
Prof. Dr. K. Madlener
Dipl.-Inf. P. Michel
Dipl.-Inf. C. Feller

University of Kaiserslautern
Department of Computer Science

AG Grundlagen der Informatik

Exercise Sheet 3: Specification and Verification with
Higher-Order Logic (Summer Term 2011)

Date: 03.05.2011

Exercise 1 Foundations

a) (Prepare!) What is the order of the following formulas?

• Suc(0) 6= 0

• ∀n. Suc(n) 6= 0

• ∀n m. Suc(n) = Suc(m) −→ n = m

• ∀P. P (0) ∧
(
∀n. P (n) −→ P (Suc(n))

)
−→ ∀n. P (n)

b) (Prepare!) Determine which of these terms are syntactically correct. For the correct terms give possible
types for all occurring variables and the complete term.

• (λx. x = a) b

• (λx = x)

• (λx. True) = (λx. (f g x) = y)

• (x −→ x) = (b b)

c) (Prepare!) Consider the following set of sets U = {{1}, {1, 2}}, which is not a universe. For each of
the closure conditions violated by U , give an example set which should have been included in U .

d) (Prepare!) Consider the standard modelM = 〈(Dα)α∈τ , J〉 for the set of types τ and constants defined
in the lecture, where we consider the additional binary constant symbol + : ind ⇒ ind ⇒ ind. The
frame (Dα)α∈τ is defined by Dbool = {T, F}, Dind = N and Dα⇒β = Dα ⇒ Dβ , i.e. the set of all
functions from α to β. J interprets all constants as defined in the lecture and + as the usual addition on
natural numbers. Consider the following formula:

a = b −→ (λx.x+ a) = (λx.b+ x)

• Prove that the formula is satisfiable with regard to M , by giving an assignment under which the
formula evaluates to T .

• Is the formula valid with regard to M?

• Is the formula valid in a standard sense?



Exercise 2 Sets as Functions in Isabelle/HOL

We have seen that the core of Isabelle/HOL does not contain types for sets. One way of introducing sets is
to use functions to represent sets.

a) (Prepare!) Define the polymorphic type of sets as the type of unary predicate functions.

b) (Prepare!) Define the following constants for this type:

1. The empty set.

2. The insert function on sets.

3. The delete function on sets.

4. The union on sets.

5. The intersection on sets.

6. The set of all even integers.

Exercise 3 Datatypes and Properties in Isabelle/HOL

a) Define a datatype ’a tree to represent binary trees. Leaves should be Empty and internal nodes should
store a value of type ’a.

b) Define the functions preOrder, postOrder and inOrder that traverse and convert a binary tree to a list
in the respective order.

c) Define a function mirror that returns the mirror image of a binary tree.

d) Define the functions root, leftmost and rightmost on trees, which return the respective values for
non-empty trees and are undefined otherwise.

e) Prove or disprove the following theorems:

• t 6= Empty −→ last (inOrder t) = rightmost t

• t 6= Empty −→ hd (inOrder t) = leftmost t

• t 6= Empty −→ hd (preOrder t) = last (postOrder t)

• t 6= Empty −→ hd (preOrder t) = root t

• t 6= Empty −→ hd (inOrder t) = root t

• t 6= Empty −→ last (postOrder t) = root t

f) Suppose that xOrder and yOrder are tree traversal functions chosen from preOrder, postOrder, and
inOrder. Examine for which traversal functions the following formula holds:

xOrder (mirror xt) = rev (yOrder xt)



Exercise 4 A Simple Hilbert-Style Proof System (Optional)

This exercise is meant as additional training and to deepen your understanding of the calculus, proof sys-
tems, proof assistants and maybe most of all: functional programming. We won’t spend much time on it in
the exercises though, so you can consider it optional.

You can use whatever functional programming language you like. We used SML, but can easily give you
support for Haskell, too. You can also do it in Isabelle/HOL itself, but to execute it you should use the code
generation it offers.

We want to develop a system to represent and check proofs in the Hilbert-Calculus, like defined on Sheet 1.
We use the following datatypes to represent formulas, proof states and proof commands:

datatype f = (* formulas *)
Var of string (* variables *)

| Neg of f (* negation *)
| Imp of f * f (* implication *)

infix 3 --> (* nicer syntax for implication *)
fun a --> b = Imp (a, b)

type proofState = f list (* Hilbert Calculus proof state *)

datatype proofCommand = (* command to modify the proof state *)
A1 of f * f (* insert an instantiation of an axiom schema *)

| A2 of f * f * f
| A3 of f * f
| MP of int * int (* apply modus ponens to two elements of the proof state *)

type proof = proofCommand list

a) Define a function applyCommand, which applies a proof command to a proof state and returns the new
proof state. If the proof command is not applicable, the function should raise an exception.

b) Define a function apply, which takes a list of assumptions (initial proof state) as well as a proof and
returns the final proof state.


