Chapter 5

Sets, Functions, Relations, and Fixpoints

Sets, Functions, Relations

see IHT 6.1, 6.2, 6.3

- Finite Set Notation
- Set Comprehension
- Binding Operators
- Finiteness and Cardinality
- Function update, Range, Injective - Surjective
- Relations, Predicates

Overview

- Set notation
- Inductively defined sets

Set notation

Sets

Sets over type 'a:

'a set

Sets

Sets over type 'a:

$$
\text { 'a set }=\text { ' } a \Rightarrow \text { bool }
$$

Sets

Sets over type 'a:

$$
\text { 'a set }=\text { ' } a \Rightarrow \text { bool }
$$

- $\left\},\left\{e_{1}, \ldots, e_{n}\right\}, \quad\{x . P x\}\right.$

Sets

Sets over type 'a:

$$
\text { 'a set }=\text { ' } a \Rightarrow \text { bool }
$$

- $\left\},\left\{e_{1}, \ldots, e_{n}\right\},\{x . P x\}\right.$
- $e \in A, \quad A \subseteq B$

Sets

Sets over type 'a:

$$
\text { 'a set }=\text { ' } a \Rightarrow \text { bool }
$$

- $\left\}, \quad\left\{e_{1}, \ldots, e_{n}\right\}, \quad\{x . P x\}\right.$
- $e \in A, \quad A \subseteq B$
- $A \cup B, \quad A \cap B, \quad A-B, \quad-A$

Sets

Sets over type 'a:

$$
\text { 'a set }=\text { ' } a \Rightarrow \text { bool }
$$

- $\left\}, \quad\left\{e_{1}, \ldots, e_{n}\right\}, \quad\{x . P x\}\right.$
- $e \in A, \quad A \subseteq B$
- $A \cup B, \quad A \cap B, \quad A-B, \quad-A$
- $\bigcup_{\mathrm{x} \in \mathrm{A}} B x, \quad \bigcap_{\mathrm{x} \in \mathrm{A}} B x$

Sets

Sets over type 'a:

$$
\text { 'a set }=\text { ' } a \Rightarrow \text { bool }
$$

- $\left\}, \quad\left\{e_{1}, \ldots, e_{n}\right\}, \quad\{x . P x\}\right.$
- $e \in A, \quad A \subseteq B$
- $A \cup B, \quad A \cap B, \quad A-B, \quad-A$
- $\bigcup_{\mathrm{x} \in \mathrm{A}} B x, \quad \bigcap_{\mathrm{x} \in \mathrm{A}} B x$
- $\{i . . j\}$

Sets

Sets over type 'a:

$$
\text { 'a set }=\text { ' } a \Rightarrow \text { bool }
$$

- $\left\}, \quad\left\{e_{1}, \ldots, e_{n}\right\}, \quad\{x . P x\}\right.$
- $e \in A, \quad A \subseteq B$
- $A \cup B, \quad A \cap B, \quad A-B, \quad-A$
- $\bigcup_{\mathrm{x} \in \mathrm{A}} B x, \quad \bigcap_{\mathrm{x} \in \mathrm{A}} B x$
- \{i..j\}
- insert :: 'a \Rightarrow 'a set \Rightarrow 'a set

Sets

Sets over type 'a:

$$
\text { 'a set }=\text { ' } a \Rightarrow \text { bool }
$$

- $\left\}, \quad\left\{e_{1}, \ldots, e_{n}\right\}, \quad\{x . P x\}\right.$
- $e \in A, \quad A \subseteq B$
- $A \cup B, \quad A \cap B, \quad A-B, \quad-A$
- $\bigcup_{\mathrm{x} \in \mathrm{A}} B x, \quad \bigcap_{\mathrm{x} \in \mathrm{A}} B x$
- \{i..j\}
- insert :: 'a \Rightarrow 'a set \Rightarrow 'a set
.. .

