
Application: Programming Language Semantics

Chapter 8

Application:
Programming Language

Semantics

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 527

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Programming Language Semantics

Software Foundations Book
� Material: http://sct.ethz.ch/teaching/ss2004/sps/lecture.html
� PM intro
� PM bigstep semantics
� Demo MyWhile.thy
� PM smallstep semantics
� Denotational semantics
� Axiomatic semantics: Hoare Logic.
� Demo MyHoare.thy

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 528

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Why Formal Semantics?
Programming language design
- Formal verification of language properties
- Reveal ambiguities
- Support for standardization
Implementation of programming languages
- Compilers
- Interpreters
- Portability
Reasoning about programs
- Formal verification of program properties
- Extended static checking

Peter Müller—Semantics of Programming Languages, SS04 – p.7

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 529

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Language Properties
Type safety:
In each execution state, a variable of type T holds a
value of T or a subtype of T
Very important question for language designers
Example:
If String is a subtype of Object, should String[] be
a subtype of Object[]?

Peter Müller—Semantics of Programming Languages, SS04 – p.8

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 530

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Language Properties
Type safety:
In each execution state, a variable of type T holds a
value of T or a subtype of T
Very important question for language designers
Example:
If String is a subtype of Object, should String[] be
a subtype of Object[]?

void m(Object[] oa) {
oa[0]=new Integer(5);

}

String[] sa=new String[10];
m(sa);
String s = sa[0];

Peter Müller—Semantics of Programming Languages, SS04 – p.8

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 531

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Language Definition

Dynamic Semantics

Static Semantics

Syntax

State of a program execution
Transformation of states

Type rules
Name resolution

Syntax rules, defined by
grammar

Peter Müller—Semantics of Programming Languages, SS04 – p.12

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 532

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Compilation and Execution

Execution

Semantic Analysis,
Type Checking

Scanning, Parsing

Abstract
Syntax Tree

Annotated Abstract
Syntax Tree

Peter Müller—Semantics of Programming Languages, SS04 – p.13

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 533

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Three Kinds of Semantics
Operational semantics
- Describes execution on an abstract machine
- Describes how the effect is achieved
Denotational semantics
- Programs are regarded as functions in a
mathematical domain

- Describes only the effect, not how it is obtained
Axiomatic semantics
- Specifies properties of the effect of executing a
program are expressed

- Some aspects of the computation may be ignored
Peter Müller—Semantics of Programming Languages, SS04 – p.14

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 534

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Operational Semantics
y := 1;
while not(x=1) do (y := x*y; x := x-1)

“First we assign 1 to y, then we test whether x is 1 or
not. If it is then we stop and otherwise we update y
to be the product of x and the previous value of y
and then we decrement x by 1. Now we test whether
the new value of x is 1 or not. . . ”
Two kinds of operational semantics
- Natural Semantics
- Structural Operational Semantics

Peter Müller—Semantics of Programming Languages, SS04 – p.15

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 535

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Denotational Semantics
y := 1;
while not(x=1) do (y := x*y; x := x-1)

“The program computes a partial function from states
to states: the final state will be equal to the initial
state except that the value of x will be 1 and the
value of y will be equal to the factorial of the value of
x in the initial state”
Two kinds of denotational semantics
- Direct Style Semantics
- Continuation Style Semantics

Peter Müller—Semantics of Programming Languages, SS04 – p.16

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 536

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Axiomatic Semantics
y := 1;
while not(x=1) do (y := x*y; x := x-1)

“If x= n holds before the program is executed then
y= n! will hold when the execution terminates (if it
terminates)”
Two kinds of axiomatic semantics
- Partial correctness
- Total correctness

Peter Müller—Semantics of Programming Languages, SS04 – p.17

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 537

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Abstraction
Concrete language implementation

Operational semantics

Denotational semantics
Axiomatic semantics
Abstract descrption

Peter Müller—Semantics of Programming Languages, SS04 – p.18

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 538

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Selection Criteria
Constructs of the
programming language
- Imperative
- Functional
- Concurrent
- Object-oriented
- Non-deterministic
- Etc.

Application of the
semantics
- Understanding the
language

- Program verification
- Prototyping
- Compiler
construction

- Program analysis
- Etc.

