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Introduction to Programming Language Semantics

Programming Language Semantics

Software Foundations Book
» Material: http://sct.ethz.ch/teaching/ss2004/sps/lecture.html
PM intro
PM bigstep semantics
Demo MyWhile.thy
PM smallstep semantics
Denotational semantics
Axiomatic semantics: Hoare Logic.
Demo MyHoare.thy
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Introduction to Programming Language Semantics

Why Formal Semantics?

» Programming language design
- Formal verification of language properties
- Reveal ambiguities
- Support for standardization

» Implementation of programming languages
- Compilers
- Interpreters
- Portability

» Reasoning about programs
- Formal verification of program properties
- Extended static checking

Peter Miiller—Semantics of Programming Lanquages, SS04-— 0.7
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Introduction to Programming Language Semantics

Language Properties

» Type safety:
In each execution state, a variable of type T holds a
value of T or a subtype of T

» Very important question for language designers

» Example:
If String is a subtype of Object, should String[ ] be
a subtype of Object[]1?

Peter Miiller—Semantics of Programming Lanquages, SS04-— 0.8
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Introduction to Programming Language Semantics

Language Properties

» Type safety:
In each execution state, a variable of type T holds a
value of T or a subtype of T

» Very important question for language designers

» Example:
If String is a subtype of Object, should string[ ] be
a subtype of Object[ 17

void m(Object[] oa) {
oa[0]=new Integer(5);

Peter Muller—Semantics of Programming Lanauages, SS04-— 0.8
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Introduction to Programming Language Semantics

Language Definition

Dynamic Semantics

Static Semantics

Syntax

» State of a program execution
» Transformation of states

» Type rules
» Name resolution

» Syntax rules, defined by
grammar

Peter Miller—Semantics of Programming l.anguages, SS04 —p 12
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Compilation and Execution

Abstract
Syntax Tree

Annotated Abstract
Syntax Tree

ETH

e o e o e Tl Peter Miiller—Semantics of Programming l.anguages, SS04 -p 13 -
______________________________________________________________________________________________|
Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic

533



Application: Programming Language Semantics
0O00000@0000000000000000

Introduction to Programming Language Semantics

Three Kinds of Semantics

» Operational semantics
- Describes execution on an abstract machine
- Describes how the effect is achieved

» Denotational semantics

- Programs are regarded as functions in a
mathematical domain

- Describes only the effect, not how it is obtained

» Axiomatic semantics

- Specifies properties of the effect of executing a
program are expressed

- Some aspects of the computation may be ignored
ETH

Peter Milller—Semantics of Programming l.anguages, SS04 —p 14
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Introduction to Programming Language Semantics

Operational Semantics

y = 1;
while not(x=1) do ( y := x*y; x := x-1 )

» “First we assign 1 to y, then we test whether x is 1 or
not. If it is then we stop and otherwise we update y
to be the product of x and the previous value of y
and then we decrement x by 1. Now we test whether
the new value of x is 1 or not...”

» Two kinds of operational semantics
- Natural Semantics
- Structural Operational Semantics

Peter Miller—Semantics of Programming l.anguages, SS04 —p 15
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Introduction to Programming Language Semantics

Denotational Semantics

y = 1;
while not(x=1) do ( y := x*y; x := x-1 )

» “The program computes a partial function from states
to states: the final state will be equal to the initial
state except that the value of x will be 1 and the
value of y will be equal to the factorial of the value of
x in the initial state”

» Two kinds of denotational semantics

- Direct Style Semantics
- Continuation Style Semantics

Peter Miller—Semantics of Programming l.anguages, SS04 —p 16
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Introduction to Programming Language Semantics

Axiomatic Semantics

y = 1;
while not(x=1) do ( y := x*y; x := x-1 )

» “If x=n holds before the program is executed then
y= n! will hold when the execution terminates (if it
terminates)”

» Two kinds of axiomatic semantics

- Partial correctness
- Total correctness

Peter Miller—Semantics of Programming l.anguages, SS04 —p 17
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Introduction to Programming Language Semantics

Abstraction
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Operational semantics

Denotational semantics

Axiomatic semantics

ETH

Eidgensssisehe Technische Hochsehule Z0rich
Swiss Federal Institute of Technolagy Zurich

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic
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Introduction to Programming Language Semantics

Selection Criteria

» Constructs of the » Application of the
programming language semantics
- Imperative - Understanding the
- Functional language
- Concurrent - Program verification
- Object-oriented - Prototyping
- Non-deterministic - Compiler
- Etc. construction
- Program analysis
- Etc.

