
Application: Verification of distributed systems Conclusions: Overall structure

Chapter 9

Application: Verification

of distributed systems

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 599



Application: Verification of distributed systems Conclusions: Overall structure

Dijkstras termination detection algorithm

Distributed Termination Detection : Dijkstra

Example 9.1. Implement the following termination detection protocol:

A passive machine
becomes active, iff it
receives a message
from another machine.

Only active machines
can send messages. Token

Message

Active / Passive
Machine 0

Machine n−1

Machine n−2

Machine n−3

Machine 1

Edsger W. Dijkstra, W. H. J. Feijen, and A.J.M. van Gasteren.
Derivation of a Termination Detection Algorithm for Distributed
Computations. IPL 16 (1983).

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 600



Application: Verification of distributed systems Conclusions: Overall structure

Dijkstras termination detection algorithm

Assumptions for distributed termination detection
Rules for a probe

Rule 0 When active, Machinei+1 keeps the token; when passive, it
hands over the token to Machinei .

Rule 1 A machine sending a message makes itself red.
Rule 2 When Machinei+1 propagates the probe, it hands over a red

token to Machinei when it is red itself, whereas while being white
it leaves the color of the token unchanged.

Rule 3 After the completion of an unsuccessful probe, Machine 0
initiates a next probe.

Rule 4 Machine 0 initiates a probe by making itself white and sending to
Machinen−1 a white token.

Rule 5 Upon transmission of the token to Machinei ,
Machinei+1becomes white. (Notice that the original color of
Machinei+1 may have affected the color of the token).

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 601



Application: Verification of distributed systems Conclusions: Overall structure

Dijkstras termination detection algorithm

Correctness of the abstract version: Dijkstra

Assumptions
The machines constitute a closed system, i.e. messages can only be
dispatched among each other (no outside messages). The system in
the initial state can have any color and several machines can be
active. The token is located in the 0’th. machine.
The given rules describe the transfer of the token and the coloration
of the machines upon certain activities.
The task is to determine a state in which all the machines are passive
(not active). This is a stable state of the system, because only active
machines can dispatch messages and passive machines can only
become active by receiving a message.
The invariant: Let t be the position on which the token is, then
following invariant holds:
(∀i : t < i < n Machinei is passive)∨(∃j : 0 ≤ j ≤ t Machinej is red)∨
(Token is red)

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 602



Application: Verification of distributed systems Conclusions: Overall structure

Dijkstras termination detection algorithm

Distributed Termination Detection: Correctness

(∀i : t < i < n Machinei is passive)∨(∃j : 0 ≤ j ≤ t Machinej is red)∨
(Token is red)

Correctness argument

When the token reaches Machineo, t = 0 and the invariant holds.
If
(Machineo is passive) ∧ (Machineo is white) ∧ (Token is white)
then
(∀i : 0 < i < n Machinei is passive) must hold, i.e. termination.

Proof of the invariant Induction over t:
The case t = n - 1 is easy.
Assume the invariant is valid for 0 < t < n, prove it is valid for t − 1.

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 603



Application: Verification of distributed systems Conclusions: Overall structure

Dijkstras termination detection algorithm

Distributed Abstract State Machines: Model

Signature:

static

COLOR = {red , white} TOKEN = {redToken, whiteToken}
MACHINE = {0, 1, 2, . . . , n − 1}
next : MACHINE → MACHINE
e.g. with next(0) = n − 1, next(n − 1) = n − 2, . . . , next(1) = 0

controlled

color : MACHINE → COLOR token : MACHINE → TOKEN
RedTokenEvent , WhiteTokenEvent : MACHINE → BOOL

monitored Active : MACHINE → BOOL
SendMessageEvent : MACHINE → BOOL

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 604



Application: Verification of distributed systems Conclusions: Overall structure

Dijkstras termination detection algorithm

Distributed Termination Detection: DASM-Procedure
Macros: (Rule definitions)

� ReactOnEvents(m : MACHINE) =
if RedTokenEvent(m) then

token(m) := redToken
RedTokenEvent(m) := undef

if WhiteTokenEvent(m) then
token(m) := whiteToken
WhiteTokenEvent(m) := undef

if SendMessageEvent(m) then color(m) := red Rule 1

� Forward(m : MACHINE , t : TOKEN) =
if t = whiteToken then

WhiteTokenEvent(next(m)) := true
else

RedTokenEvent(next(m)) := true

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 605



Application: Verification of distributed systems Conclusions: Overall structure

Dijkstras termination detection algorithm

Distributed Termination Detection: DASM-Procedure
Programs

� RegularMachineProgram =

ReactOnEvents(me)
if¬ Active(me) ∧ token(me) �= undef then Rule 0

InitializeMachine(me) Rule 5
if color(me) = red then

Forward(me, redToken) Rule 2
else

Forward(me, token(me)) Rule 2
� With InitializeMachine(m : MACHINE) =

token(m) := undef
color(m) := white

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 606



Application: Verification of distributed systems Conclusions: Overall structure

Dijkstras termination detection algorithm

Distributed Termination Detection: Procedure

Programs

� SupervisorMachineProgram =

ReactOnEvents(me)
if¬ Active(me) ∧ token(me) �= undef then

if color(me) = white ∧ token(me) = whiteToken then
ReportGlobalTermination

else Rule 3
InitializeMachine(me) Rule 4
Forward(me, whiteToken) Rule 4

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 607



Application: Verification of distributed systems Conclusions: Overall structure

Dijkstras termination detection algorithm

Distributed Termination Detection
Initial states

∃m0 ∈ MACHINE
(program(m0) = SupervisorMachineProgram ∧
token(m0) = redToken ∧
(∀m ∈ MACHINE)(m �= m0 ⇒

(program(m) = RegularMachineProgram ∧ token(m) = undef )))

Environment constraints For all the executions and all linearizations
holds:

G (∀m ∈ MACHINE)
(SendMessageEvent(m) = true ⇒ (P(Active(m)) ∧ Active(m)))

∧ ((Active(m) = true ∧ P(¬Active(m)) ⇒
(∃m� ∈ MACHINE) (m� �= m ∧ SendMessageEvent(m�))))

Nextconstraints

Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 608


