}$

Induction

Induction's principle:

$$(\forall X \subseteq \mathbb{N} : ((0 \in X \land (\forall x \in X : x \in X \rightarrow x + 1 \in X))) \rightarrow X = \mathbb{N})$$

Correctness:

- 1. Let's assume no, so $\exists X \subseteq \mathbb{N} : \mathbb{N} \setminus X \neq \emptyset$
- 2. Let *y* be minimum in $\mathbb{N} \setminus X$ (with respect to <).

3.
$$y \neq 0$$

- $4. \ y-1 \in X \land y \notin X$
- 5. Contradiction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Induction over N (Alternative)

Induction's principle:

 $(\forall X \subseteq \mathbb{N} : (\forall x \in \mathbb{N} : \operatorname{sec}(x) \subseteq X \to x \in X) \to X = \mathbb{N})$

Correctness:

Induction

- 1. Let's assume no, so $\exists X \subseteq \mathbb{N} : \mathbb{N} \setminus X \neq \emptyset$
- 2. Let *y* be minimum in $\mathbb{N} \setminus X$ (with respect to <).
- 3. $\sec(y) \subseteq X, y \notin X$
- 4. Contradiction

《曰》《聞》《臣》《臣》 [臣]

Well-founded induction

Induction's principle: Let (Z, \leq) be a well-founded partial order.

 $(\forall X \subseteq Z : (\forall x \in Z : \sec(x) \subseteq X \to x \in X) \to X = Z)$

Correctness:

Induction

- 1. Let's assume no, so $Z \setminus X \neq \emptyset$
- 2. Let z be a minimum in $Z \setminus X$ (in respect of \leq).
- 3. $\sec(z) \subseteq X, z \notin X$
- 4. Contradiction

< 由 > < 部 > < 글 > < 글 > · 그 글 ·

FP-Induction: Proving properties of fixpoints

Induction's principle: Let (D, \sqsubseteq) CPO, $f : D \rightarrow D$ continuous.

 $(\forall X \subseteq D \text{ admissible} : (\bot \in X \land (\forall y : y \in X \rightarrow f(y) \in X)) \rightarrow \mu f \in X)$

Correctness: Let $X \subseteq D$ admissible.

$$\begin{split} \mu f \in X &\Leftrightarrow \sup\{f^{i}(\bot) : i \in \mathbb{N}\} \in X & (\text{FP-theorem}) \\ & \leftarrow \forall i \in \mathbb{N} : f^{i}(\bot) \in X & (X \text{ admissible}) \\ & \leftarrow \bot \in X \land (\forall n \in \mathbb{N} : f^{n}(\bot) \in X \to f(f^{n}(\bot)) \in X) \\ & (\text{Induction } \mathbb{N}) \\ & \leftarrow \bot \in X \land (\forall y \in X \to f(y) \in X) & (\text{Ass.}) \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Problem

Exercise 5.4. Let (D, \sqsubseteq) CPO with

- $X = Y = \mathbb{N}$
- ► $D = X \nleftrightarrow Y$: set all partial functions f with dom $(f) \subseteq X$ and cod $(f) \subseteq Y$.
- Let $f, g \in X \nrightarrow Y$.

 $f \sqsubseteq g \text{ iff } \operatorname{dom}(f) \subseteq \operatorname{dom}(g) \land (\forall x \in \operatorname{dom}(f) : f(x) = g(x))$

Consider

$$\begin{array}{rccc} F: & D & \to & \mathcal{P}(\mathbb{N} \times \mathbb{N}) \\ & g & \mapsto & \begin{cases} \{(0,1)\} & g = \emptyset \\ \{(x,x \cdot g(x-1)) : x-1 \in \mathsf{dom}(g)\} \cup \{(0,1)\} & \mathsf{otherwise} \end{cases} \end{array}$$

< 由 > < 部 > < 글 > < 글 > · 그 글 ·

Problem

Induction

Prove:

- 1. $\forall g \in D : F(g) \in D$, i.e. $F : D \rightarrow D$
- 2. $F: D \rightarrow D$ continuous

3.
$$\forall n \in \mathbb{N} : \mu F(n) = n!$$

Note:

• μ *F* can be understood as the semantics of a function's definition

function Fac
$$(n : \mathbb{N}_{\perp}) : \mathbb{N}_{\perp} =_{def}$$

if $n = 0$ then 1
else $n \cdot Fac(n - 1)$

Keyword: ' functions' in Isabelle

・ロト ・ 同ト ・ ヨト ・ ヨト - 「三

Problem

Induction

Exercise 5.5. Prove: Let G = (V, E) be an infinite directed graph with

- G has finitely many roots (nodes without incoming edges).
- Each node has finite out-degree.
- Each node is reachable from a root.