Peter Miller—Semantics of Programming l.anguages, SS04 —p 19
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Introduction to Programming Language Semantics

The Language IMP

» Expressions
- Boolean and arithmetic expressions
- No side-effects in expressions
» Variables
- All variables range over integers
- All variables are initialized
- No global variables

» IMP does not include
- Heap allocation and pointers
- Variable declarations
- Procedures
- Concurrency

Peter Miller—Semantics of Programming l.anguages, SS04 — p 30
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Introduction to Programming Language Semantics

Syntax of IMP: Characters and Tokens
Characters

Letter ='A’...’zZ’|’a’ ... z"

Digit =’0"1'11’2"1’3"1°4’1°5’ 1’6’1’7 1’8’1’9’

Tokens

Ident = Letter { Letter | Digit }
Integer = Digit { Digit }
Var = Ident

Peter Miller—Semantics of Programming l.anguages, SS04 —p 31
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Introduction to Programming Language Semantics

Syntax of IMP: Expressions

Arithmetic expressions

Aexp = Aexp Op Aexp | Var | Integer
Op =+1"="1"*'1"/"| 'mod’

Boolean expressions

Bexp =Bexp ’or’ Bexp | Bexp 'and’ Bexp
| 'not’ Bexp | Aexp RelOp Aexp
Relop = ’=l | l#’ | ’<l | l<=’ | ’>l | !>=’

Peter Milller—Semantics of Programming l.anguages, SS04 — p 32
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Introduction to Programming Language Semantics

Syntax of IMP: Statemens

Stm

=’skip’

| Var ’: =" Aexp

| Stm ’;’ Stm

[’if’ Bexp 'then’ Stm ’else’ Stm ’end’
| 'while’ Bexp 'do’ Stm ’end’

Peter Miller—Semantics of Programming l.anguages, SS04 —p 33
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Introduction to Programming Language Semantics

Notation

Meta-variables (written in jtalic font)

x, Y, 2 for variables (Var)

e, €, e1, e5 for arithmetic expressions (Aexp)
b, by, by for boolean expressions (Bexp)
s, s, s1, sy for statements (Stm)

Keywords are written in typewriter font

Peter Miller—Semantics of Programming l.anguages, SS04 — p 34
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Introduction to Programming Language Semantics

Syntax of IMP: Example

end
ETH
e o e o e Tl Peter Miiller—Semantics of Programming |.anguages, SS04 —p 35
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Introduction to Programming Language Semantics

Semantic Categories

Syntactic category: Integer Semantic category: Val = Z

1] —— [5
Ton ] — [

» Semantic functions map elements of syntactic
categories to elements of semantic categories
» To define the semantics of IMP, we need semantic
functions for
- Arithmetic expressions (syntactic category Aexp)
- Boolean expressions (syntactic category Bexp)
- Statements (syntactic category Stm)

Peter Miller—Semantics of Programming l.anguages, SS04 —p 37
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Introduction to Programming Language Semantics

States
x+1 —

» The meaning of an expression depends on the
values bound to the variables that occur in it

» A state associates a value to each variable

| State : Var — Val |

» We represent a state ¢ as a finite function

‘U:{xlHvlax2'_>7)27---:xn'_>vn}‘

where z1, 2o, . .., x, are different elements of var and
vy, V9, . .., v, are elements of val.

Peter Miller—Semantics of Programming l.anguages, SS04 —p 38
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Introduction to Programming Language Semantics

Semantics of Arithmetic Expressions

The semantic function

‘ A : Aexp — State — Val ‘

maps an arithmetic expression e and a state ¢ to a value
Ale]o

Alz]o =o(x)
Ali]o = fori € Z
Aley op es]o = Alei]o op Afes]o for op € Op

op is the operation Val x Val — Val corresponding to op

Peter Miller—Semantics of Programming l.anguages, SS04 — p 39
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Introduction to Programming Language Semantics

Semantics of Boolean Expressions

The semantic function

‘ B : Bexp — State — Bool ‘

maps a boolean expression b and a state ¢ to a truth
value B[b]o

tt if A[[el]]a @ A[[@Q]]O’

Blei op es]loc =
levope2] ff otherwise

op € RelOp and op is the relation val x Vval corresponding
to op

Peter Miller—Semantics of Programming l.anguages, SS04 — p 40
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Introduction to Programming Language Semantics