Peter Müller—Semantics of Programming Languages, SS04 – p.19

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 539

Application: Programming Language Semantics

Introduction to Programming Language Semantics

The Language IMP
Expressions
- Boolean and arithmetic expressions
- No side-effects in expressions
Variables
- All variables range over integers
- All variables are initialized
- No global variables
IMP does not include
- Heap allocation and pointers
- Variable declarations
- Procedures
- Concurrency

Peter Müller—Semantics of Programming Languages, SS04 – p.30

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 540

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Syntax of IMP: Characters and Tokens
Characters

Letter = ’A’ . . . ’Z’ | ’a’ . . . ’z’
Digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

Tokens
Ident = Letter { Letter | Digit }
Integer = Digit { Digit }
Var = Ident

Peter Müller—Semantics of Programming Languages, SS04 – p.31

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 541

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Syntax of IMP: Expressions
Arithmetic expressions

Aexp = Aexp Op Aexp | Var | Integer
Op = ’+’ | ’-’ | ’*’ | ’/’ | ’mod’

Boolean expressions
Bexp = Bexp ’or’ Bexp | Bexp ’and’ Bexp

| ’not’ Bexp | Aexp RelOp Aexp
RelOp = ’=’ | ’#’ | ’<’ | ’<=’ | ’>’ | ’>=’

Peter Müller—Semantics of Programming Languages, SS04 – p.32

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 542

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Syntax of IMP: Statemens

Stm = ’skip’
| Var ’:=’ Aexp
| Stm ’;’ Stm
| ’if’ Bexp ’then’ Stm ’else’ Stm ’end’
| ’while’ Bexp ’do’ Stm ’end’

Peter Müller—Semantics of Programming Languages, SS04 – p.33

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 543

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Notation
Meta-variables (written in italic font)

x, y, z for variables (Var)
e, e′, e1, e2 for arithmetic expressions (Aexp)
b, b1, b2 for boolean expressions (Bexp)
s, s′, s1, s2 for statements (Stm)

Keywords are written in typewriter font

Peter Müller—Semantics of Programming Languages, SS04 – p.34

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 544

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Syntax of IMP: Example

res := 1;
while n > 1 do
res := res * n;
n := n - 1

end

Peter Müller—Semantics of Programming Languages, SS04 – p.35

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 545

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Semantic Categories
Syntactic category: Integer Semantic category: Val = Z

101 ✲ 5

101 ✲ 101

Semantic functions map elements of syntactic
categories to elements of semantic categories
To define the semantics of IMP, we need semantic
functions for
- Arithmetic expressions (syntactic category Aexp)
- Boolean expressions (syntactic category Bexp)
- Statements (syntactic category Stm)

Peter Müller—Semantics of Programming Languages, SS04 – p.37

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 546

Application: Programming Language Semantics

Introduction to Programming Language Semantics

States
x+1 ✲ ??

The meaning of an expression depends on the
values bound to the variables that occur in it
A state associates a value to each variable

State : Var→ Val

We represent a state σ as a finite function
σ = {x1 �→ v1, x2 �→ v2, . . . , xn �→ vn}

where x1, x2, . . . , xn are different elements of Var and
v1, v2, . . . , vn are elements of Val.

Peter Müller—Semantics of Programming Languages, SS04 – p.38

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 547

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Semantics of Arithmetic Expressions
The semantic function

A : Aexp→ State→ Val

maps an arithmetic expression e and a state σ to a value
A[[e]]σ

A[[x]]σ = σ(x)

A[[i]]σ = i for i ∈ Z
A[[e1 op e2]]σ = A[[e1]]σ op A[[e2]]σ for op ∈ Op

op is the operation Val× Val→ Val corresponding to op

Peter Müller—Semantics of Programming Languages, SS04 – p.39

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 548

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Semantics of Boolean Expressions
The semantic function

B : Bexp→ State→ Bool

maps a boolean expression b and a state σ to a truth
value B[[b]]σ

B[[e1 op e2]]σ =

�
tt if A[[e1]]σ op A[[e2]]σ

ff otherwise

op ∈ RelOp and op is the relation Val× Val corresponding
to op

Peter Müller—Semantics of Programming Languages, SS04 – p.40

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 549

Application: Programming Language Semantics

Introduction to Programming Language Semantics

Boolean Expressions (cont’d)