Proofs about sets

Natural deduction proofs:

- equalityI: $\llbracket A \subseteq B ; B \subseteq A \rrbracket \Longrightarrow A=B$

Proofs about sets

Natural deduction proofs:

- equalityI: $\llbracket A \subseteq B ; B \subseteq A \rrbracket \Longrightarrow A=B$
- subsetI: $(\wedge x . x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$

Proofs about sets

Natural deduction proofs:

- equalityI: $\llbracket A \subseteq B ; B \subseteq A \rrbracket \Longrightarrow A=B$
- subsetI: $(\wedge x . x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$
- ... (see Tutorial)

Demo: proofs about sets

Bounded quantifiers

- $\forall x \in A . P x$

Bounded quantifiers

- $\forall x \in A . P x \equiv \forall x . x \in A \longrightarrow P x$

Bounded quantifiers

- $\forall x \in A . P x \equiv \forall x . x \in A \longrightarrow P x$
- $\exists x \in A . P x$

Bounded quantifiers

- $\forall x \in A . P x \equiv \forall x . x \in A \longrightarrow P x$
- $\exists x \in A . P x \equiv \exists x . x \in A \wedge P x$

Bounded quantifiers

- $\forall x \in A . P x \equiv \forall x . x \in A \longrightarrow P x$
- $\exists x \in A . P x \equiv \exists x . x \in A \wedge P x$
- ballI: $(\wedge x . x \in A \Longrightarrow P x) \Longrightarrow \forall x \in A$. $P x$
- bspec: $\llbracket \forall x \in A . P x ; x \in A \rrbracket \Longrightarrow P x$

Bounded quantifiers

- $\forall x \in A . P x \equiv \forall x . x \in A \longrightarrow P x$
- $\exists x \in A . P x \equiv \exists x . x \in A \wedge P x$
- ballI: $(\wedge x . x \in A \Longrightarrow P x) \Longrightarrow \forall x \in A . P x$
- bspec: $\llbracket \forall x \in A . P x ; x \in A \rrbracket \Longrightarrow P x$
- bexl: $\llbracket P x ; x \in A \rrbracket \Longrightarrow \exists x \in A$. $P x$
- bexE: $\llbracket \exists x \in A$. $P x ; \wedge x . \llbracket x \in A ; P x \rrbracket \Longrightarrow Q \rrbracket \Longrightarrow Q$

Inductively defined sets

Example: even numbers

Informally:

Example: even numbers

Informally:
 - 0 is even

Example: even numbers

Informally:

- 0 is even
- If n is even, so is $n+2$

Example: even numbers

Informally:

- 0 is even
- If n is even, so is $n+2$
- These are the only even numbers

Example: even numbers

Informally:

- 0 is even
- If n is even, so is $n+2$
- These are the only even numbers

In Isabelle/HOL:
inductive_set Ev :: nat set - The set of all even numbers

Example: even numbers

Informally:

- 0 is even
- If n is even, so is $n+2$
- These are the only even numbers

In Isabelle/HOL:
inductive_set Ev :: nat set - The set of all even numbers
where
$0 \in E v \quad 1$
$n \in E v \Longrightarrow n+2 \in E v$

Format of inductive definitions

inductive_set $S:: \tau$ set

Format of inductive definitions

inductive_set $S: \because \tau$ set
where
$\llbracket a_{1} \in S ; \ldots ; a_{n} \in S ; A_{1} ; \ldots ; A_{k} \rrbracket \Longrightarrow a \in S$ /

Format of inductive definitions

inductive_set $S:: \tau$ set
where
$\llbracket a_{1} \in S ; \ldots ; a_{n} \in S ; A_{1} ; \ldots ; A_{k} \rrbracket \Longrightarrow a \in S /$
where $A_{1} ; \ldots ; A_{k}$ are side conditions not involving S.

