sheet 9

Exercises to the Lecture FSVT

```
Prof. Dr. Klaus Madlener
```

Exercise 26:

Let INT2 be the specification of integers from example 7.9 of the lecture. We combine INT2 with BOOL and $((\{\}, \{<\}), E)$ to obtain a specification INT3, where

 $E = \{ < (0, \operatorname{succ}(x)) = \operatorname{true}, < (\operatorname{pred}(x), 0) = \operatorname{true}, < (0, \operatorname{pred}(x)) = \operatorname{false}, < (\operatorname{succ}(x), 0) = \operatorname{false}, < (\operatorname{pred}(x), \operatorname{pred}(y)) = < (x, y), < (\operatorname{succ}(x), \operatorname{succ}(y)) = < (x, y) \}$

- 1. Check, whether $T_{\text{INT3}} \mid_{\text{bool}} \cong$ Bool. Why would this be important? Hint: Look at $< (\operatorname{succ}(\operatorname{pred}(x)), \operatorname{pred}(\operatorname{succ}(y))).$
- 2. Show that INT3 can not be fixed by additional equations.
- 3. Find further problems of INT3.
- 4. Make a suggestion for a specification INT4, such that $T_{\text{INT4}}|_{\text{int}} \cong \mathbb{Z}$, $T_{\text{INT4}}|_{\text{bool}} \cong$ Bool and < is properly defined by its equations. Hint: Consider further function symbols.

Exercise 27:

Let specifications ELEMENT and NAT be given as:

```
ELEMENT
spec
         BOOL
uses
sorts
         Ε
         eq: E, E \rightarrow Bool
opns
         x, y, z :\rightarrow E
vars
         eq(x, x) = true
eqns
         eq(x, y) = eq(y, x)
         eq(x, y) = true and eq(y, z) = true implies eq(x, z) = true
         NAT
spec
         BOOL
uses
         Ν
sorts
opns
         0 :\rightarrow N
         s: N \to N
         equal : N, N \rightarrow Bool
         n, m :\rightarrow N
vars
         equal(0,0) = true
eqns
         equal(0, s(n)) = false
         equal(s(n), 0) = false
         equal(s(n), s(m)) = equal(n, m)
```

Give a parametrized specification for sets over ELEMENT with the operations INSERT and REMOVE and prove:

- 1. The signature morphism σ : ELEMENT \rightarrow NAT given by $\sigma(E) = N$ and $\sigma(eq = equal)$ is no specification morphism.
- 2. $(T_{\text{NAT}})|\sigma$ is a model of ELEMENT, i.e. it is a correct parameter assignment.
- 3. Does your specification satisfy $(T_{\text{VALUE}})|_{\text{NAT}} \cong T_{\text{NAT}}$, i.e. is VALUE an extension of NAT? Is it an enrichment?

Exercise 28:

Make yourself familiar with the chapter on abstract reduction systems. Use the literature. Make sure you know proofs of lemmata 8.3, 8.5, theorem 8.6, theorem 8.16, lemma 8.18.

Exercise 29:

Consider the *mu*-calculus with the following rules for arbitrary $X, Y \in \{m, i, u\}^*$:

$$\{\frac{Xi}{Xiu},\frac{mY}{mYY},\frac{XiiiY}{XuY},\frac{XuuY}{XY}\}$$

1. Is the reduction system it is based on terminating?

2. Do $mi \rightarrow mu$, $mu \rightarrow mi$ resp. hold? Prove your claim.

Have nice holidays!

Delivery: until 2008-12-18, Fr:G11 Mo:G02, by EMail to madlener@informatik.uni-kl.de