
Application: Inductively Defined Sets

Chapter 7

Application: Inductively
Defined Sets

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 515

Application: Inductively Defined Sets

Defining sets inductively

Defining sets inductively: Repetition

SessionSlides6.1 starting slide 23
� Rule induction
� Demo inductively defined sets
� Inductive predicates
� Demo

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 516

Application: Inductively Defined Sets

Specification of transitions systems

Transition systems

Definition 7.1. TS
A transition system (TS) is a pair (Q,T) consisting of

� a set Q of states;
� a binary relation T ⊂ (Q ∗Q), usually called the transition relation

(Other names: state transition system, unlabeled transition system)

Definition 7.2. LTS
A labeled transition system (LTS) over Act is a pair (Q,T) consisting of

� a set Q of states;
� a ternary relation T ⊂ (Q ∗ Act ∗Q), usually called the transition

relation, transitions written as q1 -l-> q2
Act is called the set of actions.

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 517

Application: Inductively Defined Sets

Specification of transitions systems

Transition systems (cont.)
Remark 7.3.

� The action labels express input, output, or an “explanation” of an
internal state change.

� Finite automata are LTS.
� Often, transitions systems are equipped with a set of initial states

or sets of initial and final states.
� Traces are sequences (qi) of states with (qi , qi + 1) ∈ T
� Behavior:: Set of traces beginning at initial states.
� Properties:: expressed in appropriate logic (PDL, CTL ...)

Lemma 7.4. Every LTS (Q,T) over Act can be expressed by a TS
(Q’,T’) such that there is a mapping
rep : Q ∗ Act ⇒ Q�

with q1− l− > q2 ∈ T ⇐⇒ ∃l � : (rep(q1, l �), rep(q2, l)) ∈ T �

Proof: <exercise>
Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 518

Application: Inductively Defined Sets

Specification of transitions systems

Modeling: Case study Elevator

Model of an elevator control system: Description
� Design the logic to move one lift between 3 floors satisfying:
� The lift has for each floor one button which, if pressed, causes

the lift to visit that floor. It is cancelled when the lift visits the floor.
� Each floor has a button to request the lift. It is cancelled when

the lift visits the floor.
� The lift remains in middle floor if no requests are pending.
� Properties
� All requests for floors from the lift must be serviced eventually.
� All requests from floors must be serviced eventually.

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 519

Application: Inductively Defined Sets

Specification of transitions systems

Modeling: Case study Elevator

Datatypes and actions
datatype floor = F0 | F1 | F2

(* actions *)

datatype action = Call floor (* input message *)

| GoTo floor (* input message *)

| Open (* output message *)

| Move (* internal message *)

(* types for elevator state *)

datatype direction = UP | DW

datatype door = CL | OP

(* elevator state *)

"action * floor * direction * door * (floor set)"

(* where | last move | open/closed | what to serve *)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 520

Application: Inductively Defined Sets

Specification of transitions systems

Datatypes and actions

(* transition relation *)

inductive_set tr :: "(state * state) set" where

"\<lbrakk > g \<notin > T; \<not > (f = g \<and > d = OP)

\<rbrakk > \<Longrightarrow > ((a, f, r, d, T), (

Call g, f, r, d, T \<union > { g })) \<in> tr"

| "\<lbrakk > g \<notin > T; \<not > (f = g \<and > d = OP

) \<rbrakk > \<Longrightarrow > ((a, f, r, d, T), (

GoTo g, f, r, d, T \<union > { g })) \<in> tr"

| "f \<in> T \<Longrightarrow > ((a, f, r, d, T), (

Open , f, r, OP , T - { f })) \<in > tr"

| "((a, F1, r, d, { F0 }), (Move , F0, DW , CL , { F0 })

) \<in > tr"

| "((a, F1, r, d, { F2 }), (Move , F2, UP , CL , { F2 })

) \<in > tr"

| "F0 \<notin > T \<Longrightarrow > ((a, F0, r, d, T),

(Move , F1, UP, CL , T)) \<in> tr"

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 521

Application: Inductively Defined Sets

Specification of transitions systems

Datatypes and actions (cont.)
| "F2 \<notin > T \<Longrightarrow > ((a, F2, r, d, T),

(Move , F1, DW, CL , T)) \<in> tr"

| "\<lbrakk > F1 \<notin > T; F2 \<in > T \<rbrakk > \<

Longrightarrow > ((a, F1, UP , d, T), (Move , F2 , UP

, CL , T)) \<in > tr"

| "\<lbrakk > F1 \<notin > T; F0 \<in > T \<rbrakk > \<

Longrightarrow > ((a, F1, DW , d, T), (Move , F0 , DW

, CL , T)) \<in > tr"

(* traces *)

types trace = "nat \<Rightarrow > state"

coinductive_set traces :: "trace set" where

"[| t \<in> traces; (s, t 0) \<in > tr |] ===>

(\<lambda >n. case n of 0 \<Rightarrow > s | Suc x \<

Rightarrow > t x) \<in > traces"

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 522

Application: Inductively Defined Sets

Specification of transitions systems

Datatypes and actions (cont.)

(* Functions on traces *)

definition head :: "trace \<Rightarrow > state" where

"head t \<equiv > t 0"

definition drp :: "trace \<Rightarrow > nat \<

Rightarrow > trace" where

"drp t n \<equiv > (\<lambda >x. t (n + x))"

lemma [iff]:

"drp (drp t n) m = drp t (n + m)"

lemma drp_traces:

"t \<in > traces ===> drp t n \<in > traces"

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 523

Application: Inductively Defined Sets

Specification of transitions systems

Reasoning about finite transition systems

Logic for expressing properties of traces
� For every floor f: If f is a target floor, the elevator will eventually

reach the floor and open the door.
� Always («To f» –> Finally («Op» and «At f»))
� � Temporal logic. Here e.g. LTL
� Formulae built with Atoms, ¬,∧,�,♦
� Interpretations: Kripke structures (Q, I, T , L)

� A transition relation T ⊆ Q ∗Q such that
∀q ∈ Q.∃q� ∈ Q.(q, q�) ∈ T

� a labeling (or interpretation) function L : Q → 2Atoms

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 524

Application: Inductively Defined Sets

Specification of transitions systems

Reasoning about finite transition systems

Remark 7.5.
� Since T is left-total, it is always possible to construct an infinite

path through the Kripke structure. A deadlock state qd can be
expressed by single outgoing edge back to qd itself.

� Labeling states (elevator)

datatype atom = Up | Op | At floor | To floor

fun L :: "state => atom => bool" where

"L (_, _, UP, _, _) Up = True" |

"L (_, _, DW, _, _) Up = False" |

"L (_, _, _, CL , _) Op = False" |

"L (_, _, _, OP , _) Op = True" |

"L (_, f, _, _, _) (At g) = (f = g)" |

"L (_, _, _, _, fs) (To f) = (f \<in> fs)"

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 525

Application: Inductively Defined Sets

Specification of transitions systems

Reasoning about finite transition systems (cont.)

� The labeling function L defines for each state q in Q the set L(s)
of all atomic propositions that are valid in s.

� Semantics of LTL

primrec valid ::

"trace => formula => bool" ("(_ |= _)" [80, 80]

80) where

"t |= Atom a = (a \<in > L (head t))"

| "t |= Neg f = (\<not > (t |= f))"

| "t |= And f g = (t |= f \<and > t |= g)"

| "t |= Always f = (\<forall >n. drp t n |= f)"

| "t |= Finally f = (\<exists >n. drp t n |= f)"

� »> Elevator.thy

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 526

