Chapter 8

Application: Programming Language Semantics

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Programming Language Semantics

Software Foundations Book

- Material: http://sct.ethz.ch/teaching/ss2004/sps/lecture.html
- PM intro
- PM bigstep semantics
- Demo MyWhile.thy
- PM smallstep semantics
- Denotational semantics
- Axiomatic semantics: Hoare Logic.
- Demo MyHoare.thy

(本部) (本語) (本語) (二語)

Why Formal Semantics?

- Programming language design
 - Formal verification of language properties
 - Reveal ambiguities
 - Support for standardization
- Implementation of programming languages
 - Compilers
 - Interpreters
 - Portability
- Reasoning about programs
 - Formal verification of program properties
 - Extended static checking

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Language Properties

Type safety:

In each execution state, a variable of type T holds a value of T or a subtype of T

- Very important question for language designers
- ► Example:

If String is a subtype of Object, should String[] be
a subtype of Object[]?

Language Properties

Type safety:

In each execution state, a variable of type T holds a value of T or a subtype of T

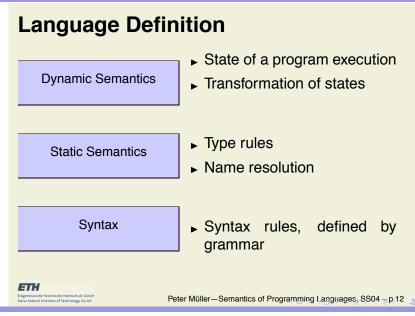
- Very important question for language designers
- ► Example:

If String is a subtype of Object, should String[] be
a subtype of Object[]?

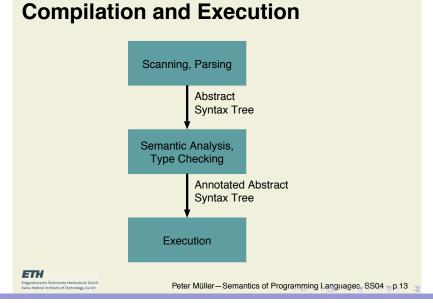
<pre>void m(Object[] oa) {</pre>	<pre>String[] sa=new String[10];</pre>
<pre>oa[0]=new Integer(5);</pre>	m(sa);
}	<pre>String s = sa[0];</pre>

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Introduction to Programming Language Semantics



Introduction to Programming Language Semantics



Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic

Three Kinds of Semantics

- Operational semantics
 - Describes execution on an abstract machine
 - Describes how the effect is achieved
- Denotational semantics
 - Programs are regarded as functions in a mathematical domain
 - Describes only the effect, not how it is obtained
- Axiomatic semantics
 - Specifies properties of the effect of executing a program are expressed
 - Some aspects of the computation may be ignored

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Operational Semantics

```
y := 1;
while not(x=1) do ( y := x*y; x := x-1 )
```

- "First we assign 1 to y, then we test whether x is 1 or not. If it is then we stop and otherwise we update y to be the product of x and the previous value of y and then we decrement x by 1. Now we test whether the new value of x is 1 or not..."
- Two kinds of operational semantics
 - Natural Semantics
 - Structural Operational Semantics

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Denotational Semantics

```
y := 1;
while not(x=1) do ( y := x*y; x := x-1 )
```

- "The program computes a partial function from states to states: the final state will be equal to the initial state except that the value of x will be 1 and the value of y will be equal to the factorial of the value of x in the initial state"
- Two kinds of denotational semantics
 - Direct Style Semantics
 - Continuation Style Semantics

Axiomatic Semantics

```
y := 1;
while not(x=1) do ( y := x*y; x := x-1 )
```

- "If x= n holds before the program is executed then y= n! will hold when the execution terminates (if it terminates)"
- Two kinds of axiomatic semantics
 - Partial correctness
 - Total correctness

Introduction to Programming Language Semantics

Abstraction

Concrete language implementation

Operational semantics

Denotational semantics

Axiomatic semantics

Abstract descrption

Selection Criteria

- Constructs of the programming language
 - Imperative
 - Functional
 - Concurrent
 - Object-oriented
 - Non-deterministic
 - Etc.

- Application of the semantics
 - Understanding the language
 - Program verification
 - Prototyping
 - Compiler construction
 - Program analysis
 - Etc.