Boolean Expressions (cont’d)

tt it B[bi]o = tt or Blbo]o = tt

ff otherwise

B[[bl or bQHJ = {

tt if B[bi]o = tt and B[bs]o = tt
ff otherwise

Bﬂbl and bg]]a' = {

it B[b]o = ff

it
ff otherwise

B[not b]o = {

Peter Miller—Semantics of Programming l.anguages, SS04 —p 41
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Big step semantics

Operational Semantics of Statements

» Evaluation of an expression in a state yields a value

 xraiy ]

‘ A : Aexp — State — Val |

» Execution of a statement modifies the state

‘ X 1= 2 *y |

» Operational semantics describe how the state is
modified during the execution of a statement

Peter Milller—Semantics of Programming l.anguages, SS04 —p 57
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Big step semantics

Big-Step and Small-Step Semantics

» Big-step semantics describe how the overall results
of the executions are obtained

- Natural semantics

» Small-step semantics describe how the individual
steps of the computations take place

- Structural operational semantics
- Abstract state machines

Peter Miller—Semantics of Programming l.anguages, SS04 — p 58
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Big step semantics

Transition Systems

» A transition system is a tuple (I", 7', >)
- T': a set of configurations
- T': a set of terminal configurations, T C T’
- >: a transition relation, >CT' x I

» Example: Finite automaton

I ={(w,S)|we{a,bc},Se{l,23,4}}

T ={(eS)|Se€{1,23,4}} <D<a:@\bA@
> = {(<aw7 1> - <w72>)7 ((awv 1> - <w7 3>)7 a

C
((bw, 2) = (w,4)), ((cw, 3) — (w,4))} @/

Peter Miller—Semantics of Programming l.anguages, SS04 — p 60
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Big step semantics

Transitions in Natural Semantics

» Two types of configurations for operational semantics

1. (s, o), which represents that the statement s is to be
executed in state o

2. o, which represents a terminal state
» The transition relation — describes how executions
take place
- Typical transition: (s,o) — o'
- Example: (skip,0) — o

I'={(s,0) | s € Stm, 0 € State} U State
T = State
—C {(s,0) | s € Stm, 0 € State} x State

Peter Milller—Semantics of Programming l.anguages, SS04 —p 61
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Big step semantics

Rules

» Transition relation is specified by rules

w it Condition

where ¢4, ..., , and ¢ are transitions
» Meaning of the rule

If Condition and ¢, ..., ¢, then ¢ |

» Terminology
- ¥1,...,p, are called premises
- 9 is called conclusion
- A rule without premises is called axiom

Peter Miller—Semantics of Programming l.anguages, SS04 — p 62
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Big step semantics

Notation

» Updating States: o[y — v] is the function that
- overrides the association of y in o by y — v or
- adds the new association y — v to o

v ife =1y

Ol @ =1 0 e

Peter Miller—Semantics of Programming l.anguages, SS04 —p 63
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Big step semantics

Natural Semantics of IMP

» skip does not modify the state

(skip,0) — 0

» x:=c assigns the value of e to variable ¢

(x:=e,0) — oz — Ale]o]

» Sequential composition s ; s9
- First, s, is executed in state o, leading to ¢’
- Then s, is executed in state o’

s1,0) — o' (s, 0" — o”
< 1, > 7< 2
(s1389,0) — "

Peter Miller—Semantics of Programming l.anguages, SS04 — p 64
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Big step semantics

Natural Semantics of IMP (cont’d)

» Conditional statement if b then s; else sy end

- If b holds, s; is executed
- If b does not hold, s, is executed

(s1,0) — 0o

(if b then s; else sy end,0) — o’

it B[b]o = tt

(s9,0) — o

(if b then s; else sy end,0) — 0

; itB[b]o = ff

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic

Peter Miller—Semantics of Programming l.anguages, SS04 — p 65
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Big step semantics

Natural Semantics of IMP (cont’d)

» Loop statement while b do s end
- If b holds, s is executed once, leading to state o’
- Then the whole while-statement is executed again o’

(s,0) — o', (while bdo s end,o’) — o” it B[b]o — t
(while bdo s end, o) — o -

- If b does not hold, the while-statement does not modify the
state

it B[b]o = ff

(while bdo send,o) — 0

Peter Miller—Semantics of Programming l.anguages, SS04 — p 66
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Big step semantics

Rule Instantiations

» Rules are actually rule schemes

- Meta-variables stand for arbitrary variables, expressions,
statements, states, etc.