There exists an infinite path that begins on a root.

《曰》《圖》《臣》《臣》 三臣

Induction

Complete Lattices and Existence of Fixpoints

Definition 5.6. Complete Lattice

A partially ordered set (L, \leq) is a complete lattice if every subset A of L has both a greatest lower bound (the infimum, also called the meet) and a least upper bound (the supremum, also called the join) in (L, \leq) . The meet is denoted by $\bigwedge A$, and the join by $\bigvee A$.

Lemma 5.7. Complete lattices are non empty.

Theorem 5.8. Knaster-Tarski

Let (L, \leq) be a complete lattice and let $f : L \to L$ be a monotone function. Then the set of fixed points of f in L is also a complete lattice.

Consequence 5.9. The Knaster-Tarski theorem guarantees the existence of least and greatest fixpoints.

Proof of the Knaster-Tarski theorem

Reformulation

Induction

For a complete lattice (L, \leq) and a monotone function $f : L \rightarrow L$ on L, the set of all fixpoints of f is also a complete lattice (P, \leq) , with:

▶ $\bigvee P = \bigvee \{x \in L | x \leq f(x)\}$ as the greatest fixpoint of f

• $\bigwedge P = \bigwedge \{x \in L | f(x) \le x\}$ as the least fixpoint of f

Proof: We begin by showing that P has least and greatest elements. Let $D = \{y \in L | y \leq f(y)\}$ and $x \in D$. Then, because f is monotone, we have $f(x) \leq f(f(x))$, that is $f(x) \in D$. Now let $u = \bigvee D$. Then $x \leq u$ and $f(x) \leq f(u)$, so $x \leq f(x) \leq f(u)$. Therefore f(u) is an upper bound of D, but u is the least upper bound, so $u \leq f(u)$, i.e. $u \in D$. Then $f(u) \in D$ (from above) and $f(u) \leq u$ hence f(u) = u. Because every fixpoint is in D we have that u is the greatest fixpoint of f.

Proof of the Knaster-Tarski theorem (cont.)

The function f is monotone on the dual (complete) lattice (L^{op}, \geq) . As we have just proved, its greatest fixpoint there exists. It is the least one on L, so P has least and greatest elements, or more generally that every monotone function on a complete lattice has least and greatest fixpoints.

If $a \in L$ and $b \in L$, $a \leq b$, we'll write [a, b] for the closed interval with bounds a and $b : \{x \in L | a \leq x \leq b\}$. The closed intervals are also complete lattices.

It remains to prove that *P* is complete lattice.

ロト (周) (ヨ) (ヨ)

Proof of the Knaster-Tarski theorem (cont.)

Let $W \subset P$ and $w = \bigvee W$. We construct a least upper bound of W in P. (The reasoning for the greatest lower bound is analogue.) For every $x \in W$, we have $x = f(x) \leq f(w)$, i.e., f(w) is an upper bound of W. Since w is the least upper bound of W, w < f(w). Furthermore, for $y \in [w, \bigvee L]$, we have $w \leq f(w) \leq f(y)$. Thus, $f([w, \bigvee L]) \subset [w, \bigvee L]$, and we can consider f to be a monotone function on the complete lattice $[w, \backslash L]$. Then, $v = \bigwedge \{x \in [w, \bigvee L] | f(x) \le x\}$ is the least fixpoint of f in $[w, \bigvee L]$. We show that v is the least upper bound of W in P. a) v is in P. b) v is an upper bound of W, because $v \in [w, \bigvee L]$, i.e., $w \leq v$. c) v is least. Let z be another upper bound of W in P. Then, $w < z, z \in [w, \sqrt{L}], z$ is fixpoint, hence v < z

Induction

ロト (四) (ヨト (ヨト) ヨ

Lattices in Isabelle

Induction

Monotony and Fixpoints

- ▶ mono $f \equiv \forall AB$. $A \leq B \longrightarrow f A \leq f B$ (mono_def)
- Usually subset relation as ordering
- Ifp $f \equiv Inf\{u | f u \le u\}$ (Ifp_def)
- mono $f \Longrightarrow lfp f = f (lfp f)$ (lfp_unfold)
- [|mono ?f; ?f (inf (lfp ?f) ?P) ≤ ?P|] ⇒ lfp?f ≤ ?P (lfp_induct)
- gfp $f \equiv Sup\{u | u \le f u\}$ (gfp_def)
- mono $f \Longrightarrow gfp \ f = f \ (gfp \ f)$ (gfp_unfold)
- ► [|mono ?f; ?X ≤ ?f (sup ?X (gfp ?f))|] ⇒?X ≤ gfp ?f (coinduct)

(ロ) (同) (目) (日) (日) (0) (0)