The Language IMP

- Expressions
 - Boolean and arithmetic expressions
 - No side-effects in expressions
- Variables
 - All variables range over integers
 - All variables are initialized
 - No global variables
- IMP does not include
 - Heap allocation and pointers
 - Variable declarations
 - Procedures
 - Concurrency

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Syntax of IMP: Characters and Tokens

Characters

Tokens

Ident	= Letter { Letter Digit }
Integer	= Digit { Digit }
Var	= Ident

Syntax of IMP: Expressions

Arithmetic expressions

Boolean expressions

Bexp	= Bexp 'or' Bexp Bexp 'and' Bexp
	l 'not' Bexp I Aexp RelOp Aexp
RelOp	= '=' '#' '<' '<=' '>' '>='

Introduction to Programming Language Semantics

Syntax of IMP: Statemens

Stm = 'skip'
 | Var ':=' Aexp
 | Stm '; 'Stm
 | 'if' Bexp 'then' Stm 'else' Stm 'end'
 | 'while' Bexp 'do' Stm 'end'

Notation

Meta-variables (written in *italic* font)

<i>x</i> , <i>y</i> , <i>z</i>	for variables (Var)
e, e', e_1, e_2	for arithmetic expressions (Aexp)
b, b_1, b_2	for boolean expressions (Bexp)
s, s', s_1, s_2	for statements (Stm)

Keywords are written in typewriter font

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Syntax of IMP: Example

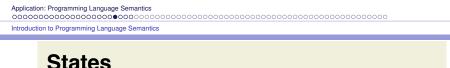
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Semantic Categories

Syntactic category: Integer Semantic category: $Val = \mathbb{Z}$

- Semantic functions map elements of syntactic categories to elements of semantic categories
- To define the semantics of IMP, we need semantic functions for
 - Arithmetic expressions (syntactic category Aexp)
 - Boolean expressions (syntactic category Bexp)
 - Statements (syntactic category Stm)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



- The meaning of an expression depends on the values bound to the variables that occur in it
- A state associates a value to each variable

State : Var \rightarrow Val

• We represent a state σ as a finite function

 $\sigma = \{x_1 \mapsto v_1, x_2 \mapsto v_2, \dots, x_n \mapsto v_n\}$

where x_1, x_2, \ldots, x_n are different elements of Var and v_1, v_2, \ldots, v_n are elements of Val.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Semantics of Arithmetic Expressions

The semantic function

 $\mathcal{A}:\mathsf{Aexp} o\mathsf{State} o\mathsf{Val}$

maps an arithmetic expression e and a state σ to a value $\mathcal{A}[\![e]\!]\sigma$

$$\begin{split} \mathcal{A}[\![x]\!]\sigma &= \sigma(x) \\ \mathcal{A}[\![i]\!]\sigma &= i & \text{for } i \in \mathbb{Z} \\ \mathcal{A}[\![e_1 \ op \ e_2]\!]\sigma &= \mathcal{A}[\![e_1]\!]\sigma \ \overline{op} \ \mathcal{A}[\![e_2]\!]\sigma & \text{for } op \in \text{Op} \end{split}$$

 \overline{op} is the operation Val imes Val ightarrow Val corresponding to op

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Semantics of Boolean Expressions

The semantic function

 $\mathcal{B}: \mathsf{Bexp} o \mathsf{State} o \mathsf{Bool}$

maps a boolean expression b and a state σ to a truth value $\mathcal{B}[\![b]\!]\sigma$

$$\mathcal{B}\llbracket e_1 \ op \ e_2 \rrbracket \sigma = \begin{cases} tt & \text{if } \mathcal{A}\llbracket e_1 \rrbracket \sigma \ \overline{op} \ \mathcal{A}\llbracket e_2 \rrbracket \sigma \\ ff & \text{otherwise} \end{cases}$$

 $\mathit{op} \in \mathsf{RelOp}$ and $\overline{\mathit{op}}$ is the relation $\mathsf{Val} \times \mathsf{Val}$ corresponding to op

Boolean Expressions (cont'd)

$$\mathcal{B}\llbracket b_1 \text{ or } b_2 \rrbracket \sigma = \begin{cases} tt & \text{if } \mathcal{B}\llbracket b_1 \rrbracket \sigma = tt \text{ or } \mathcal{B}\llbracket b_2 \rrbracket \sigma = tt \\ ff & \text{otherwise} \end{cases}$$
$$\mathcal{B}\llbracket b_1 \text{ and } b_2 \rrbracket \sigma = \begin{cases} tt & \text{if } \mathcal{B}\llbracket b_1 \rrbracket \sigma = tt \text{ and } \mathcal{B}\llbracket b_2 \rrbracket \sigma = tt \\ ff & \text{otherwise} \end{cases}$$
$$\mathcal{B}\llbracket \text{not } b \rrbracket \sigma = \begin{cases} tt & \text{if } \mathcal{B}\llbracket b \rrbracket \sigma = ff \\ ff & \text{otherwise} \end{cases}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Operational Semantics of Statements

Evaluation of an expression in a state yields a value

$$x + 2 * y$$

 $\mathcal{A} : \mathsf{Aexp} \to \mathsf{State} \to \mathsf{Val}$

Execution of a statement modifies the state

 Operational semantics describe how the state is modified during the execution of a statement

Big-Step and Small-Step Semantics

- Big-step semantics describe how the overall results of the executions are obtained
 - Natural semantics
- Small-step semantics describe how the individual steps of the computations take place
 - Structural operational semantics
 - Abstract state machines