B[[b1 or b2]]σ =

�
tt if B[[b1]]σ = tt or B[[b2]]σ = tt

ff otherwise

B[[b1 and b2]]σ =

�
tt if B[[b1]]σ = tt and B[[b2]]σ = tt

ff otherwise

B[[not b]]σ =

�
tt if B[[b]]σ = ff

ff otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.41

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 550

Application: Programming Language Semantics

Big step semantics

Operational Semantics of Statements
Evaluation of an expression in a state yields a value

x + 2 * y

A : Aexp→ State→ Val

Execution of a statement modifies the state

x := 2 * y

Operational semantics describe how the state is
modified during the execution of a statement

Peter Müller—Semantics of Programming Languages, SS04 – p.57

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 551

Application: Programming Language Semantics

Big step semantics

Big-Step and Small-Step Semantics
Big-step semantics describe how the overall results
of the executions are obtained
- Natural semantics

Small-step semantics describe how the individual
steps of the computations take place
- Structural operational semantics
- Abstract state machines

Peter Müller—Semantics of Programming Languages, SS04 – p.58

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 552

Application: Programming Language Semantics

Big step semantics

Transition Systems
A transition system is a tuple (Γ, T,�)
- Γ: a set of configurations
- T : a set of terminal configurations, T ⊆ Γ

- !: a transition relation, !⊆ Γ× Γ

Example: Finite automaton
Γ = {�w, S� | w ∈ {a, b, c}∗, S ∈ {1, 2, 3, 4}}
T = {�ε, S� | S ∈ {1, 2, 3, 4}}
! = {(�aw, 1� → �w, 2�), (�aw, 1� → �w, 3�),

(�bw, 2� → �w, 4�), (�cw, 3� → �w, 4�)}

a b

c

2

3

41
a

Peter Müller—Semantics of Programming Languages, SS04 – p.60

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 553

Application: Programming Language Semantics

Big step semantics

Transitions in Natural Semantics
Two types of configurations for operational semantics
1. �s,σ�, which represents that the statement s is to be

executed in state σ

2. σ, which represents a terminal state
The transition relation→ describes how executions
take place
- Typical transition: �s,σ� → σ�

- Example: �skip,σ� → σ

Γ = {〈s,σ〉 | s ∈ Stm,σ ∈ State} ∪ State

T = State

→⊆ {〈s,σ〉 | s ∈ Stm,σ ∈ State}× State

Peter Müller—Semantics of Programming Languages, SS04 – p.61

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 554

Application: Programming Language Semantics

Big step semantics

Rules
Transition relation is specified by rules

ϕ1, . . . ,ϕn
ψ if Condition

where ϕ1, . . . ,ϕn and ψ are transitions
Meaning of the rule

If Condition and ϕ1, . . . ,ϕn then ψ

Terminology
- ϕ1, . . . ,ϕn are called premises
- ψ is called conclusion
- A rule without premises is called axiom

Peter Müller—Semantics of Programming Languages, SS04 – p.62

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 555

Application: Programming Language Semantics

Big step semantics

Notation
Updating States: σ[y !→ v] is the function that
- overrides the association of y in σ by y �→ v or
- adds the new association y �→ v to σ

(σ[y !→ v])(x) =

�
v if x = y

σ(x) if x #= y

Peter Müller—Semantics of Programming Languages, SS04 – p.63

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 556

Application: Programming Language Semantics

Big step semantics

Natural Semantics of IMP
skip does not modify the state

〈skip,σ〉 → σ

x:=e assigns the value of e to variable e

〈x:=e,σ〉 → σ[x $→ A[[e]]σ]

Sequential composition s1;s2
- First, s1 is executed in state σ, leading to σ�

- Then s2 is executed in state σ�

〈s1,σ〉 → σ′, 〈s2,σ
′〉 → σ′′

〈s1;s2,σ〉 → σ′′

Peter Müller—Semantics of Programming Languages, SS04 – p.64

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 557

Application: Programming Language Semantics

Big step semantics

Natural Semantics of IMP (cont’d)
Conditional statement if b then s1 else s2 end
- If b holds, s1 is executed
- If b does not hold, s2 is executed

