Exercises to the Lecture FSVT

Exercise 26:

Let INT2 be the specification of integers from example 7.9 of the lecture. We combine INT2 with BOOL and $((\},\{<\}), E)$ to obtain a specification INT3, where
$E=\{<(0, \operatorname{succ}(x))=$ true,$<(\operatorname{pred}(x), 0)=$ true,$<(0, \operatorname{pred}(x))=$ false,$<(\operatorname{succ}(x), 0)=$ false $,<(\operatorname{pred}(x), \operatorname{pred}(y))=<(x, y),<(\operatorname{succ}(x), \operatorname{succ}(y))=<(x, y)\}$

1. Check, whether $\left.T_{\mathrm{INT} 3}\right|_{\text {bool }} \xlongequal{\cong}$ Bool. Why would this be important? Hint: Look at $<(\operatorname{succ}(\operatorname{pred}(x)), \operatorname{pred}(\operatorname{succ}(y)))$.
2. Show that INT3 can not be fixed by additional equations.
3. Find further problems of INT3.
4. Make a suggestion for a specification INT4, such that $\left.T_{\text {INT4 }}\right|_{\text {int }} \cong \mathbb{Z},\left.T_{\text {INT4 }}\right|_{\text {bool }} \cong$ Bool and $<$ is properly defined by its equations. Hint: Consider further function symbols.

Exercise 27:

Let specifications ELEMENT and NAT be given as:

```
spec ELEMENT
uses BOOL
sorts E
opns \(\quad\) eq: \(\mathrm{E}, \mathrm{E} \rightarrow\) Bool
vars \(\quad \mathrm{x}, \mathrm{y}, \mathrm{z}: \rightarrow \mathrm{E}\)
eqns \(\quad e q(x, x)=\) true
    \(\mathrm{eq}(\mathrm{x}, \mathrm{y})=\mathrm{eq}(\mathrm{y}, \mathrm{x})\)
    \(\mathrm{eq}(\mathrm{x}, \mathrm{y})=\) true and \(\mathrm{eq}(\mathrm{y}, \mathrm{z})=\) true implies \(\mathrm{eq}(\mathrm{x}, \mathrm{z})=\) true
spec NAT
uses BOOL
sorts N
opns \(0: \rightarrow \mathrm{N}\)
    \(\mathrm{s}: \mathrm{N} \rightarrow \mathrm{N}\)
    equal : \(\mathrm{N}, \mathrm{N} \rightarrow \mathrm{Bool}\)
vars \(\quad \mathrm{n}, \mathrm{m}: \rightarrow \mathrm{N}\)
eqns \(\quad\) equal \((0,0)=\) true
    equal \((0, \mathrm{~s}(\mathrm{n})=\) false
    equal( \(\mathrm{s}(\mathrm{n}), 0)=\) false
    equal( \(\mathrm{s}(\mathrm{n}), \mathrm{s}(\mathrm{m}))=\operatorname{equal}(\mathrm{n}, \mathrm{m})\)
```

Give a parametrized specification for sets over ELEMENT with the operations INSERT and REMOVE and prove:

1. The signature morphism $\sigma:$ ELEMENT \rightarrow NAT given by $\sigma(\mathrm{E})=\mathrm{N}$ and $\sigma(\mathrm{eq}=$ equal) is no specification morphism.
2. $\left(T_{\mathrm{NAT}}\right) \mid \sigma$ is a model of ELEMENT, i.e. it is a correct parameter assignment.

3 . Does your specification satisfy $\left.\left(T_{\mathrm{VALUE}}\right)\right|_{\mathrm{NAT}} \cong T_{\mathrm{NAT}}$, i.e. is VALUE an extension of NAT? Is it an enrichment?

Exercise 28:

Make yourself familiar with the chapter on abstract reduction systems. Use the literature. Make sure you know proofs of lemmata 8.3, 8.5, theorem 8.6, theorem 8.16, lemma 8.18.

Exercise 29:

Consider the $m u$-calculus with the following rules for arbitrary $X, Y \in\{m, i, u\}^{*}$:

$$
\left\{\frac{X i}{X i u}, \frac{m Y}{m Y Y}, \frac{X i i i Y}{X u Y}, \frac{X u u Y}{X Y}\right\}
$$

1. Is the reduction system it is based on terminating?
2. Do $m i \rightarrow m u, m u \rightarrow m i$ resp. hold? Prove your claim.

Have nice holidays!

Delivery: until 2008-12-18, Fr:G11 Mo:G02,
by EMail to madlener@informatik.uni-kl.de