Transition Systems

- ▶ A transition system is a tuple $(\Gamma, T, \triangleright)$
 - Γ : a set of configurations
 - T: a set of terminal configurations, $T \subseteq \Gamma$
 - \triangleright : a transition relation, $\triangleright \subseteq \Gamma \times \Gamma$
- Example: Finite automaton

$$\begin{array}{ll} \Gamma & = \{ \langle w, S \rangle \mid w \in \{a, b, c\}^*, S \in \{1, 2, 3, 4\} \} \\ T & = \{ \langle e, S \rangle \mid S \in \{1, 2, 3, 4\} \} \\ \rhd & = \{ (\langle aw, 1 \rangle \rightarrow \langle w, 2 \rangle), (\langle aw, 1 \rangle \rightarrow \langle w, 3 \rangle), \\ (\langle bw, 2 \rangle \rightarrow \langle w, 4 \rangle), (\langle cw, 3 \rangle \rightarrow \langle w, 4 \rangle) \} \end{array}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Transitions in Natural Semantics

- ▶ Two types of configurations for operational semantics
 - 1. $\langle s,\sigma\rangle$, which represents that the statement s is to be executed in state σ
 - 2. σ , which represents a terminal state
- \blacktriangleright The transition relation \rightarrow describes how executions take place
 - Typical transition: $\langle s, \sigma \rangle \rightarrow \sigma'$
 - Example: $\langle \texttt{skip}, \sigma \rangle \rightarrow \sigma$

$$\begin{split} \Gamma &= \{ \langle s, \sigma \rangle \mid s \in \mathsf{Stm}, \sigma \in \mathsf{State} \} \cup \mathsf{State} \\ T &= \mathsf{State} \\ &\to \subseteq \{ \langle s, \sigma \rangle \mid s \in \mathsf{Stm}, \sigma \in \mathsf{State} \} \times \mathsf{State} \end{split}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Rules

Transition relation is specified by rules

$$rac{arphi_1,\ldots,arphi_n}{\psi}$$
 if Condition

where $\varphi_1, \ldots, \varphi_n$ and ψ are transitions

Meaning of the rule

If *Condition* and $\varphi_1, \ldots, \varphi_n$ then ψ

Terminology

- $\varphi_1, \ldots, \varphi_n$ are called **premises**
- ψ is called **conclusion**
- A rule without premises is called axiom

Notation

- ▶ Updating States: $\sigma[y \mapsto v]$ is the function that
 - overrides the association of y in σ by $y\mapsto v$ or
 - adds the new association $y \mapsto v$ to σ

$$(\sigma[y\mapsto v])(x) = \left\{ \begin{array}{ll} v & \text{if } x=y \\ \sigma(x) & \text{if } x\neq y \end{array} \right.$$

Natural Semantics of IMP

skip does not modify the state

 $\langle \mathtt{skip}, \sigma \rangle \to \sigma$

• x := e assigns the value of e to variable e

$$\overline{\langle x : = e, \sigma \rangle} \to \sigma[x \mapsto \mathcal{A}\llbracket e \rrbracket \sigma]$$

- ▶ Sequential composition s_1 ; s_2
 - First, s_1 is executed in state σ , leading to σ'
 - Then s_2 is executed in state σ'

$$\frac{\langle s_1, \sigma \rangle \to \sigma', \langle s_2, \sigma' \rangle \to \sigma''}{\langle s_1; s_2, \sigma \rangle \to \sigma''}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Natural Semantics of IMP (cont'd)

- ▶ Conditional statement if b then s_1 else s_2 end
 - If b holds, s_1 is executed
 - If b does not hold, s2 is executed

$$\frac{\langle s_1,\sigma\rangle\to\sigma'}{\langle \texttt{if}\ b\ \texttt{then}\ s_1\ \texttt{else}\ s_2\ \texttt{end},\sigma\rangle\to\sigma'} \quad \text{if}\ \mathcal{B}[\![b]\!]\sigma=tt$$

$$\frac{\langle s_2, \sigma \rangle \to \sigma'}{\langle \texttt{if } b \texttt{ then } s_1 \texttt{ else } s_2 \texttt{ end}, \sigma \rangle \to \sigma'} \quad \texttt{if } \mathcal{B}[\![b]\!] \sigma = f\!f$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Natural Semantics of IMP (cont'd)

- ▶ Loop statement while *b* do *s* end
 - If b holds, s is executed once, leading to state σ^\prime
 - Then the whole while-statement is executed again σ^\prime

$$\frac{\langle s,\sigma\rangle\to\sigma', \langle \texttt{while}\; b\;\texttt{do}\; s\;\texttt{end},\sigma'\rangle\to\sigma''}{\langle\texttt{while}\; b\;\texttt{do}\; s\;\texttt{end},\sigma\rangle\to\sigma''} \quad \text{if}\; \mathcal{B}[\![b]\!]\sigma=tt$$

- If *b* does not hold, the while-statement does not modify the state

$$\overline{\langle \texttt{while } b \texttt{ do } s \texttt{ end}, \sigma \rangle \to \sigma} \quad \text{if } \mathcal{B}[\![b]\!]\sigma = f\!f$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Rule Instantiations