〈s1,σ〉 → σ′

〈if b then s1 else s2 end,σ〉 → σ′ if B[[b]]σ = tt

〈s2,σ〉 → σ′

〈if b then s1 else s2 end,σ〉 → σ′ ifB[[b]]σ = ff

Peter Müller—Semantics of Programming Languages, SS04 – p.65

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 558

Application: Programming Language Semantics

Big step semantics

Natural Semantics of IMP (cont’d)
Loop statement while b do s end
- If b holds, s is executed once, leading to state σ�

- Then the whole while-statement is executed again σ �

〈s,σ〉 → σ′, 〈while b do s end,σ′〉 → σ′′

〈while b do s end,σ〉 → σ′′ if B[[b]]σ = tt

- If b does not hold, the while-statement does not modify the
state

〈while b do s end,σ〉 → σ
if B[[b]]σ = ff

Peter Müller—Semantics of Programming Languages, SS04 – p.66

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 559

Application: Programming Language Semantics

Big step semantics

Rule Instantiations
Rules are actually rule schemes
- Meta-variables stand for arbitrary variables, expressions,
statements, states, etc.

- To apply rules, they have to be instantiated by selecting
particular variables, expressions, statements, states, etc.

Assignment rule scheme

〈x:=e,σ〉 → σ[x $→ A[[e]]σ]

Assignment rule instance

〈v:=v+1, {v $→ 3}〉 → {v $→ 4}

Peter Müller—Semantics of Programming Languages, SS04 – p.67

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 560

Application: Programming Language Semantics

Big step semantics

Derivations: Example
What is the final state if statement

z:=x; x:=y; y:=z

is executed in state {x !→ 5,y !→ 7,z !→ 0}
(abbreviated by [5, 7, 0])?

�z:=x, [5, 7, 0]� → [5, 7, 5], �x:=y, [5, 7, 5]� → [7, 7, 5]
�z:=x; x:=y, [5, 7, 0]� → [7, 7, 5]

,

�y:=z, [7, 7, 5]� → [7, 5, 5]
�z:=x; x:=y; y:=z, [5, 7, 0]� → [7, 5, 5]

Peter Müller—Semantics of Programming Languages, SS04 – p.68

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 561

Application: Programming Language Semantics

Big step semantics

Derivation Trees
Rule instances can be combined to derive a
transition 〈s,σ〉 → σ′

The result is a derivation tree
- The root is the transition �s,σ� → σ�

- The leaves are axiom instances
- The internal nodes are conclusions of rule instances and
have the corresponding premises as immediate children

The conditions of all instantiated rules must be
satisfied
There can be several derivations for one transition
(non-deterministic semantics)

Peter Müller—Semantics of Programming Languages, SS04 – p.69

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 562

Application: Programming Language Semantics

Big step semantics

Termination
The execution of a statement s in state σ
- terminates iff there is a state σ� such that �s,σ� → σ�

- loops iff there is no state σ� such that �s,σ� → σ�

A statement s
- always terminates if the execution in a state σ terminates
for all choices of σ

- always loops if the execution in a state σ loops for all
choices of σ

Peter Müller—Semantics of Programming Languages, SS04 – p.70

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 563

Application: Programming Language Semantics

Big step semantics

Semantic Equivalence
Definition

Two statements s1 and s2 are semantically
equivalent (denoted by s1 ≡ s2) if the follow-
ing property holds for all states σ,σ ′:

〈s1,σ〉 → σ′ ⇔ 〈s2,σ〉 → σ′

Example
while b do s end ≡
if b then s; while b do s end

Peter Müller—Semantics of Programming Languages, SS04 – p.72

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 564

Application: Programming Language Semantics

Small step semantics

Structural Operational Semantics
The emphasis is on the individual steps of the
execution
- Execution of assignments
- Execution of tests
Describing small steps of the execution allows one to
express the order of execution of individual steps
- Interleaving computations
- Evaluation order for expressions (not shown in the course)

Describing always the next small step allows one to
express properties of looping programs