Proving properties of even numbers

Easy: $4 \in E v$

$$
0 \in E v \Longrightarrow 2 \in E v \Longrightarrow 4 \in E v
$$

Proving properties of even numbers

Easy: $4 \in E v$

$$
0 \in E v \Longrightarrow 2 \in E v \Longrightarrow 4 \in E v
$$

Trickier: $m \in E v \Longrightarrow m+m \in E v$

Proving properties of even numbers

Easy: $4 \in E v$

$$
0 \in E v \Longrightarrow 2 \in E v \Longrightarrow 4 \in E v
$$

Trickier: $m \in E v \Longrightarrow m+m \in E v$
Idea: induction on the length of the derivation of $m \in E v$

Proving properties of even numbers

Easy: $4 \in E v$

$$
0 \in E v \Longrightarrow 2 \in E v \Longrightarrow 4 \in E v
$$

Trickier: $m \in E v \Longrightarrow m+m \in E v$
Idea: induction on the length of the derivation of $m \in E v$
Better: induction on the structure of the derivation

Proving properties of even numbers

Easy: $4 \in E v$

$$
0 \in E v \Longrightarrow 2 \in E v \Longrightarrow 4 \in E v
$$

Trickier: $m \in E v \Longrightarrow m+m \in E v$
Idea: induction on the length of the derivation of $m \in E v$ Better: induction on the structure of the derivation Two cases: $m \in E v$ is proved by

- rule $0 \in E v$

Proving properties of even numbers

Easy: $4 \in E v$

$$
0 \in E v \Longrightarrow 2 \in E v \Longrightarrow 4 \in E v
$$

Trickier: $m \in E v \Longrightarrow m+m \in E v$
Idea: induction on the length of the derivation of $m \in E v$ Better: induction on the structure of the derivation
Two cases: $m \in E v$ is proved by

- rule $0 \in E v$

$$
\Longrightarrow m=0 \Longrightarrow 0+0 \in E v
$$

Proving properties of even numbers

Easy: $4 \in E v$

$$
0 \in E v \Longrightarrow 2 \in E v \Longrightarrow 4 \in E v
$$

Trickier: $m \in E v \Longrightarrow m+m \in E v$ Idea: induction on the length of the derivation of $m \in E v$ Better: induction on the structure of the derivation Two cases: $m \in E v$ is proved by

- rule $0 \in E v$
$\Longrightarrow m=0 \Longrightarrow 0+0 \in E v$
- rule $n \in E v \Longrightarrow n+2 \in E v$

Proving properties of even numbers

Easy: $4 \in E v$

$$
0 \in E v \Longrightarrow 2 \in E v \Longrightarrow 4 \in E v
$$

Trickier: $m \in E v \Longrightarrow m+m \in E v$ Idea: induction on the length of the derivation of $m \in E v$ Better: induction on the structure of the derivation Two cases: $m \in E v$ is proved by

- rule $0 \in E v$
$\Longrightarrow m=0 \Longrightarrow 0+0 \in E v$
- rule $n \in E v \Longrightarrow n+2 \in E v$
$\Longrightarrow m=n+2$ and $n+n \in E v$ (ind. hyp.!)

Proving properties of even numbers

Easy: $4 \in E v$

$$
0 \in E v \Longrightarrow 2 \in E v \Longrightarrow 4 \in E v
$$

Trickier: $m \in E v \Longrightarrow m+m \in E v$ Idea: induction on the length of the derivation of $m \in E v$ Better: induction on the structure of the derivation
Two cases: $m \in E v$ is proved by

- rule $0 \in E v$
$\Longrightarrow m=0 \Longrightarrow 0+0 \in E v$
- rule $n \in E v \Longrightarrow n+2 \in E v$
$\Longrightarrow m=n+2$ and $n+n \in E v$ (ind. hyp.!)
$\Longrightarrow m+m=(n+2)+(n+2)=((n+n)+2)+2 \in E v$