- To apply rules, they have to be instantiated by selecting
particular variables, expressions, statements, states, etc.

» Assignment rule scheme

‘ (ri=e,0) — oz — Ale]o] ‘

» Assignment rule instance

(vi=v+1,{v>3}) > {v i 4} |

Peter Miller—Semantics of Programming l.anguages, SS04 —p 67
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Big step semantics

Derivations: Example

» What is the final state if statement

|z:=x; X:1=y; y:=z|

is executed in state {x — 5,y — 7,z — 0}
(abbreviated by [5,7,0])?

(z:=x,[5,7,0]) — [5,7,5],(x:=y,[5,7,5]) — [7,7,5]
(z:=x; x:=y,[5,7,0)) = [7

Peter Miller—Semantics of Programming l.anguages, SS04 — p 68

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic
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Big step semantics

Derivation Trees

» Rule instances can be combined to derive a
transition (s, o) — o’
» The result is a derivation tree
- The root is the transition (s, o) — o’
- The leaves are axiom instances

- The internal nodes are conclusions of rule instances and
have the corresponding premises as immediate children

» The conditions of all instantiated rules must be
satisfied

» There can be several derivations for one transition
(non-deterministic semantics)

Peter Miller—Semantics of Programming l.anguages, SS04 — p 69
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Big step semantics

Termination

» The execution of a statement s in state o
- terminates iff there is a state ¢’ such that (s,0) — o'
- loops iff there is no state ¢’ such that (s, o) — o’

» A statement s

- always terminates if the execution in a state o terminates
for all choices of o

- always loops if the execution in a state o loops for all
choices of o

Eidgensssische Technische Hochschule Zarich

Swiss Federal nstitute of Technology Zurich Peter Miller—Semantics of Programming l.anguages, SS04 —p 70
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Big step semantics

Semantic Equivalence

» Definition
Two statements s; and s, are semantically
equivalent (denoted by s; = s,) if the follow-
ing property holds for all states o, o’:

(s1,0) = o' & (s9,0) = 0’

» Example

while b do s end =
if b then s; while b do s end

Peter Milller—Semantics of Programming l.anguages, SS04 —p 72
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Structural Operational Semantics

» The emphasis is on the individual steps of the
execution

- Execution of assignments
- Execution of tests
» Describing small steps of the execution allows one to
express the order of execution of individual steps
- Interleaving computations
- Evaluation order for expressions (not shown in the course)

» Describing always the next small step allows one to
express properties of looping programs

Peter Miiller—Semantics of Programminga Languages, SS04 —».100
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Small step semantics

Transitions in SOS

» The configurations are the same as for natural
semantics

» The transition relation —; can have two forms

» (s,0) —1 (s',0'): the execution of s from ¢ is not
completed and the remaining computation is
expressed by the intermediate configuration (s’, o/)

» (s,0) —1 o’: the execution of s from ¢ has
terminated and the final state is ¢’

» A transition (s, o) — y describes the first step of
the execution of s from o

Peter Miiller—Semantics of Programmina Languages, SS04 —».101
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Small step semantics

Transition System

I'={(s,0) | s € Stm,0 € State} U State
T = State
—1C {(s,0) | s € Stm,0 € State} x '

» We say that (s, o) is stuck if there is no  such that
<5’ 0> =1 Y

Peter Miiller—Semantics of Programminga Languages, SS04 —».102

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic
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Small step semantics

SOS of IMP

» skip does not modify the state
‘ <Sklp7 0> —10 ‘

» x:=e assigns the value of e to variable x
‘ (x:=e,0) — oz — Ale]o] ‘

» skip and assignment require only one step

» Rules are analogous to natural semantics
‘ (skip,0) — o ‘

‘ (r:=e,0) — oz — Ale]o] ‘

Peter Miiller—Semantics of Programming Languages, SS04 —».103

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic

568



Application: Programming Language Semantics
O000@0000000000

Small step semantics

SOS of IMP: Sequential Composition

» Sequential composition s ; s9

» First step of executing s ; s is the first step of
executing s;
» s1 is executed in one step
(s1,0) —1 0
(515592,0) —1 (s9,0")

» s1 is executed in several steps
<517 U> =il <S/17 OJ>
(51752,0) —1 (s1i52,07)