Peter Müller—Semantics of Programming Languages, SS04 – p.100

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 565

Application: Programming Language Semantics

Small step semantics

Transitions in SOS
The configurations are the same as for natural
semantics
The transition relation→1 can have two forms
�s,σ� →1 �s′,σ′�: the execution of s from σ is not
completed and the remaining computation is
expressed by the intermediate configuration �s′,σ′�
�s,σ� →1 σ′: the execution of s from σ has
terminated and the final state is σ′

A transition �s,σ� →1 γ describes the first step of
the execution of s from σ

Peter Müller—Semantics of Programming Languages, SS04 – p.101

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 566

Application: Programming Language Semantics

Small step semantics

Transition System
Γ = {�s,σ� | s ∈ Stm,σ ∈ State} ∪ State

T = State

→1⊆ {�s,σ� | s ∈ Stm,σ ∈ State}× Γ

We say that �s,σ� is stuck if there is no γ such that
�s,σ� →1 γ

Peter Müller—Semantics of Programming Languages, SS04 – p.102

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 567

Application: Programming Language Semantics

Small step semantics

SOS of IMP
skip does not modify the state

�skip,σ� →1 σ

x:=e assigns the value of e to variable x
�x:=e,σ� →1 σ[x �→ A[[e]]σ]

skip and assignment require only one step
Rules are analogous to natural semantics

�skip,σ� → σ

�x:=e,σ� → σ[x �→ A[[e]]σ]

Peter Müller—Semantics of Programming Languages, SS04 – p.103

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 568

Application: Programming Language Semantics

Small step semantics

SOS of IMP: Sequential Composition
Sequential composition s1;s2

First step of executing s1;s2 is the first step of
executing s1

s1 is executed in one step
�s1,σ� →1 σ′

�s1;s2,σ� →1 �s2,σ
′�

s1 is executed in several steps
�s1,σ� →1 �s′1,σ′�

�s1;s2,σ� →1 �s′1;s2,σ
′�

Peter Müller—Semantics of Programming Languages, SS04 – p.104

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 569

Application: Programming Language Semantics

Small step semantics

SOS of IMP: Conditional Statement

The first step of executing if b then s1 else s2 end
is to determine the outcome of the test and thereby
which branch to select

�if b then s1 else s2 end,σ� →1 �s1,σ� if B[[b]]σ = tt

�if b then s1 else s2 end,σ� →1 �s2,σ� ifB[[b]]σ = ff

Peter Müller—Semantics of Programming Languages, SS04 – p.105

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 570

Application: Programming Language Semantics

Small step semantics

Alternative for Conditional Statement
The first step of executing if b then s1 else s2 end
is the first step of the branch determined by the
outcome of the test

�s1,σ� →1 σ′

�if b then s1 else s2 end,σ� →1 σ′ if B[[b]]σ = tt

�s1,σ� →1 �s′1,σ′�
�if b then s1 else s2 end,σ� →1 �s′1,σ′� if B[[b]]σ = tt

and two similar rules for B[[b]]σ = ff

Alternatives are equivalent for IMP
Choice is important for languages with parallel
execution

Peter Müller—Semantics of Programming Languages, SS04 – p.106

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 571

Application: Programming Language Semantics

Small step semantics

SOS of IMP: Loop Statement

The first step is to unrole the loop

�while b do s end,σ� →1
�if b then s;while b do s end else skip end,σ�

Recall that while b do s end and
if b then s;while b do s end else skip end are
semantically equivalent in the natural semantics

Peter Müller—Semantics of Programming Languages, SS04 – p.107

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 572

Application: Programming Language Semantics

Small step semantics

Alternatives for Loop Statement
The first step is to decide the outcome of the test and
thereby whether to unrole the body of the loop or to
terminate

�while b do s end,σ� →1 �s;while b do s end,σ�
if B[[b]]σ = tt

�while b do s end,σ� →1 σ if B[[b]]σ = ff

Or combine with the alternative semantics of the
conditional statement
Alternatives are equivalent for IMP