- Rules are actually rule schemes
 - Meta-variables stand for arbitrary variables, expressions, statements, states, etc.
 - To apply rules, they have to be **instantiated** by selecting particular variables, expressions, statements, states, etc.
- Assignment rule scheme

$$\langle x : = e, \sigma \rangle \to \sigma[x \mapsto \mathcal{A}\llbracket e \rrbracket \sigma]$$

Assignment rule instance

$$\langle \mathbf{v}:=\mathbf{v+1}, \{\mathbf{v}\mapsto 3\}\rangle \rightarrow \{\mathbf{v}\mapsto 4\}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Derivations: Example

What is the final state if statement

is executed in state { $\mathbf{x} \mapsto 5, \mathbf{y} \mapsto 7, \mathbf{z} \mapsto 0$ } (abbreviated by [5, 7, 0])?

$$\begin{array}{c} \langle \mathbf{z} := \mathbf{x}, [5,7,0] \rangle \rightarrow [5,7,5], \langle \mathbf{x} := \mathbf{y}, [5,7,5] \rangle \rightarrow [7,7,5] \\ \hline \langle \mathbf{z} := \mathbf{x}; \ \mathbf{x} := \mathbf{y}, [5,7,0] \rangle \rightarrow [7,7,5] \\ \hline \langle \mathbf{y} := \mathbf{z}, [7,7,5] \rangle \rightarrow [7,5,5] \\ \hline \langle \mathbf{z} := \mathbf{x}; \ \mathbf{x} := \mathbf{y}; \ \mathbf{y} := \mathbf{z}, [5,7,0] \rangle \rightarrow [7,5,5] \end{array}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Derivation Trees

- ▶ Rule instances can be combined to derive a transition $\langle s, \sigma \rangle \rightarrow \sigma'$
- The result is a derivation tree
 - The root is the transition $\langle s,\sigma\rangle\to\sigma'$
 - The leaves are axiom instances
 - The internal nodes are conclusions of rule instances and have the corresponding premises as immediate children
- The conditions of all instantiated rules must be satisfied
- There can be several derivations for one transition (non-deterministic semantics)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Big step semantics

Termination

- For the execution of a statement s in state σ
 - terminates iff there is a state σ' such that $\langle s, \sigma \rangle \rightarrow \sigma'$
 - **loops** iff there is no state σ' such that $\langle s, \sigma \rangle \rightarrow \sigma'$
- A statement s
 - always terminates if the execution in a state σ terminates for all choices of σ
 - always loops if the execution in a state σ loops for all choices of σ

Big step semantics

Semantic Equivalence

Definition

Two statements s_1 and s_2 are semantically equivalent (denoted by $s_1 \equiv s_2$) if the following property holds for all states σ, σ' : $\langle s_1, \sigma \rangle \rightarrow \sigma' \Leftrightarrow \langle s_2, \sigma \rangle \rightarrow \sigma'$

Example

while b do s end \equiv if b then s; while b do s end

Structural Operational Semantics

- The emphasis is on the individual steps of the execution
 - Execution of assignments
 - Execution of tests
- Describing small steps of the execution allows one to express the order of execution of individual steps
 - Interleaving computations
 - Evaluation order for expressions (not shown in the course)
- Describing always the next small step allows one to express properties of looping programs

Transitions in SOS

- The configurations are the same as for natural semantics
- \blacktriangleright The transition relation \rightarrow_1 can have two forms
- ⟨s, σ⟩ →₁ ⟨s', σ'⟩: the execution of s from σ is not completed and the remaining computation is expressed by the intermediate configuration ⟨s', σ'⟩
- ⟨s, σ⟩ →₁ σ': the execution of s from σ has terminated and the final state is σ'
- A transition (s, σ) →₁ γ describes the first step of the execution of s from σ

Transition System

$$\begin{split} \Gamma &= \{ \langle s, \sigma \rangle \mid s \in \mathsf{Stm}, \sigma \in \mathsf{State} \} \cup \mathsf{State} \\ T &= \mathsf{State} \\ &\rightarrow_1 \subseteq \{ \langle s, \sigma \rangle \mid s \in \mathsf{Stm}, \sigma \in \mathsf{State} \} \times \Gamma \end{split}$$

▶ We say that $\langle s, \sigma \rangle$ is stuck if there is no γ such that $\langle s, \sigma \rangle \rightarrow_1 \gamma$

SOS of IMP

skip does not modify the state

 $\langle \mathtt{skip}, \sigma \rangle \to_1 \sigma$

• x := e assigns the value of e to variable x

$$\langle x := e, \sigma \rangle \to_1 \sigma[x \mapsto \mathcal{A}\llbracket e \rrbracket \sigma]$$

- skip and assignment require only one step
- Rules are analogous to natural semantics

$$\langle \texttt{skip}, \sigma \rangle \to \sigma$$

$$\langle x := e, \sigma \rangle \to \sigma[x \mapsto \mathcal{A}\llbracket e \rrbracket \sigma]$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