Peter Miiller—Semantics of Programming Languages, SS04 —».104
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Small step semantics

SOS of IMP: Conditional Statement

» The first step of executing if b then s; else s, end
is to determine the outcome of the test and thereby
which branch to select

if b then s; else sy end, o) —; (s1,0) if B[b]o

[ i
‘ (1f b then s; else sy end, o) —1 (s2,0) ifB[b]o = ff ‘

Peter Miiller—Semantics of Programminga Languages, SS04 —».105
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Small step semantics

Alternative for Conditional Statement

» The first step of executing if b then s; else s, end
is the first step of the branch determined by the
outcome of the test

<81, O'> —1 0'/ . _
(if b then s; else sy end, o) — 0 it B[b]o =
(51,0) = <8/1,0/> . B
(if b then s; else sy end, o) — (s},0') it B[b]o = tt

and two similar rules for B[b]o = ff

» Alternatives are equivalent for IMP

» Choice is important for languages with parallel

execution
ETH

Peter Miller—Semantics of Programminga Languages, SS04 —».106
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Small step semantics

SOS of IMP: Loop Statement

» The first step is to unrole the loop

(while b do s end, o) —
(1f b then s;while b do s end else skip end, o)

» Recall that while b do s end and
if bthen s;while bdo s end else skip end are
semantically equivalent in the natural semantics

Peter Miiller—Semantics of Programminga Languages, SS04 —».107
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Small step semantics

Alternatives for Loop Statement

» The first step is to decide the outcome of the test and
thereby whether to unrole the body of the loop or to
terminate

(while bdo s end,o) —; (s;while b do s end, o)

if B[b]o = tt

‘ (while bdo s end,o) —1 0 if B[b]jo = ff ’

» Or combine with the alternative semantics of the
conditional statement

» Alternatives are equivalent for IMP

ETH

Peter Miiller—Semantics of Programminga Languages, SS04 —».108
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Small step semantics

Derivation Sequences

» A derivation sequence of a statement s starting in
state o is a sequence vy, v1,72,... , Where
- Y% = <8> U>
= Y 1 Vil for 0 S 7
» A derivation sequence is either finite or infinite
- Finite derivation sequences end with a configuration that is
either a terminal configuration or a stuck configuration
» Notation

- v —% 7; indicates that there are i steps in the execution
from ~, to ;

- Y —7 v indicates that there is a finite number of steps in
the execution from v, to 7;

- 7 —* v and v, —7 7; need not be derivation sequences

rich

Peter Miiller—Semantics of Programminga Languages, SS04 —».109
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Small step semantics

Derivation Sequences: Example

» What is the final state if statement

|z:=x; X:1=y; y:=z|

is executed in state {x — 5,y — 7,z — 0}?

(z:=x; x:=y; y:=2,{x—5y+— 7,2z~ 0})
—1 (x:=y; y:=2,{x—5,y+— 7,2~ 5})
—1 (y:=2z,{x—> 7,y — 7,2+ 5})

=1l {X'_)7aY'_>57z'_>5}

Peter Miiller—Semantics of Programminga Languages, SS04 —».110
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Small step semantics

Derivation Trees

» Derivation trees explain why transitions take place
» For the first step

(z:=x; x:=y; y:=2,0) = (X:=y; y:=2z,0[z — b|)

the derivation tree is

(z:=x%,0) —1 o[z — 5]
x:=y,0) — (x:=y,0[z — b))

y:=z,0) — (X:=y; y:=z,0[z — 5])

» z:=X; ( x:=y; y:=z ) would lead to a simpler
tree with only one rule application

Peter Miiller—Semantics of Programmina Languages, SS04 —n.111
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Small step semantics

Derivation Sequences and Trees

» Natural (big-step) semantics

- The execution of a statement (sequence) is described by
one big transition

- The big transition can be seen as trivial derivation
sequence with exactly one transition

- The derivation tree explains why this transition takes place
» Structural operational (small-step) semantics

- The execution of a statement (sequence) is described by
one or more transitions

- Derivation sequences are important

- Derivation trees justify each individual step in a derivation
sequence

Peter Miiller—Semantics of Programming Languages, SS04 —p.112
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Application: Programming Language Semantics
0000000000000 e0

Small step semantics

Termination

» The execution of a statement s in state o
- terminates iff there is a finite derivation sequence starting
with (s, o)
- loops iff there is an infinite derivation sequence starting
with (s, o)