Peter Müller—Semantics of Programming Languages, SS04 – p.108

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 573

Application: Programming Language Semantics

Small step semantics

Derivation Sequences
A derivation sequence of a statement s starting in
state σ is a sequence γ0, γ1, γ2, . . . , where
- γ0 = 〈s,σ〉
- γi →1 γi+1 for 0 ≤ i

A derivation sequence is either finite or infinite
- Finite derivation sequences end with a configuration that is
either a terminal configuration or a stuck configuration

Notation
- γ0 →i

1 γi indicates that there are i steps in the execution
from γ0 to γi

- γ0 →∗
1 γi indicates that there is a finite number of steps in

the execution from γ0 to γi

- γ0 →i
1 γi and γ0 →∗

1 γi need not be derivation sequences

Peter Müller—Semantics of Programming Languages, SS04 – p.109

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 574

Application: Programming Language Semantics

Small step semantics

Derivation Sequences: Example
What is the final state if statement

z:=x; x:=y; y:=z

is executed in state {x �→ 5,y �→ 7,z �→ 0}?

〈z:=x; x:=y; y:=z, {x "→ 5,y "→ 7,z "→ 0}〉
→1 〈x:=y; y:=z, {x "→ 5,y "→ 7,z "→ 5}〉
→1 〈y:=z, {x "→ 7,y "→ 7,z "→ 5}〉
→1 {x "→ 7,y "→ 5,z "→ 5}

Peter Müller—Semantics of Programming Languages, SS04 – p.110

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 575

Application: Programming Language Semantics

Small step semantics

Derivation Trees
Derivation trees explain why transitions take place
For the first step

〈z:=x; x:=y; y:=z,σ〉 →1 〈x:=y; y:=z,σ[z $→ 5]〉

the derivation tree is
〈z:=x,σ〉 →1 σ[z $→ 5]

〈z:=x; x:=y,σ〉 →1 〈x:=y,σ[z $→ 5]〉
〈z:=x; x:=y; y:=z,σ〉 →1 〈x:=y; y:=z,σ[z $→ 5]〉

z:=x; (x:=y; y:=z) would lead to a simpler
tree with only one rule application

Peter Müller—Semantics of Programming Languages, SS04 – p.111

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 576

Application: Programming Language Semantics

Small step semantics

Derivation Sequences and Trees
Natural (big-step) semantics
- The execution of a statement (sequence) is described by
one big transition

- The big transition can be seen as trivial derivation
sequence with exactly one transition

- The derivation tree explains why this transition takes place
Structural operational (small-step) semantics
- The execution of a statement (sequence) is described by
one or more transitions

- Derivation sequences are important
- Derivation trees justify each individual step in a derivation
sequence

Peter Müller—Semantics of Programming Languages, SS04 – p.112

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 577

Application: Programming Language Semantics

Small step semantics

Termination
The execution of a statement s in state σ
- terminates iff there is a finite derivation sequence starting
with 〈s,σ〉

- loops iff there is an infinite derivation sequence starting
with 〈s,σ〉

The execution of a statement s in state σ

- terminates successfully if 〈s,σ〉 →∗
1 σ�

- In IMP, an execution terminates successfully iff it
terminates (no stuck configurations)

Peter Müller—Semantics of Programming Languages, SS04 – p.113

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 578

Application: Programming Language Semantics

Small step semantics

Comparison: Summary
Natural Semantics

Local variable declarations
and procedures can be
modeled easily

No distinction between
abortion and looping

Non-determinism
suppresses looping (if
possible)

Parallelism cannot be
modeled

Structural Operational Semantics

Local variable declarations
and procedures require
modeling the execution stack

Distinction between abortion
and looping

Non-determinism does not
suppress looping

Parallelism can be modeled

Peter Müller—Semantics of Programming Languages, SS04 – p.134

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 579

Application: Programming Language Semantics

Denotational semantics

Motivation
Operational semantics is at a rather low abstraction
level
- Some arbitrariness in choice of rules (e.g., size of steps)
- Syntax involved in description of behavior

Semantic equivalence in natural semantics

�s1,σ� → σ′ ⇔ �s2,σ� → σ′

Idea
- We can describe the behavior on an abstract level if we are
only interested in equivalence

