Prof. Dr. K. Madlener Dipl.-Inf. P. Michel Dipl.-Inf. C. Feller

University of Kaiserslautern

Department of Computer Science AG Grundlagen der Informatik

Exercise Sheet 6: Specification and Verification with Higher-Order Logic (Summer Term 2011)

Date: 26.05.2011

Exercise 1 Inductive Definitions, Lattices and Fixpoints

- a) (Prepare!) Define the reflexive, transitive closure of a relation r as inductive set.
- b) (Prepare!) Define a function whose least fixpoint is the aforementioned set.
- c) (Prepare!) Let L be a complete lattice, $a, b \in L$ and $a \leq b$. Prove that the closed interval [a, b] is a complete lattice.

```
Reminder: [a, b] := \{x. \ a \le x \le b\}
```

It is not required that you solve this exercise in Isabelle/HOL.

Exercise 2 Case Study: Inductive Sets and Fixpoint Induction

In the lecture we have seen the inductive definition of the set of even numbers:

```
inductive_set evens :: "nat set" where
  "0 ∈ evens"
| "n ∈ evens ⇒ n + 2 ∈ evens"
```

Using the generated theorem evens.induct, we can then prove that all members of the set are indeed even:

```
theorem evens_are_even: "\forall x \in \text{evens. } x \mod 2 = 0"
```

- a) Prove the theorem using the given induction rule.
- b) Define a function evenf whose fixpoint is the inductive set evens, by deriving it from the inductive definition of evens:

```
definition evenf :: "??" where "evenf M \equiv ??"
```

- c) Formulate an analogous theorem for the least fixpoint of evenf (i.e. lfp evenf), stating that all elements in the set are even.
- d) Prove the theorem using fixpoint induction, specifically the theorem <code>lfp_ordinal_induct</code>. Do not use automated methods to prove the theorem and make yourself familiar with the *Find Theorems* function of Isabelle/HOL.

Exercise 3 Case Study: Greatest Common Divisor

a) Consider the following implementation of the greatest common divisor function:

```
fun gcd :: "nat => nat => nat" where
"gcd m 0 = m" |
"gcd m n = gcd n (m mod n)"
```

Prove that the function really computes the greatest common divisor of m and n.

It might be useful to define and prove the following properties of gcd first:

- The result of gcd divides both arguments.
- Each common divisor divides the result of gcd.
- Each divisor of the result of gcd is a common divisor.
- The result of gcd is not zero if at least one argument is not zero.

Hint: In Isabelle/HOL, the property that a divides b is expressed by: a dvd b.

- b) Prove the following property of gcd: k * gcd m n = gcd (k * m) (k * n).
- c) Consider a slightly different implementation of the greatest common divisor function:

```
fun gcd :: "nat => nat => nat" where
"gcd m n = (if n = 0 then m else gcd n (m mod n))"
```

- Prove that this implementation is equivalent to the first one.
- Prove the property of b) for this implementation.
- d) Use the main property of a) to define the greatest common divisor non-recursively with the Hilbert-Choice operator (SOME), i.e. not using the Euclidean algorithm.

Prove the equivalence of this function to the original gcd.