SOS of IMP: Sequential Composition

- Sequential composition s_1 ; s_2
- ► First step of executing s₁; s₂ is the first step of executing s₁
- ▶ s₁ is executed in one step

$$\frac{\langle s_1, \sigma \rangle \to_1 \sigma'}{\langle s_1; s_2, \sigma \rangle \to_1 \langle s_2, \sigma' \rangle}$$

▶ s₁ is executed in several steps

$$\frac{\langle s_1, \sigma \rangle \to_1 \langle s'_1, \sigma' \rangle}{\langle s_1; s_2, \sigma \rangle \to_1 \langle s'_1; s_2, \sigma' \rangle}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

SOS of IMP: Conditional Statement

The first step of executing if b then s₁ else s₂ end is to determine the outcome of the test and thereby which branch to select

$$\langle \texttt{if } b \texttt{ then } s_1 \texttt{ else } s_2 \texttt{ end}, \sigma \rangle \to_1 \langle s_1, \sigma \rangle \quad \texttt{if } \mathcal{B}[\![b]\!] \sigma = tt$$

 $\langle \texttt{if } b \texttt{ then } s_1 \texttt{ else } s_2 \texttt{ end}, \sigma \rangle \rightarrow_1 \langle s_2, \sigma \rangle \quad \texttt{if } \mathcal{B}\llbracket b
rbracket \sigma = ff$

Alternative for Conditional Statement

► The first step of executing if b then s₁ else s₂ end is the first step of the branch determined by the outcome of the test

$$\frac{\langle s_1, \sigma \rangle \to_1 \sigma'}{\texttt{f } b \texttt{ then } s_1 \texttt{ else } s_2 \texttt{ end}, \sigma \rangle \to_1 \sigma'} \quad \text{if } \mathcal{B}[$$

$$\mathcal{B}\llbracket b \rrbracket \sigma = tt$$

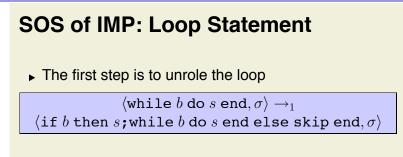
 $\frac{\langle s_1, \sigma \rangle \to_1 \langle s'_1, \sigma' \rangle}{\langle \texttt{if } b \texttt{ then } s_1 \texttt{ else } s_2 \texttt{ end}, \sigma \rangle \to_1 \langle s'_1, \sigma' \rangle} \quad \text{if } \mathcal{B}\llbracket b \rrbracket \sigma = tt$

and two similar rules for $\mathcal{B}[\![b]\!]\sigma=\mathit{f}\!f$

- Alternatives are equivalent for IMP
- Choice is important for languages with parallel execution

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ίi



Recall that while b do s end and if b then s; while b do s end else skip end are semantically equivalent in the natural semantics

Alternatives for Loop Statement

The first step is to decide the outcome of the test and thereby whether to unrole the body of the loop or to terminate

$$\begin{array}{l} \langle \texttt{while} \ b \ \texttt{do} \ s \ \texttt{end}, \sigma \rangle \rightarrow_1 \langle s \ \texttt{; while} \ b \ \texttt{do} \ s \ \texttt{end}, \sigma \rangle \\ \texttt{if} \ \mathcal{B}[\![b]\!]\sigma = tt \end{array} \end{array}$$

 $\langle \texttt{while } b \texttt{ do } s \texttt{ end}, \sigma \rangle \rightarrow_1 \sigma \quad \text{if } \mathcal{B}\llbracket b \rrbracket \sigma = ff$

- Or combine with the alternative semantics of the conditional statement
- Alternatives are equivalent for IMP

jössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Derivation Sequences

- A derivation sequence of a statement s starting in state σ is a sequence γ₀, γ₁, γ₂,..., where
 - $\gamma_0 = \langle s, \sigma \rangle$
 - $\gamma_i \rightarrow_1 \gamma_{i+1}$ for $0 \le i$
- A derivation sequence is either finite or infinite
 - Finite derivation sequences end with a configuration that is either a terminal configuration or a stuck configuration
- Notation
 - $\gamma_0 \to_1^i \gamma_i$ indicates that there are i steps in the execution from γ_0 to γ_i
 - $\gamma_0 \rightarrow_1^* \gamma_i$ indicates that there is a finite number of steps in the execution from γ_0 to γ_i
 - $\gamma_0 \rightarrow_1^i \gamma_i$ and $\gamma_0 \rightarrow_1^* \gamma_i$ need not be derivation sequences

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Derivation Sequences: Example

What is the final state if statement

z:=x; x:=y; y:=z

is executed in state $\{\mathbf{x} \mapsto 5, \mathbf{y} \mapsto 7, \mathbf{z} \mapsto 0\}$?

