sheet 12

Exercises to the Lecture FSVT

Prof. Dr. Klaus Madlener

Exercise 37: [Completion]

Let $E = \{x + 0 = x, x + s(y) = s(x + y), x + p(y) = p(x + y), x - 0 = x, x - s(y) = p(x - y), x - p(y) = s(x - y), s(p(x)) = x, p(s(x)) = x, ((x + y) - x) = y, (x + (y - x)) = y, ((x - y) + y) = x\}$

1. Complete E using any reduction ordering you like.

Be verbose, write down for at least 5 most general unificators how you determined them when looking for critical pairs. Write down all critical pairs, you have looked at.

Hint: Start with CPs of the last three equations.

2. Show, that completion will not succeed. Make a suggestion, what can be done on this problem.

Exercise 38: [Completion modulo \sim]

Let > be a Knuth-Bendix-ordering with weight function φ defined by $\varphi(s) = 1$ for $s \in F \cup V$.

Let $E = \{f(x+y) \to f(x) * f(y), f(0) \to 1, x+0 \to x, 0+x \to x, x*1 \to x, 1*x \to x\}$ and $G = \{x+y=y+x, (x+y)+z=x+(y+z), x*y=y*x, (x*y)*z=x*(y*z)\}$. Complete E modulo G with respect to >.

Exercise 39: [Implementation by equations]

Let $g: \mathbb{N}^{n+1} \to \mathbb{N}, h: \mathbb{N}^n \to \mathbb{N}$ be primitivly recursive functions and let $f: \mathbb{N}^n \to \mathbb{N}$ be defined by:

 $f(x_1, \dots, x_n) = \mu_{z < h(x_1, \dots, x_n)}[g(x_1, \dots, x_n, z) = 0]$

Give an equation set $G_{\hat{f}}$ and a function symbol \hat{f} , such that \hat{f} implements the function f in $G_{\hat{f}}$.

Delivery: until 2009/01/22 FR:G12 Mo:G06, by EMail to madlener@informatik.uni-kl.de