Exercise 26: from Meseguer/Goguen
Let $\Sigma=\operatorname{sig}_{1}$, sorts N, E; functions $0: \rightarrow N, s: N \rightarrow N, 1: \rightarrow E, f: N \rightarrow E$
Assumption: There is a specification $D=(\Sigma, E)$ with finite E, such that $T:=T_{D} \cong \mathfrak{A}_{1}$. Wlog E does not contain trivial equations $t=t$.

Let $E=E_{1} \cup E_{2} \cup E_{3}$

1. E_{1} contains only ground equations
2. Equations from E_{2} match the pattern $l[x]=r, l=r[x], l[x]=r[y]$, (where $l[x]$ means that variable x occurs in the term l). I.e. no equation in E has the same variable at both sides.
3. Equations from E_{3} match the pattern $l[x]=r[x]$, i.e. at least one variable occurs on both sides.

We prove now, that $E_{2}=\emptyset, E_{3}=\emptyset$, and E_{1} must be infinite.

1. Claim: $E_{2}=\emptyset:$ Look at the cases $l[x]=r, l=r[x], l[x]=r[y]$

- $l[x]=r \in E_{2}$: Then $T_{N}=V_{N} \cup\left\{s^{n} 0 \mid n \in \mathbb{N}\right\} \cup\left\{s^{n} x \mid n \in \mathbb{N}\right\}$ and $T_{E}=V_{E} \cup\{1\} \cup\{f t \mid$ $\left.t \in T_{N}\right\}$. We have two cases: $x \in V_{N}$ or $x \in V_{E}$:
a) $x \in V_{N}$: Then $l[x] \equiv s^{n} x$ and $r \equiv s^{m} 0$, or $l[x] \equiv f s^{n} x$ and $r \in\left\{1, f s^{m} 0\right\}$. But we clearly know, that \mathfrak{A}_{1} is no model for the formulas $\forall x s^{n} x=s^{m} 0, \forall x f s^{n} x=1$, and $\forall x f s^{n} x 0 f s^{m} 0$
b) $x \in V_{E}$: The $l[x] \equiv x$ and $r \in\left\{1, f s^{m} 0\right\}$. Again we clearly know that $\forall x x=1$ and $\forall x x=f s^{m} 0$ do not hold.
We conclude that E_{2} does not contain equations of the form $l[x]=r$
- $l=r[x]$: analogous to the previous case
- $l[x]=r[y]$: Look at arbitrary ground terms substituted for y, we obtain $r^{\prime}=l[x]$. We know $\mathfrak{A}_{1} \models \forall x, y l[x]=r[y]$ implies $\mathfrak{A}_{1} \models \forall x l[x]=r^{\prime}$. The latter does not hold as seen in the first case.
We conclude that E_{2} does not contain equations of the form $l[x]=r[y]$
Together we know $E_{2}=\emptyset$

2. Similarly we prove that E_{3} is empty. The main problem is to identify the cases, where a variable may occur twice.
3. Now to E_{1} : Let $l=r \in E_{1}$, then $l \equiv s^{n} 0$ and $r \equiv s^{m} 0$ or $l \in\left\{f s^{n} 0,1\right\}$ and $r \in\left\{f s^{m} 0,1\right\}$.

If $\mathfrak{A}_{1} \models s^{n} 0=s^{m} 0$ then $n=m$ and we have a trivial equation.
If $\mathfrak{A}_{1} \models f s^{n} 0=f s^{m} 0$ then only for $n \neq m$ we have a non-trivial equation, with both n, m either even or odd.

If $\mathfrak{A}_{1} \models f s^{n} 0=1$ then n must be odd.
Now assume E_{1} to be finite. Then $E_{1}=\left\{f s^{n_{i}}=f s^{m_{i}} \mid i=1, \ldots k\right\} \cup\left\{f s^{l_{i}}=1 \mid i=1, \ldots k^{\prime}\right\}$. Let $q=1+\max \left(\left\{l_{i}\right\} \cup\left\{m_{i}\right\} \cup\left\{n_{i}\right\}\right)$. Then we know $E_{1} \nvdash f s^{q} 0=1$ and $E_{1} \nvdash f s^{q} 0=s^{q} 0$. Since $E_{2}=\emptyset$ and $E_{3}=\emptyset$ we know $\mathfrak{A}_{1} \nsupseteq T$ for finite E_{1}.