» The execution of a statement s in state o

- terminates successfully if (s,0) —7 o’

- In IMP, an execution terminates successfully iff it
terminates (no stuck configurations)

Peter Miller—Semantics of Programminga Languages, SS04 —.113
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Small step semantics

Comparison: Summary

Natural Semantics Structural Operational Semantics

» Local variable declarations  » Local variable declarations
and procedures can be and procedures require
modeled easily modeling the execution stack

» No distinction between » Distinction between abortion
abortion and looping and looping

» Non-determinism » Non-determinism does not
suppresses looping (if suppress looping
possible)

» Parallelism cannot be » Parallelism can be modeled
modeled

Peter Miiller—Semantics of Programminga Languages, SS04 —n.134
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Application: Programming Language Semantics
®0000000000000000

Denotational semantics

Motivation

» Operational semantics is at a rather low abstraction
level

- Some arbitrariness in choice of rules (e.g., size of steps)
- Syntax involved in description of behavior

» Semantic equivalence in natural semantics

(s1,0) — 0’ & (s9,0) — o’

» ldea

- We can describe the behavior on an abstract level if we are
only interested in equivalence

- We specify only the partial function on states

Peter Miiller—Semantics of Programminga Languages, SS04 —».194
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Application: Programming Language Semantics
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Denotational semantics

Approach

» Denotational semantics describes the effect of a
computation

» A semantic function is defined for each syntactic
construct
- maps syntactic construct to a mathematical object, often a
function
- the mathematical object describes the effect of executing
the syntactic construct

Peter Miiller—Semantics of Programming Languages, SS04 —».195
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Denotational semantics

Compositionality

» In denotational semantics, semantic functions are
defined compositionally

» There is a semantic clause for each of the basis
elements of the syntactic category

» For each method of constructing a composite
element (in the syntactic category) there is a
semantic clause defined in terms of the semantic
function applied to the immediate constituents of
the composite element

Peter Miiller—Semantics of Programming Languages, SS04 —».196
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Denotational semantics

Examples

» The semantic functions A : Aexp — State — Val and
BB : Bexp — State — Bool are denotational definitions

Alz]o = o(x)
Ali]o i fori € Z
Aley op es]o = Alei]o op Afes]o for op € Op

tt if A[[el]]a @ .A[[62]]0'

Bley op es]loc =
levope2] ff otherwise

Peter Miller—Semantics of Programminga Languages, SS04 —».197
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Application: Programming Language Semantics
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Denotational semantics

Counterexamples

» The semantic functions Sys and Sgpog are not
denotational definitions because they are not defined
compositionally

Sns : Stm — (State — State)

o if (s,0) — o’
SNS[[S]]U = < >

undefined otherwise

Ss0s : Stm — (State — State)
! . * !
o if (s,0) =70
Ssos[s]o =
undefined otherwise

Peter Miiller—Semantics of Programming Languages, SS04 —».198
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Application: Programming Language Semantics
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Denotational semantics

Semantic Functions

» The effect of executing a statement is described by
the partial function Spg

Sps : Stm — (State < State) ‘

» Partiality is needed to model non-termination

» The effects of evaluating expressions is defined by
the functions A and B

Peter Miiller—Semantics of Programminga Languages, SS04 —».200
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Denotational semantics

Direct Style Semantics of IMP

» skip does not modify the state

Sps[skip] = id

id : State — State
id(o) =0

» x:=e assigns the value of e to variable x
Spslz:=e]o = o[z — Ale]o] ‘

Peter Miller—Semantics of Programminga Languages, SS04 —».201
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Denotational semantics

Direct Style Semantics of IMP (cont’d)

» Sequential composition s ; s9
‘ Spslsiis2] = Sps[sa] o Sps[si] ‘

» Function composition o is defined in a strict way

- If one of the functions is undefined on the given argument
then the composition is undefined

f(g(a)) if g(o) # undefined
(fog)o= and f(g(0)) # undefined
undefined otherwise

Peter Miiller—Semantics of Programminga Languages, SS04 —».202
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Denotational semantics

Direct Style Semantics of IMP (cont’d)

» Conditional statement if b then s; else sy end

Spg[if b then s; else so end] =
cond (B[b], Sps[s1], Sps[sz])

» The function cond

- takes the semantic functions for the condition and the two
statements

- when supplied with a state selects the second or third
argument depending on the first

cond : (State — Bool) x (State — State) X (State — State) —
(State — State)