Rule induction for Ev

To prove

$$
n \in E v \Longrightarrow P n
$$

by rule induction on $n \in E v$ we must prove

Rule induction for Ev

To prove

$$
n \in E v \Longrightarrow P n
$$

by rule induction on $n \in E v$ we must prove

- PO

Rule induction for Ev

To prove

$$
n \in E v \Longrightarrow P n
$$

by rule induction on $n \in E v$ we must prove

- PO
- $P n \Longrightarrow P(n+2)$

Rule induction for Ev

To prove

$$
n \in E v \Longrightarrow P n
$$

by rule induction on $n \in E v$ we must prove

- P 0
- $P n \Longrightarrow P(n+2)$

Rule Ev.induct:
$\llbracket n \in E v ; P 0 ; \bigwedge n . P n \Longrightarrow P(n+2) \rrbracket \Longrightarrow P n$

Rule induction in general

Set S is defined inductively.

Rule induction in general

Set S is defined inductively. To prove

$$
x \in S \Longrightarrow P x
$$

by rule induction on $x \in S$

Rule induction in general

Set S is defined inductively. To prove

$$
x \in S \Longrightarrow P x
$$

by rule induction on $x \in S$
we must prove for every rule

$$
\llbracket a_{1} \in S ; \ldots ; a_{n} \in S \rrbracket \Longrightarrow a \in S
$$

that P is preserved:

Rule induction in general

Set S is defined inductively.
To prove

$$
x \in S \Longrightarrow P x
$$

by rule induction on $x \in S$
we must prove for every rule

$$
\llbracket a_{1} \in S ; \ldots ; a_{n} \in S \rrbracket \Longrightarrow a \in S
$$

that P is preserved:

$$
\llbracket P a_{1} ; \ldots ; P a_{n} \rrbracket \Longrightarrow P a
$$

Rule induction in general

Set S is defined inductively.
To prove

$$
x \in S \Longrightarrow P x
$$

by rule induction on $x \in S$
we must prove for every rule

$$
\llbracket a_{1} \in S ; \ldots ; a_{n} \in S \rrbracket \Longrightarrow a \in S
$$

that P is preserved:

$$
\llbracket P a_{1} ; \ldots ; P a_{n} \rrbracket \Longrightarrow P a
$$

In Isabelle/HOL:
apply(induct rule: S.induct)

Demo: inductively defined sets

Inductive predicates

$$
x \in S \leadsto S x
$$

Inductive predicates

$$
x \in S \leadsto S x
$$

Example:

inductive $E v$:: nat \Rightarrow bool
where
Evo I

$$
E v n \Longrightarrow E v(n+2)
$$

Inductive predicates

$$
x \in S \leadsto S x
$$

Example:

inductive $E v$:: nat \Rightarrow bool
where
Evo I

$$
E v n \Longrightarrow E v(n+2)
$$

Comparison:
predicate: simpler syntax
set: direct usage of \cup etc

Inductive predicates

$$
x \in S \leadsto S x
$$

Example:

inductive $E v$:: nat \Rightarrow bool
where

$$
\begin{aligned}
& E v 0 \quad 1 \\
& E v n \Longrightarrow E v(n+2)
\end{aligned}
$$

Comparison:
predicate: simpler syntax
set: direct usage of \cup etc
Inductive predicates can be of type $\tau_{1} \Rightarrow \ldots \Rightarrow \tau_{n} \Rightarrow$ bool

Automating it

simp and auto

simp rewriting and a bit of arithmetic auto rewriting and a bit of arithmetic, logic \& sets

simp and auto

simp rewriting and a bit of arithmetic auto rewriting and a bit of arithmetic, logic \& sets

- Show you where they got stuck

simp and auto

simp rewriting and a bit of arithmetic auto rewriting and a bit of arithmetic, logic \& sets

- Show you where they got stuck
- highly incomplete wrt logic

blast

- A complete (for FOL) tableaux calculus implementation

blast

- A complete (for FOL) tableaux calculus implementation
- Covers logic, sets, relations, ...

