OOOOOOOOOOO

Chapter 7

Application: Inductively
Defined Sets

=iy = = = DAl

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic

Application: Inductively Defined Sets
©0000000000

Defining sets inductively

Defining sets inductively: Repetition

SessionSlides6.1 starting slide 23

» Rule induction

» Demo inductively defined sets
» Inductive predicates
» Demo

=) =) = =) Qv
-__|
Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic

516

Application: Inductively Defined Sets
0@@00000000

Specification of transitions systems
-___|

Transition systems

Definition 7.1. TS
A transition system (TS) is a pair (Q,T) consisting of

» aset Q of states;

» abinary relation T C (Q= Q), usually called the transition relation
(Other names: state transition system, unlabeled transition system)

Definition 7.2. LTS
A labeled transition system (LTS) over Act is a pair (Q,T) consisting of

» aset Q of states;

» aternary relation T C (Q = Act x Q), usually called the transition
relation, transitions written as q1 -I-> g2

Act is called the set of actions.

-__|
Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 517

Application: Inductively Defined Sets
0Oe@00000000

Specification of transitions systems

Transition systems (cont.)
Remark 7.3.
» The action labels express input, output, or an “explanation” of an
internal state change.
» Finite automata are LTS.

» Often, transitions systems are equipped with a set of initial states
or sets of initial and final states.

» Traces are sequences (qi) of states with (gi,gi+1) € T

» Behavior:: Set of traces beginning at initial states.

» Properties:: expressed in appropriate logic (PDL, CTL ...)
Lemma 7.4. Every LTS (Q,T) over Act can be expressed by a TS
(Q’,T’) such that there is a mapping

rep: QxAct = Q
withgl —I- >q2 e T < 3" : (rep(q1,!'),rep(g2,1)) € T'

Proof: <exercise>

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 518

Application: Inductively Defined Sets
000@0000000

Specification of transitions systems

Modeling: Case study Elevator

Model of an elevator control system: Description

» Design the logic to move one lift between 3 floors satisfying:

» The lift has for each floor one button which, if pressed, causes
the lift to visit that floor. It is cancelled when the lift visits the floor.

» Each floor has a button to request the lift. It is cancelled when
the lift visits the floor.

The lift remains in middle floor if no requests are pending.
Properties

All requests for floors from the lift must be serviced eventually.
All requests from floors must be serviced eventually.

vV v v v

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 519

Application: Inductively Defined Sets
0000@000000

Specification of transitions systems

Modeling: Case study Elevator

Datatypes and actions

datatype floor = FO | F1 | F2
(* actions *)

datatype action Call floor (* input message *)

| GoTo floor (* input message *)
| Open (* output message *)
| Move (* internal message *)

(* types for elevator state *)

datatype direction = UP | DW

datatype door = CL | OP

(* elevator state x)

"action * floor * direction * door * (floor set)"

(* where | last move | open/closed | what to serve x)

=) =) = = = DA
-__|
Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 520

Application: Inductively Defined Sets
00000008000

Specification of transitions systems

Datatypes and actions

(* transition relation *)
inductive_set tr :: "(state * state) set" where
"\<1lbrakk> g \<notin> T; \<not> (f = g \<and> d = 0P)
\<rbrakk> \<Longrightarrow> ((a, £, r, d, T), (
Call g, £, r, d, T \<union> { g })) \<in> tr"
| "\<lbrakk> g \<notin> T; \<not> (f = g \<and> d = 0P
) \<rbrakk> \<Longrightarrow> ((a, £, r, d, T), (
GoTo g, £, r, d, T \<union> { g })) \<in> tr"
| "f \<in> T \<Longrightarrow> ((a, f, r, 4, T), (
Open, f, r, OP, T - { £ })) \<in> tr"
| "¢ (a, F1, r, d, { FO }), (Move, FO, DW, CL, { FO })
) \<in> tr"
| ¢ (a, F1, r, d, { F2 }), (Move, F2, UP, CL, { F2 })
) \<in> tr"
| "FO \<notin> T \<Longrightarrow> ((a, FO, r, d, T),
(Move, F1, UP, CL, T)) \<in> tr"
o = = = = DAl