$$\begin{array}{l} \langle \mathbf{z} := \mathbf{x}; \ \mathbf{x} := \mathbf{y}; \ \mathbf{y} := \mathbf{z}, \{ \mathbf{x} \mapsto 5, \mathbf{y} \mapsto 7, \mathbf{z} \mapsto 0 \} \rangle \\ \rightarrow_1 \langle \mathbf{x} := \mathbf{y}; \ \mathbf{y} := \mathbf{z}, \{ \mathbf{x} \mapsto 5, \mathbf{y} \mapsto 7, \mathbf{z} \mapsto 5 \} \rangle \\ \rightarrow_1 \langle \mathbf{y} := \mathbf{z}, \{ \mathbf{x} \mapsto 7, \mathbf{y} \mapsto 7, \mathbf{z} \mapsto 5 \} \rangle \\ \rightarrow_1 \{ \mathbf{x} \mapsto 7, \mathbf{y} \mapsto 5, \mathbf{z} \mapsto 5 \} \end{array}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Derivation Trees

- Derivation trees explain why transitions take place
- For the first step

$$\langle z := x; x := y; y := z, \sigma \rangle \rightarrow_1 \langle x := y; y := z, \sigma[z \mapsto 5] \rangle$$

the derivation tree is

$$\begin{array}{c} \langle \mathbf{z} := \mathbf{x}, \sigma \rangle \to_1 \sigma[\mathbf{z} \mapsto 5] \\ \hline \langle \mathbf{z} := \mathbf{x}; \ \mathbf{x} := \mathbf{y}, \sigma \rangle \to_1 \langle \mathbf{x} := \mathbf{y}, \sigma[\mathbf{z} \mapsto 5] \rangle \\ \hline \langle \mathbf{z} := \mathbf{x}; \ \mathbf{x} := \mathbf{y}; \ \mathbf{y} := \mathbf{z}, \sigma \rangle \to_1 \langle \mathbf{x} := \mathbf{y}; \ \mathbf{y} := \mathbf{z}, \sigma[\mathbf{z} \mapsto 5] \rangle \end{array}$$

z:=x; (x:=y; y:=z) would lead to a simpler tree with only one rule application

Peter Müller-Semantics of Programming Languages, SS04 - p.111

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Derivation Sequences and Trees

- Natural (big-step) semantics
 - The execution of a statement (sequence) is described by one big transition
 - The big transition can be seen as trivial derivation sequence with exactly one transition
 - The derivation tree explains why this transition takes place
- Structural operational (small-step) semantics
 - The execution of a statement (sequence) is described by one or more transitions
 - Derivation sequences are important
 - Derivation trees justify each individual step in a derivation sequence

Termination

- \blacktriangleright The execution of a statement s in state σ
 - terminates iff there is a finite derivation sequence starting with $\langle s,\sigma\rangle$
 - loops iff there is an infinite derivation sequence starting with $\langle s,\sigma\rangle$
- \blacktriangleright The execution of a statement s in state σ
 - terminates successfully if $\langle s, \sigma \rangle \rightarrow_1^* \sigma'$
 - In IMP, an execution terminates successfully iff it terminates (no stuck configurations)

Comparison: Summary

Natural Semantics

- Local variable declarations and procedures can be modeled easily
- No distinction between abortion and looping
- Non-determinism suppresses looping (if possible)
- Parallelism cannot be modeled

Structural Operational Semantics

- Local variable declarations and procedures require modeling the execution stack
- Distinction between abortion and looping
- Non-determinism does not suppress looping
- ▶ Parallelism can be modeled

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Motivation

- Operational semantics is at a rather low abstraction level
 - Some arbitrariness in choice of rules (e.g., size of steps)
 - Syntax involved in description of behavior
- Semantic equivalence in natural semantics

$$\langle s_1, \sigma \rangle \to \sigma' \Leftrightarrow \langle s_2, \sigma \rangle \to \sigma'$$

- Idea
 - We can describe the behavior on an abstract level if we are only interested in equivalence
 - We specify only the partial function on states

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Approach

- Denotational semantics describes the effect of a computation
- A semantic function is defined for each syntactic construct
 - maps syntactic construct to a mathematical object, often a function
 - the mathematical object describes the effect of executing the syntactic construct

Compositionality

- In denotational semantics, semantic functions are defined compositionally
- There is a semantic clause for each of the basis elements of the syntactic category
- For each method of constructing a composite element (in the syntactic category) there is a semantic clause defined in terms of the semantic function applied to the immediate constituents of the composite element

Examples

▶ The semantic functions A : Aexp → State → Val and B : Bexp → State → Bool are denotational definitions

$$\begin{split} \mathcal{A}[\![x]\!]\sigma &= \sigma(x) \\ \mathcal{A}[\![i]\!]\sigma &= i & \text{for } i \in \mathbb{Z} \\ \mathcal{A}[\![e_1 \ op \ e_2]\!]\sigma &= \mathcal{A}[\![e_1]\!]\sigma \ \overline{op} \ \mathcal{A}[\![e_2]\!]\sigma & \text{for } op \in \text{Op} \end{split}$$

$$\mathcal{B}\llbracket e_1 \ op \ e_2 \rrbracket \sigma = \begin{cases} tt & \text{if } \mathcal{A}\llbracket e_1 \rrbracket \sigma \ \overline{op} \ \mathcal{A}\llbracket e_2 \rrbracket \sigma \\ ff & \text{otherwise} \end{cases}$$