blast

- A complete (for FOL) tableaux calculus implementation
- Covers logic, sets, relations, ...
- Extensible with intro/elim rules

blast

- A complete (for FOL) tableaux calculus implementation
- Covers logic, sets, relations, ...
- Extensible with intro/elim rules
- Almost no "="

Demo: blast

Well founded relations

see IHT 6.4

- Well founded orderings: Induction
- Complete Lattices Fixpoints
- Knaster-Tarski Theorem

Fixpoints

Importance

- Inductive definitions of sets and relations
- Reminder: relations are sets in Isabelle/HOL
- E.g.: $0 \in$ even
- $\mathrm{n} \in$ even $==>\mathrm{n}+2 \in$ even

Properties of Orderings and Functions

Definition 5.1. Monotone Function
Let D be a set with an ordering relation \leq. A function $f: D \rightarrow D$ is called monotone, if $x \leq y \longrightarrow f(x) \leq f(y)$

Remark

The inductive definition above induces a monotone function on sets with the subset relation as ordering:

- f_even :: nat set -> nat set
- f_even $(A)=A \cup\{0\} \cup\{n+2 \mid n \in A\}$

Well-founded Orderings

- Partial-order $\leq \subseteq X \times X$ well-founded iff
$(\forall Y \subseteq X: Y \neq \emptyset \rightarrow(\exists y \in Y: y$ minimal in Y in respect of $\leq))$
- Quasi-order \lesssim well-founded iff strict part of \lesssim is well-founded.
- Initial segment: $Y \subseteq X$, left-closed i.e.

$$
(\forall y \in Y:(\forall x \in X: x \lesssim y \rightarrow x \in Y))
$$

- Initial section of $x: \sec (x)=\{y: y<x\}$

Supremum

- Let (X, \leq) be a partial-order and $Y \subseteq X$
- $S \subseteq X$ is a chain iff elements of S are linearly ordered through \leq.
- y is an upper bound of Y iff

$$
\forall y^{\prime} \in Y: y^{\prime} \leq y
$$

- Supremum: y is a supremum of Y iff y is an upper bound of Y and

$$
\forall y^{\prime} \in X:\left(\left(y^{\prime} \text { upper bound of } Y\right) \rightarrow y \leq y^{\prime}\right)
$$

- Analog: lower bound, Infimum $\inf (Y)$

CPO

- A Partial-order (D, \sqsubseteq) is a complete partial ordering (CPO) iff
- \exists the smallest element \perp of D (with respect of \sqsubseteq)
- Each chain S has a supremum $\sup (S)$.

Example

Example 5.2. .

- $(\mathcal{P}(X), \subseteq)$ is CPO.
- (D, \sqsubseteq) is CPO with
- $D=X \nrightarrow Y$: set of all the partial functions f with $\operatorname{dom}(f) \subseteq X$ and $\operatorname{cod}(f) \subseteq Y$.
- Let $f, g \in X \leadsto Y$.

$$
f \sqsubseteq g \mathrm{iff} \operatorname{dom}(f) \subseteq \operatorname{dom}(g) \wedge(\forall x \in \operatorname{dom}(f): f(x)=g(x))
$$

Monotonous, continuous

- $(D, \sqsubseteq),\left(E, \sqsubseteq^{\prime}\right)$ CPOs
- $f: D \rightarrow E$ monotonous iff

$$
\left(\forall d, d^{\prime} \in D: d \sqsubseteq d^{\prime} \rightarrow f(d) \sqsubseteq^{\prime} f\left(d^{\prime}\right)\right)
$$

- $f: D \rightarrow E$ continuous iff f monotonous and

$$
(\forall S \subseteq D: S \text { chain } \rightarrow f(\sup (S))=\sup (f(S)))
$$