- We specify only the partial function on states

Peter Müller—Semantics of Programming Languages, SS04 – p.194

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 580

Application: Programming Language Semantics

Denotational semantics

Approach
Denotational semantics describes the effect of a
computation

A semantic function is defined for each syntactic
construct
- maps syntactic construct to a mathematical object, often a
function

- the mathematical object describes the effect of executing
the syntactic construct

Peter Müller—Semantics of Programming Languages, SS04 – p.195

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 581

Application: Programming Language Semantics

Denotational semantics

Compositionality
In denotational semantics, semantic functions are
defined compositionally
There is a semantic clause for each of the basis
elements of the syntactic category
For each method of constructing a composite
element (in the syntactic category) there is a
semantic clause defined in terms of the semantic
function applied to the immediate constituents of
the composite element

Peter Müller—Semantics of Programming Languages, SS04 – p.196

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 582

Application: Programming Language Semantics

Denotational semantics

Examples
The semantic functions A : Aexp→ State→ Val and
B : Bexp→ State→ Bool are denotational definitions

A[[x]]σ = σ(x)

A[[i]]σ = i for i ∈ Z
A[[e1 op e2]]σ = A[[e1]]σ op A[[e2]]σ for op ∈ Op

B[[e1 op e2]]σ =

�
tt if A[[e1]]σ op A[[e2]]σ

ff otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.197

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 583

Application: Programming Language Semantics

Denotational semantics

Counterexamples
The semantic functions SNS and SSOS are not
denotational definitions because they are not defined
compositionally

SNS : Stm → (State ↪→ State)

SNS[[s]]σ =

σ� if 〈s,σ〉 → σ�

undefined otherwise

SSOS : Stm → (State ↪→ State)

SSOS[[s]]σ =

σ� if 〈s,σ〉 →∗

1 σ�

undefined otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.198

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 584

Application: Programming Language Semantics

Denotational semantics

Semantic Functions

The effect of executing a statement is described by
the partial function SDS

SDS : Stm→ (State �→ State)

Partiality is needed to model non-termination

The effects of evaluating expressions is defined by
the functions A and B

Peter Müller—Semantics of Programming Languages, SS04 – p.200

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 585

Application: Programming Language Semantics

Denotational semantics

Direct Style Semantics of IMP
skip does not modify the state

SDS[[skip]] = id

id : State→ State

id(σ) = σ

x:=e assigns the value of e to variable x

SDS[[x:=e]]σ = σ[x �→ A[[e]]σ]

Peter Müller—Semantics of Programming Languages, SS04 – p.201

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 586

Application: Programming Language Semantics

Denotational semantics

Direct Style Semantics of IMP (cont’d)
Sequential composition s1;s2

SDS[[s1;s2]] = SDS[[s2]] ◦ SDS[[s1]]

Function composition ◦ is defined in a strict way
- If one of the functions is undefined on the given argument
then the composition is undefined

(f ◦ g)σ =

f(g(σ)) if g(σ) �= undefined
and f(g(σ)) �= undefined

undefined otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.202

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 587

Application: Programming Language Semantics

Denotational semantics

Direct Style Semantics of IMP (cont’d)
Conditional statement if b then s1 else s2 end

SDS[[if b then s1 else s2 end]] =
cond(B[[b]],SDS[[s1]],SDS[[s2]])

The function cond
- takes the semantic functions for the condition and the two
statements

- when supplied with a state selects the second or third
argument depending on the first

cond : (State → Bool)× (State ↪→ State)× (State ↪→ State) →
(State ↪→ State)

Peter Müller—Semantics of Programming Languages, SS04 – p.203

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 588

Application: Programming Language Semantics

Denotational semantics

Definition of cond

cond : (State→ Bool)× (State �→ State)× (State �→ State)
→ (State �→ State)

cond(b, f, g)σ =

f(σ) if b(σ) = tt

and f(σ) �= undefined
g(σ) if b(σ) = ff

and g(σ) �= undefined
undefined otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.204

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 589

Application: Programming Language Semantics

Denotational semantics

Semantics of Loop: Observations
Defining the semantics of while is difficult
The semantics of while b do s end must be equal to
if b then s;while b do s end else skip end

This requirement yields:

SDS[[while b do s end]] =
cond(B[[b]],SDS[[while b do s end]] ◦ SDS[[s]], id)