Peter Miiller—Semantics of Programming Languages, SS04 —».203
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Denotational semantics

Definition of cond

cond : (State — Bool) X (State < State) x (State < State)
— (State — State)

( f(o) if b(o) = tt
and f(o) # undefined
cond (b, f,g)o = ¢ g(o) it b(o) = ff

and g(0) # undefined
undefined otherwise

\

Peter Miiller—Semantics of Programminga Languages, SS04 —».204
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Denotational semantics

Semantics of Loop: Observations

» Defining the semantics of while is difficult

» The semantics of while b do s end must be equal to
if bthen s;while bdo s end else skip end

» This requirement yields:

Sps[while b do s end] =
cond(B[b],Sps[while b do s end] o Sps[s], id)

» We cannot use this equation as a definition because
it is not compositional

Peter Miiller—Semantics of Programminga Languages, SS04 —».205
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Denotational semantics

Functionals and Fixed Points

Sps[while b do s end] =
cond(B[b], Sps[while b do s end] o Sps[s], id)

» The above equation has the form g = F(g)
- g = Sps[while b do s end]
- F(g) = cond(B[b], g o Sps[s], id)
» F'is a functional (a function from functions to
functions)

» Sps[while b do s end] is a fixed point of the
functional F

Peter Miiller—Semantics of Programminga Languages, SS04 —».206
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Denotational semantics

Direct Style Semantics of IMP: Loops

» Loop statement while b do s end

Sps[while bdo s end] = FIX F
where F'(g) = cond(B[b], g o Sps[s], id)

» We write F'IX F to denote the fixed point of the
functional F:

FIX : ((State — State) — (State — State))
— (State — State)

» This defintion of Spg[while b do s end] is
compositional

ETH

Peter Miiller—Semantics of Programminga Languages, SS04 —».208
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Denotational semantics

Example

» Consider the statement

‘while x # 0 do skip end ‘

» The functional for this loop is defined by

F'(g)o = cond(B[z#0], g o Sps[skip], id)c
cond(B[x#0], g o id, id)o
= cond(B[x#0], g, id)o
g(o) ifo(x)#0
o if &

Peter Miiller—Semantics of Programminga Languages, SS04 —».209
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Denotational semantics

Example (cont’d)

» The function

undefined if o(z) # 0

g(o) = o ifo(x) =0

is a fixed point of F’

» The function g2(c) = undefined is not a fixed point for

Peter Miiller—Semantics of Programminga Languages, SS04 —».210
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Denotational semantics

Well-Definedness

Sps[while bdo s end] = FIX F
where F'(g) = cond(B[b], g o Sps[s], id)

» The function Spg[while b do s end] is well-defined
if F'1XF defines a unique fixed point for the
functional F’

- There are functionals that have more than one fixed point
- There are functionals that have no fixed point at all

Peter Miiller—Semantics of Programmina Languages, SS04 —».211
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Denotational semantics

Examples

» F’ from the previous example has more than one
fixed point

glo) ito(z)#0

o otherwise

F'(g)o =

- Every function ¢’ : State — State with ¢'(c) = o if o(z) =0 is
a fixed point for F’

» The functional F; has no fixed point if g; # go

g1 ifg=go

g2 otherwise

Peter Miiller—Semantics of Programming Languages, SS04 —».212
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Hoare Logic
-_________________________________________________________________________________________________|

Hoare Logic

Hoare axioms and rules for simple while languages

» {P}skip{P}
» {P[x/e]} x:=e{P}
» {P}c1{R},{R}c2{Q}==>{P}ct1;c2{Q}

» {PAb}c1{Q},{PAlb}c2{Q}==>
{P}ifbthenclelsec2{Q}

» {INVADb}c{INV}==>{INV}whilebdoc{INVAlb}
»P—>P , {P}lc{Q}, Q—=Q={P}c{Q}

» Semantics of the Hoare Logic:

» {P}c{Q}==(ALLs.(P(s)As-c>t)—>P(1))

-__________________________________________________________________________________________________|
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Hoare Logic

Hoare Logic

Example
{0 <= x 1}
c 5
sq := 1 ;
WHILE sq <= x DO (*INV=(c*c <= x&sq=(c+1)*(c+1))*)
c :=c¢c + 1 ;
sq = sq + (2*%c + 1);

{ c*c <= x & x < (c+1)*(c+1) 1}

Demo: MyHoare.thy

) Qv
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