- $X \subseteq D$ is admissible iff

$$
(\forall S \subseteq X: S \text { chain } \rightarrow \sup (S) \in X)
$$

Fixpoint

- $(D, \sqsubseteq) \mathrm{CPO}, f: D \rightarrow D$
- $d \in D$ fixpoint of f iff

$$
f(d)=d
$$

- $d \in D$ smallest fixpoint of f iff d fixpoint of f and

$$
\left(\forall d^{\prime} \in D: d^{\prime} \text { fixpoint } \rightarrow d \sqsubseteq d^{\prime}\right)
$$

Fixpoint-Theorem

Theorem 5.3 (Fixpoint-Theorem:). (D, \sqsubseteq) CPO, $f: D \rightarrow D$ continuous, then f has a smallest fixpoint μf and

$$
\mu f=\sup \left\{f^{i}(\perp): i \in \mathbb{N}\right\}
$$

Proof: (Sketch)

- $\sup \left\{f^{i}(\perp): i \in \mathbb{N}\right\}$ fixpoint:

$$
\begin{aligned}
f\left(\sup \left\{f^{\prime}(\perp): i \in \mathbb{N}\right\}\right)= & \sup \left\{f^{i+1}(\perp): i \in \mathbb{N}\right\} \\
& (\operatorname{con} \text { innuous) } \\
= & \sup \left\{\sup \left\{f^{i+1}(\perp): i \in \mathbb{N}\right\}, \perp\right\} \\
= & \sup \left\{f^{i}(\perp): i \in \mathbb{N}\right\}
\end{aligned}
$$

Fixpoint-Theorem (Cont.)

Fixpoint-Theorem: $(D, \sqsubseteq) \mathrm{CPO}, f: D \rightarrow D$ continuous, then f has a smallest fixpoint μf and

$$
\mu f=\sup \left\{f^{i}(\perp): i \in \mathbb{N}\right\}
$$

Proof: (Continuation)

- $\sup \left\{f^{i}(\perp): i \in \mathbb{N}\right\}$ smallest fixpoint:

1. d^{\prime} fixpoint of f
2. $\perp \sqsubseteq d^{\prime}$
3. f monotonous, d^{\prime} FP: $f(\perp) \sqsubseteq f\left(d^{\prime}\right)=d^{\prime}$
4. Induction: $\forall i \in \mathbb{N}: f^{i}(\perp) \sqsubseteq f^{\prime}\left(d^{\prime}\right)=d^{\prime}$
5. $\sup \left\{f^{i}(\perp): i \in \mathbb{N}\right\} \sqsubseteq d^{\prime}$

Induction over \mathbb{N}

Induction's principle:

$$
(\forall X \subseteq \mathbb{N}:((0 \in X \wedge(\forall x \in X: x \in X \rightarrow x+1 \in X))) \rightarrow X=\mathbb{N})
$$

Correctness:

1. Let's assume no, so $\exists X \subseteq \mathbb{N}: \mathbb{N} \backslash X \neq \emptyset$
2. Let y be minimum in $\mathbb{N} \backslash X$ (with respect to $<$).
3. $y \neq 0$
4. $y-1 \in X \wedge y \notin X$
5. Contradiction

Induction over \mathbb{N} (Alternative)

Induction's principle:

$$
(\forall X \subseteq \mathbb{N}:(\forall x \in \mathbb{N}: \sec (x) \subseteq X \rightarrow x \in X) \rightarrow X=\mathbb{N})
$$

Correctness:

1. Let's assume no, so $\exists X \subseteq \mathbb{N}: \mathbb{N} \backslash X \neq \emptyset$
2. Let y be minimum in $\mathbb{N} \backslash X$ (with respect to $<$).
3. $\sec (y) \subseteq X, y \notin X$
4. Contradiction

Well-founded induction

Induction's principle: Let (Z, \leq) be a well-founded partial order.

$$
(\forall X \subseteq Z:(\forall x \in Z: \sec (x) \subseteq X \rightarrow x \in X) \rightarrow X=Z)
$$

Correctness:

1. Let's assume no, so $Z \backslash X \neq \emptyset$
2. Let z be a minimum in $Z \backslash X$ (in respect of \leq).
3. $\sec (z) \subseteq X, z \notin X$
4. Contradiction