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 521

Application: Inductively Defined Sets
00000008000

Specification of transitions systems
-___|

Datatypes and actions (cont.)

| "F2 \<notin> T \<Longrightarrow> ((a, F2,
(Move, F1, DW, CL, T)) \<in> tr"

| "\<lbrakk> F1 \<notin> T; F2 \<in> T \<rbrakk> \<
Longrightarrow> ((a, F1, UP, 4, T), (Move, F2, UP
, CL, T)) \<in> tr"

| "\<lbrakk> F1 \<notin> T; FO \<in> T \<rbrakk> \<
Longrightarrow> ((a, F1, DW, 4, T), (Move, FO, DW
, CL, T)) \<in> tr"

r, d, T),

(*x traces x*)

types trace = "nat \<Rightarrow> state"
coinductive_set traces :: "trace set" where
"[l t \<in> traces; (s, t 0) \<in> tr [|] ===>

(\<lambda>n. case n of 0 \<Rightarrow> s |

Suc x \<
Rightarrow> t x) \<in> traces"

=) =) = = DA
-__|
Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic

522

Application: Inductively Defined Sets
©00000ee000

Specification of transitions systems
Datatypes and actions (cont.)
(* Functions on traces *)
definition head

"head t \<equiv> t O"

definition drp

"trace \<Rightarrow> state" where
Rightarrow> trace"

"trace \<Rightarrow> nat \<
where

"drp t n \<equiv> (\<lambda>x. t (n + x))"

lemma [iff]:

"drp (drp t n) m

drp t (n + m)"
lemma drp_traces:

"t \<in> traces ===> drp t n \<in> traces"
=) =) = = = DA
-__|
Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic

523

Application: Inductively Defined Sets
00000000800

Specification of transitions systems

Reasoning about finite transition systems

Logic for expressing properties of traces

>

vV v v v Y

For every floor f: If f is a target floor, the elevator will eventually
reach the floor and open the door.

Always («To f» —> Finally («Op» and «At f»))
~» Temporal logic. Here e.g. LTL

Formulae built with Atoms, =, A, (0, O
Interpretations: Kripke structures (Q, I, T, L)

A transition relation T C Q = Q such that
Yge Q3q € Q(q,9)eT

a labeling (or interpretation) function L : Q — 2A©ms

-__|
Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 524

Application: Inductively Defined Sets
00000000008

Specification of transitions systems

Reasoning about finite transition systems

Remark 7.5.

» Since T is left-total, it is always possible to construct an infinite
path through the Kripke structure. A deadlock state qd can be
expressed by single outgoing edge back to qd itself.

» Labeling states (elevator)

datatype atom = Up | Op | At floor | To floor

fun L :: "state => atom => bool" where

"L (_, _, UP, _, _) Up = True" |

"L (., _, DW, _, _) Up = False" |

"L (_, _, _, CL, _) Op = False" |

"L (_, _, _, OP, _) 0Op = True" |

"L (-, £, _, _, _) (At g) = (£ = g)" |

"L (_, _, _, _, fs) (To f) = (f \<in> fs)"

[m] = = =

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 525

Application: Inductively Defined Sets
00000000008

Specification of transitions systems

Reasoning about finite transition systems (cont.)

» The labeling function L defines for each state q in Q the set L(s)
of all atomic propositions that are valid in s.

» Semantics of LTL

primrec valid

"trace => formula => bool" ("(_ I= _)" [80, 80]
80) where
"t |= Atom a = (a \<in> L (head t))"
| "t |= Neg f = (\<not> (t [|= £f))"
| "t |= And f g = (t |=f \<and> t [|= g)"
| "t |= Always £ = (\<forall>n. drp t n [= £)"
| "t |= Finally f = (\<exists>n. drp t n |= f)"
» »> Elevator.thy
CRIRE=, = =, = 9aQ

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 526