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Counterexamples

► The semantic functions S_{NS} and S_{SOS} are not denotational definitions because they are not defined compositionally

$$\begin{split} \mathcal{S}_{NS} : \mathsf{Stm} &\to (\mathsf{State} \hookrightarrow \mathsf{State}) \\ \mathcal{S}_{NS}[\![s]\!] \sigma = \left\{ \begin{array}{ll} \sigma' & \text{if } \langle s, \sigma \rangle \to \sigma' \\ & \text{undefined} & \text{otherwise} \end{array} \right. \end{split}$$

$$\begin{split} \mathcal{S}_{SOS} &: \mathsf{Stm} \to (\mathsf{State} \hookrightarrow \mathsf{State}) \\ \mathcal{S}_{SOS}[\![s]\!] \sigma &= \left\{ \begin{array}{ll} \sigma' & \text{if } \langle s, \sigma \rangle \to_1^* \sigma' \\ & \text{undefined otherwise} \end{array} \right. \end{split}$$

Eldgenössische Technische Hochschule Zürich Swiss Federal institute of Technology Zurich

Semantic Functions		
\blacktriangleright The effect of executing a statement is described by the partial function \mathcal{S}_{DS}		
	$\mathcal{S}_{DS}: Stm o (State \hookrightarrow State)$	
Partiality is needed to model non-termination		

► The effects of evaluating expressions is defined by the functions A and B

Direct Style Semantics of IMP

skip does not modify the state

 $\mathcal{S}_{DS}[\mathbf{skip}] = id$ $id: \mathsf{State} o \mathsf{State}$ $id(\sigma) = \sigma$

• x := e assigns the value of e to variable x

$$\mathcal{S}_{DS}\llbracket x := e \rrbracket \sigma = \sigma [x \mapsto \mathcal{A}\llbracket e \rrbracket \sigma]$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Direct Style Semantics of IMP (cont'd)

▶ Sequential composition s_1 ; s_2

$$\mathcal{S}_{DS}\llbracket s_1; s_2
rbracket = \mathcal{S}_{DS}\llbracket s_2
rbracket \circ \mathcal{S}_{DS}\llbracket s_1
rbracket$$

- ► Function composition is defined in a strict way
 - If one of the functions is undefined on the given argument then the composition is undefined

$$(f \circ g)\sigma = \left\{ \begin{array}{ll} f(g(\sigma)) & \text{if } g(\sigma) \neq \text{undefined} \\ & \text{and } f(g(\sigma)) \neq \text{undefined} \\ & \text{undefined} & \text{otherwise} \end{array} \right.$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Direct Style Semantics of IMP (cont'd)

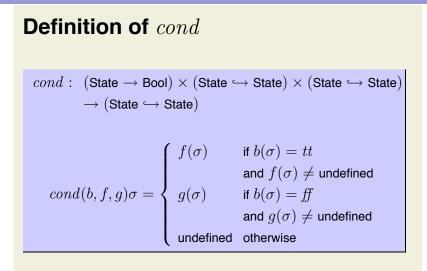
▶ Conditional statement if b then s_1 else s_2 end

 $\begin{aligned} \mathcal{S}_{DS}\llbracket \texttt{if} \ b \ \texttt{then} \ s_1 \ \texttt{else} \ s_2 \ \texttt{end} \rrbracket = \\ cond(\mathcal{B}\llbracket b \rrbracket, \mathcal{S}_{DS}\llbracket s_1 \rrbracket, \mathcal{S}_{DS}\llbracket s_2 \rrbracket) \end{aligned}$

- ▶ The function *cond*
 - takes the semantic functions for the condition and the two statements
 - when supplied with a state selects the second or third argument depending on the first

 $\begin{array}{l} \mathit{cond}: (\mathsf{State} \to \mathsf{Bool}) \times (\mathsf{State} \hookrightarrow \mathsf{State}) \times (\mathsf{State} \hookrightarrow \mathsf{State}) \to \\ (\mathsf{State} \hookrightarrow \mathsf{State}) \end{array}$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Semantics of Loop: Observations

- Defining the semantics of while is difficult
- ► The semantics of while b do s end must be equal to if b then s; while b do s end else skip end
- This requirement yields:

$$\mathcal{S}_{DS}\llbracket \texttt{while } b \texttt{ do } s \texttt{ end} \rrbracket = \\ cond(\mathcal{B}\llbracket b \rrbracket, \mathcal{S}_{DS}\llbracket \texttt{while } b \texttt{ do } s \texttt{ end} \rrbracket \circ \mathcal{S}_{DS}\llbracket s \rrbracket, id)$$