FP-Induction: Proving properties of fixpoints

Induction's principle: Let (D, \sqsubseteq) CPO, $f: D \rightarrow D$ continuous.
$(\forall X \subseteq D$ admissible $:(\perp \in X \wedge(\forall y: y \in X \rightarrow f(y) \in X)) \rightarrow \mu f \in X)$
Correctness: Let $X \subseteq D$ admissible.

$$
\begin{array}{rlr}
\mu f \in X & \Leftrightarrow \sup \left\{f^{i}(\perp): i \in \mathbb{N}\right\} \in X & \text { (FP-theorem) } \\
& \Leftarrow \forall i \in \mathbb{N}: f^{i}(\perp) \in X & (X \text { admissible) } \\
& \Leftarrow \perp \in X \wedge\left(\forall n \in \mathbb{N}: f^{n}(\perp) \in X \rightarrow f\left(f^{n}(\perp)\right) \in X\right) \\
& \Leftarrow \perp \in X \wedge(\forall y \in X \rightarrow f(y) \in X) & \text { (Induction } \mathbb{N}) \\
& \text { (Ass.) }
\end{array}
$$

Problem

Exercise 5.4. Let $(D, \sqsubseteq) \mathrm{CPO}$ with

- $X=Y=\mathbb{N}$
- $D=X \nrightarrow Y$: set all partial functions f with $\operatorname{dom}(f) \subseteq X$ and $\operatorname{cod}(f) \subseteq Y$.
- Let $f, g \in X \nrightarrow Y$.

$$
f \sqsubseteq g \text { iff } \operatorname{dom}(f) \subseteq \operatorname{dom}(g) \wedge(\forall x \in \operatorname{dom}(f): f(x)=g(x))
$$

Consider

$$
\begin{array}{rlrl}
F: D & \rightarrow \mathcal{P}(\mathbb{N} \times \mathbb{N}) & \\
g & \mapsto \begin{cases}\{(0,1)\} & g=\emptyset \\
\{(x, x \cdot g(x-1)): x-1 \in \operatorname{dom}(g)\} \cup\{(0,1)\} & \text { otherwise }\end{cases}
\end{array}
$$

Problem

Prove:

1. $\forall g \in D: F(g) \in D$, i.e. $F: D \rightarrow D$
2. $F: D \rightarrow D$ continuous
3. $\forall n \in \mathbb{N}: \mu F(n)=n$!

Note:

- μF can be understood as the semantics of a function's definition

$$
\begin{aligned}
& \text { function } \operatorname{Fac}\left(n: \mathbb{N}_{\perp}\right): \mathbb{N}_{\perp}=\operatorname{def} \\
& \quad \text { if } n=0 \text { then } 1 \\
& \quad \text { else } n \cdot \operatorname{Fac}(n-1)
\end{aligned}
$$

- Keyword: ' functions' in Isabelle

Problem

Exercise 5.5. Prove: Let $G=(V, E)$ be an infinite directed graph with

- G has finitely many roots (nodes without incoming edges).
- Each node has finite out-degree.
- Each node is reachable from a root.

There exists an infinite path that begins on a root.

Complete Lattices and Existence of Fixpoints

Definition 5.6. Complete Lattice
A partially ordered set (L, \leq) is a complete lattice if every subset A of
L has both a greatest lower bound (the infimum, also called the meet) and a least upper bound (the supremum, also called the join) in
(L, \leq). The meet is denoted by $\wedge A$, and the join by $\bigvee A$.
Lemma 5.7. Complete lattices are non empty.
Theorem 5.8. Knaster-Tarski
Let (L, \leq) be a complete lattice and let $f: L \rightarrow L$ be a monotone function. Then the set of fixed points of f in L is also a complete lattice.

Consequence 5.9. The Knaster-Tarski theorem guarantees the existence of least and greatest fixpoints.

Proof of the Knaster-Tarski theorem

Reformulation

For a complete lattice (L, \leq) and a monotone function $f: L \rightarrow L$ on L, the set of all fixpoints of f is also a complete lattice (P, \leq), with:

- $\bigvee P=\bigvee\{x \in L \mid x \leq f(x)\}$ as the greatest fixpoint of f
- $\wedge P=\bigwedge\{x \in L \mid f(x)<=x\}$ as the least fixpoint of f

Proof: We begin by showing that P has least and greatest elements. Let $D=\{y \in L \mid y \leq f(y)\}$ and $x \in D$. Then, because f is monotone, we have $f(x) \leq f(f(x))$, that is $f(x) \in D$.
Now let $u=\bigvee D$. Then $x \leq u$ and $f(x) \leq f(u)$, so $x \leq f(x) \leq f(u)$. Therefore $f(u)$ is an upper bound of D, but u is the least upper bound, so $u \leq f(u)$, i.e. $u \in D$. Then $f(u) \in D$ (from above) and $f(u) \leq u$ hence $f(u)=u$. Because every fixpoint is in D we have that u is the greatest fixpoint of f .

Proof of the Knaster-Tarski theorem (cont.)

The function f is monotone on the dual (complete) lattice ($L^{O P}, \geq$). As we have just proved, its greatest fixpoint there exists. It is the least one on L , so P has least and greatest elements, or more generally that every monotone function on a complete lattice has least and greatest fixpoints.

If $a \in L$ and $b \in L, a \leq b$, we'll write $[a, b]$ for the closed interval with bounds a and $b:\{x \in L \mid a \leq x \leq b\}$. The closed intervals are also complete lattices.

It remains to prove that P is complete lattice.

Proof of the Knaster-Tarski theorem (cont.)

Let $W \subset P$ and $w=\bigvee W$. We construct a least upper bound of W in P. (The reasoning for the greatest lower bound is analogue.)
For every $x \in W$, we have $x=f(x) \leq f(w)$, i.e., $f(w)$ is an upper bound of W. Since w is the least upper bound of $W, w \leq f(w)$. Furthermore, for $y \in[w, \bigvee L]$, we have $w \leq f(w) \leq f(y)$. Thus, $f([w, \bigvee L]) \subset[w, \bigvee L]$, and we can consider f to be a monotone function on the complete lattice $[w, \bigvee L]$. Then, $v=\bigwedge\{x \in[w, \bigvee L] \mid f(x) \leq x\}$ is the least fixpoint of f in $[w, \bigvee L]$. We show that v is the least upper bound of W in P.
a) v is in P.
b) v is an upper bound of W, because $v \in[w, \bigvee L]$, i.e., $w \leq v$.
c) v is least. Let z be another upper bound of W in P. Then,
$w \leq z, z \in[w, \bigvee L], z$ is fixpoint, hence $v \leq z$

Lattices in Isabelle

Monotony and Fixpoints

- mono $f \equiv \forall A B . A \leq B \longrightarrow f A \leq f B \quad$ (mono_def)
- Usually subset relation as ordering
- $\operatorname{lfp} f \equiv \operatorname{Inf}\{u \mid f u \leq u\} \quad$ (Ifp_def)
- mono $f \Longrightarrow$ Ifp $f=f($ Ifp $f) \quad$ (lfp_unfold)
- [|mono ?f; ?f (inf (Ifp ?f) ?P) \leq ? $P \mid] \Longrightarrow$ Ifp?f \leq ? P (lfp_induct)
- $\operatorname{gfp} f \equiv \operatorname{Sup}\{u \mid u \leq f u\} \quad$ (gfp_def)
- mono $f \Longrightarrow g f p f=f(g f p f) \quad$ (gfp_unfold)
- $[\mid m o n o ~ ? f ; ? X \leq$?f $(\sup ? X(g f p ~ ? f)) \mid] \Longrightarrow ? X \leq g f p ? f$ (coinduct)