We cannot use this equation as a definition because
it is not compositional

Peter Müller—Semantics of Programming Languages, SS04 – p.205

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 590

Application: Programming Language Semantics

Denotational semantics

Functionals and Fixed Points
SDS[[while b do s end]] =

cond(B[[b]],SDS[[while b do s end]] ◦ SDS[[s]], id)

The above equation has the form g = F (g)
- g = SDS[[while b do s end]]

- F (g) = cond(B[[b]], g ◦ SDS [[s]], id)

F is a functional (a function from functions to
functions)

SDS[[while b do s end]] is a fixed point of the
functional F

Peter Müller—Semantics of Programming Languages, SS04 – p.206

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 591

Application: Programming Language Semantics

Denotational semantics

Direct Style Semantics of IMP: Loops
Loop statement while b do s end

SDS[[while b do s end]] = FIX F

where F (g) = cond(B[[b]], g ◦ SDS[[s]], id)

We write FIX F to denote the fixed point of the
functional F :

FIX : ((State �→ State) → (State �→ State))

→ (State �→ State)

This defintion of SDS[[while b do s end]] is
compositional

Peter Müller—Semantics of Programming Languages, SS04 – p.208

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 592

Application: Programming Language Semantics

Denotational semantics

Example
Consider the statement

while x # 0 do skip end

The functional for this loop is defined by

F ′(g)σ = cond(B[[x#0]], g ◦ SDS[[skip]], id)σ

= cond(B[[x#0]], g ◦ id , id)σ

= cond(B[[x#0]], g, id)σ

=

�
g(σ) if σ(x) �= 0

σ if σ(x) = 0

Peter Müller—Semantics of Programming Languages, SS04 – p.209

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 593

Application: Programming Language Semantics

Denotational semantics

Example (cont’d)

The function

g1(σ) =

�
undefined if σ(x) �= 0

σ if σ(x) = 0

is a fixed point of F ′

The function g2(σ) = undefined is not a fixed point for
F ′

Peter Müller—Semantics of Programming Languages, SS04 – p.210

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 594

Application: Programming Language Semantics

Denotational semantics

Well-Definedness

SDS[[while b do s end]] = FIX F

where F (g) = cond(B[[b]], g ◦ SDS[[s]], id)

The function SDS[[while b do s end]] is well-defined
if FIXF defines a unique fixed point for the
functional F
- There are functionals that have more than one fixed point
- There are functionals that have no fixed point at all

Peter Müller—Semantics of Programming Languages, SS04 – p.211

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 595

Application: Programming Language Semantics

Denotational semantics

Examples
F ′ from the previous example has more than one
fixed point

F �(g)σ =

g(σ) if σ(x) != 0

σ otherwise

- Every function g� : State ↪→ State with g�(σ) = σ if σ(x) = 0 is
a fixed point for F �

The functional F1 has no fixed point if g1 �= g2

F1(g) =

g1 if g = g2

g2 otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.212

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 596

Application: Programming Language Semantics

Hoare Logic

Hoare Logic

Hoare axioms and rules for simple while languages
� { P } skip { P }
� { P[x/e] } x := e { P }
� { P } c1 { R } , { R } c2 { Q } ==> { P } c1;c2 { Q }
� { P ∧ b } c1 { Q } , { P ∧ !b } c2 { Q } ==>

{ P } if b then c1 else c2 { Q }
� { INV ∧ b } c { INV } ==> { INV } while b do c { INV ∧ !b }
� P –> P’ , { P’ } c { Q’ } , Q’ –> Q ==> { P } c { Q }
� Semantics of the Hoare Logic:
� { P } c { Q } == (ALL s. (P(s) ∧ s -c-> t) –> P(t))

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 597

Application: Programming Language Semantics

Hoare Logic

Hoare Logic

Example
{ 0 <= x }

c := 0 ;
sq := 1 ;
WHILE sq <= x DO (*INV=(c*c <= x&sq=(c+1)*(c+1))*)

c := c + 1 ;
sq := sq + (2*c + 1);

{ c*c <= x & x < (c+1)*(c+1) }

Demo: MyHoare.thy

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 598