 We cannot use this equation as a definition because it is not compositional

Functionals and Fixed Points

 $\mathcal{S}_{DS}\llbracket \texttt{while } b \texttt{ do } s \texttt{ end} \rrbracket = \\ cond(\mathcal{B}\llbracket b \rrbracket, \mathcal{S}_{DS}\llbracket \texttt{while } b \texttt{ do } s \texttt{ end} \rrbracket \circ \mathcal{S}_{DS}\llbracket s \rrbracket, id)$

- ▶ The above equation has the form g = F(g)
 - $g = \mathcal{S}_{DS}[\![\texttt{while} \ b \ \texttt{do} \ s \ \texttt{end}]\!]$
 - $F(g) = cond(\mathcal{B}\llbracket b \rrbracket, g \circ \mathcal{S}_{DS}\llbracket s \rrbracket, id)$
- ► F is a functional (a function from functions to functions)
- ► S_{DS} [[while b do s end]] is a fixed point of the functional F

Direct Style Semantics of IMP: Loops

▶ Loop statement while *b* do *s* end

$$\begin{split} \mathcal{S}_{DS}[\![\texttt{while } b \text{ do } s \text{ end}]\!] &= FIX \ F \\ \texttt{where } F(g) &= cond(\mathcal{B}[\![b]\!], g \circ \mathcal{S}_{DS}[\![s]\!], id) \end{split}$$

▶ We write *FIX F* to denote the fixed point of the functional *F*:

$$FIX : ((State \hookrightarrow State) \to (State \hookrightarrow State))$$
$$\to (State \hookrightarrow State)$$

► This definition of S_{DS} [[while b do s end]] is compositional

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Example

Consider the statement

while x # 0 do skip end

The functional for this loop is defined by

$$\begin{split} F'(g)\sigma &= cond(\mathcal{B}[\![\mathbf{x\#0}]\!], g \circ \mathcal{S}_{DS}[\![\mathbf{skip}]\!], id)\sigma \\ &= cond(\mathcal{B}[\![\mathbf{x\#0}]\!], g \circ id, id)\sigma \\ &= cond(\mathcal{B}[\![\mathbf{x\#0}]\!], g, id)\sigma \\ &= \begin{cases} g(\sigma) & \text{if } \sigma(x) \neq 0 \\ \sigma & \text{if } \sigma(x) = 0 \end{cases} \end{split}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The function

$$g_1(\sigma) = \begin{cases} \text{ undefined } \text{ if } \sigma(x) \neq 0 \\ \sigma & \text{ if } \sigma(x) = 0 \end{cases}$$

is a fixed point of F'

• The function $g_2(\sigma) =$ undefined is not a fixed point for F'

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

$$\begin{split} \mathcal{S}_{DS}[\![\texttt{while } b \text{ do } s \text{ end}]\!] &= FIX \ F \\ \text{where } F(g) = cond(\mathcal{B}[\![b]\!], g \circ \mathcal{S}_{DS}[\![s]\!], id) \end{split}$$

- ► The function S_{DS} [while b do s end] is well-defined if FIXF defines a unique fixed point for the functional F
 - There are functionals that have more than one fixed point
 - There are functionals that have no fixed point at all

Examples

 F' from the previous example has more than one fixed point

$$F'(g)\sigma = \begin{cases} g(\sigma) & \text{if } \sigma(x) \neq 0\\ \sigma & \text{otherwise} \end{cases}$$

- Every function g': State \hookrightarrow State with $g'(\sigma)=\sigma$ if $\sigma(x)=0$ is a fixed point for F'
- ▶ The functional F_1 has no fixed point if $g_1 \neq g_2$

$$F_1(g) = \begin{cases} g_1 & \text{if } g = g_2 \\ g_2 & \text{otherwise} \end{cases}$$

EIGenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Hoare Logic

Hoare axioms and rules for simple while languages

- { P } skip { P }
- { P[x/e] } x := e { P }
- $\blacktriangleright \{P\} c1 \{R\}, \{R\} c2 \{Q\} ==> \{P\} c1; c2 \{Q\}$
- ▶ { P \land b } c1 { Q } , { P \land !b } c2 { Q } ==>

 $\{ \ P \ \}$ if b then c1 else c2 $\{ \ Q \ \}$

《曰》《問》《曰》《曰》 [] []

- ▶ { INV \land b } c { INV } ==> { INV } while b do c { INV \land !b }
- ▶ $P \rightarrow P'$, { P' } **c** { Q' }, Q' → Q ==> { P } **c** { Q }
- Semantics of the Hoare Logic:
- ▶ { P } **c** { Q } == (ALL s. (P(s) \land s -c-> t) -> P(t))

Hoare Logic

Hoare Logic

Example { 0 <= x } c := 0; sq := 1; WHILE sq <= x D0 (*INV=(c*c <= x&sq=(c+1)*(c+1))*) c := c + 1; sq := sq + (2*c + 1); { c*c <= x & x < (c+1)*(c+1) } </pre>

Demo: MyHoare.thy

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <