
Abstract State Machines: ASM- Specification’s method

Fundamentals

Introduction to ASM: Fundamentals

Adaptable and flexible specification’s technique

Modeling in the correct abstraction level

Natural and easy understandable semantics.

Material: See http://www.di.unipi.it/AsmBook/

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 45



Abstract State Machines: ASM- Specification’s method

Fundamentals

Theoretical fundaments: ASM Theses
Abstract state machines as computation models

Turing Machines (RAM, part.rec. Fct,..) serve as computation model,
e.g. fixing the notion of computable functions. In principle is possible to
simulate every algorithmic solution with an appropriate TM.

Problem: Simulation is not easy, because there are different abstraction
levels of the manipulated objects and different granularity of the steps.

Question: Is it possible to generalize the TM in such a way that every
algorithm, independent from it’s abstraction level, can be naturally and
faithfully simulated with such generalized machine?
How would the states and instructions of such a machine look like?

Easy: If Condition Then Action
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ASM Thesis
ASM Thesis The concept of abstract state machine provides a universal
computation model with the ability to simulate arbitrary algorithms on
their natural levels of abstraction. Yuri Gurevich

Deterministic ASM

Sequential ASM

Parallel ASM

Real Time ASM

Synchronous calculations

Distributed ASM

Basic Model

Asynchronous calculations
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Sequential ASM Thesis

I The model of the sequential ASM’s is universal for all the sequential
algorithms.

I Each sequential algorithm, independent from his abstraction level,
can be simulated step by step by a sequential ASM.

To confirm this thesis we need definitions for sequential algorithms and
for sequential ASM‘s.

 Postulates for sequentiality
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Sequentiality Postulates

I Sequential time:
Computations are linearly arranged.

I Abstract states:
Each kind of static mathematical reality can be represented by a
structure of the first order logic (PL 1). (Tarski)

I Bounded exploration:
Each computation step depends only on a finite (depending only on
the algorithm) bounded state information.

Y. Gurevich:: Sequential Abstract State Machines Capture
Sequential Algorithms, ACM Transactions on Computational Logic,
1, 2000, 77-111.
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The postulates in detail: Sequential time

Let A be a sequential algorithm. To A belongs:
I A set (Set of states) S(A) of States of A.
I A subset I(A) of S(A) which elements are called initial states of A.
I A mapping τA : S(A)→ S(A), the one-step-function of A.

An run (or a computation) of A is a finite or infinite sequence of states of
A

X0,X1,X2, . . .

in which X0 is an initial state and τA(Xi) = Xi+1 holds for each i .

Logical time and not physical time.
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Abstract States

Definition 3.1 (Equivalent algorithms). Algorithms A and B are
equivalent if S(A) = S(B), I(A) = I(B) and τA = τB .
In particular equivalent algorithms have the same runs.

Let A be a sequential algorithm:
I States of A are first order (PL1) structures.
I All the states of A have the same vocabulary (signature).
I The one-step-function doesn’t change the base set (universe) B(X )

of a state.
I S(A) and I(A) are closed under isomorphisms and each isomorphism

from state X to state Y is also an isomorphism of state τA(X ) to
τA(Y ).
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Exercises
States: Signatures, interpretations, universe, terms, ground terms, value
...
Signatures (vocabulary): function- and relation-names, arity (n ≥ 0)

Assumption: true, false, undef (constants), Boole (monadic) and = are
contained in every signature.
The interpretation of true is different from the one for false, undef .
Relations are considered as functions with the value of true, false in the
interpretations.
Monadic relations are seen as subsets of the base set of the interpretations.
Let Val(t,X ) be the value in state X for a ground term t that is in the
vocabulary.
Functions are divided in dynamic and static, according whether they can
change or not, when a state transition occurs.
Exercise: Model the states of a TM as an abstract state.

Model the states of the standard Euclidean algorithm.
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Bounded exploration
I Unbounded-Parallelism: Consider the following graph-reachability

algorithm that iterates the following step. ( It is assumed that at the
beginning only one node satisfies the unary relation R.)

do for all x , y with Edge(x , y) ∧ R(x) ∧ ¬R(y) R(y) := true

In each computation step an unbounded number of local changes is
made on a global state.

I Unbounded-Step-Information:
Test for isolated nodes in a graph:

if ∀x∃y Edge(x , y) then Output := false else Output := true

In one step only bounded local changes are made, though an
unbounded part of the state is considered in one step.
How can these properties be formalized? Atomic actions
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Update sets
Consider the structure X as memory:

If f is a function name of arity j and a a j-tuple of base elements from X ,
then the pair (f , a) is called a location and ContentX (f , a) is the value of
the interpretation of f for a in X .

Is (f , a) a location of X and b an element of X , then (f , a, b) is called an
update of X . The update is trivial when b = ContentX (f , a).

To make (fire) an update, the actual content of the location is replaced
by b.

A set of updates of X is consistent when in the set there is no pair of
updates with the same location and different values.
A set ∆ of updates is executed by making all updates in the set
simultaneously (in case the set is consistent, in other case nothing is
done).
The result is denoted by X + ∆.
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Update sets of algorithms, Reachable elements
Lemma 3.2. If X ,Y are structures over the same signature and with the
same base set, then there is a unique consistent set ∆ of non-trivial
updates of X with Y = X + ∆. Let ∆� Y − X.

Definition 3.3. Let X be a state of algorithm A. According to the
definition, X and τA(X ) have the same signature and base set. Set:

∆(A,X ) � τA(X )− X i.e. τA(X ) = X + ∆(A,X )

How can we bring up the elements of the base set in the description
of the algorithm at all?  Using the ground terms of the signature.

Definition 3.4 (Reachable element). An element a of a structure X is
reachable when a = Val(t,X ) for a ground term t in the vocabulary of X.
A location (f , a) of X is reachable when each element in the tuple a is
reachable.
An update (f , a, b) of X is reachable when (f , a) and b are reachable.
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Bounded exploration postulate

Two structures X and Y with the same vocabulary Sig coincide on a set
T of Sig- terms, when Val(t,X ) = Val(t,Y ) for all t ∈ T . The
vocabulary (signature) of an algorithm is the vocabulary of his states.

Let A be a sequential algorithm.
I There exist a finite set T of terms in the vocabulary of A, so that:

∆(A,X ) = ∆(A,Y ), for all states X ,Y of A, that coincide on T .
Intuition: Algorithm A examines only the part of a state that is reachable
with the set of terms T . If two states coincide on this term-set, then the
update-sets of the algorithm for both states should be the same.

The set T is a bounded-exploration witness for A.
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Example

Example 3.5. Consider algorithm A:

if P(f) then f := S(f)

States with interpretations with base set N, P subset of the natural
numbers, for S the successor function and f a constant.

Evidently A fulfills the postulates of sequential time and abstract states.

One could believe that
T0 = {f ,P(f ),S(f )} is a bounded-exploration witness for A.
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Example: Continued

Let X be the canonical state of A with f = 0 and P(0) holding.

Set a� Val(true,X ) and b � Val(false,X ), so that

Val(P(0),X ) = Val(true,X ) = a.

Let Y be the state that is obtained out of X through reinterpretation of
true as b and false as a, i.e. Val(true,Y ) = b and Val(false,Y ) = a.
The values of f and P(0) are left unchanged:

Val(P(0),Y ) = a, thus P(0) is not valid in Y .

Consequently X ,Y coincide on T0 but ∆(A,X ) 6= ∅ = ∆(A,Y ).

The set T = T0 ∪ {true} is a bounded-exploration witness for A.
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Sequential algorithms

Definition 3.6 (Sequential algorithm). A sequential algorithm is an
object A, which fulfills the three postulates.
In particular A has a vocabulary and a bounded-exploration witness T .
Without loss of generality (w.l.o.g.) T is subterm-closed and contains
true, false, undef . The terms of T are called critical and their
interpretations in a state X are called critical values in X.

Lemma 3.7. If (f , a1, ..., aj , a0) is an update in ∆(A,X ), then all the
elements a0, a1, ..., aj are critical values in X.

Proof: exercise (Proof by contradiction).
The set of the critical terms does not depend of X , thus there is a fixed
upper bound for the size of ∆(A,X ) and A changes in every step a
bounded number of locations. Each one of the updates in ∆(A,X ) is an
atomic action of A. I.e. ∆(A,X ) is a bounded set of atomic actions of A.
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Sequential ASM-programs: Update rules
Definition 3.8 (Update rule). An update rule over the signature Sig has
the form

f (t1, ..., tj) := t0

in which f is a function and ti are (ground) terms in Sig. To fire the rule
in the Sig-structure X, compute the values ai = Val(ti ,X ) and execute
update ((f , a1, ..., aj), a0) over X.
Parallel update rule over Sig: Let Ri be update rules over Sig, then
par

R1
R2
. Notation: Block (when empty skip)
.
.
Rk

endpar fires through simultaneously firing of Ri .
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Sequential ASM-programs
Definition 3.9 (Semantics of update rules). If R is an update rule
f (t1, ..., tj) := t0 and ai = Val(ti ,X ) then set

∆(R,X )� {(f , (a1, ..., aj), a0)}

If R is a par-update rule with components R1, ...Rk then set
∆(R,X )� ∆(R1,X ) ∪ · · · ∪∆(Rk,X ).

Consequence 3.10. There exists in particular for each state X a rule
RX that uses only critical terms with ∆(RX ,X ) = ∆(A,X ).

Notice: If X ,Y coincide on the critical terms, then ∆(RX ,Y ) = ∆(A,Y )
holds. If X ,Y are states and ∆(RX ,Z ) = ∆(A,Z ) for a state Z , that is
isomorphic to Y , then also ∆(RX ,Y ) = ∆(A,Y ) holds.
Consider the equivalence relation EX (t1, t2)� Val(t1,X ) = Val(t2,X )
on T .
X ,Y are T -similar, when EX = EY  ∆(RX ,Y ) = ∆(A,Y ). Exercise
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Sequential ASM-programs
Definition 3.11. Let ϕ be a boolean term over Sig (i.e. containing
ground equations, not, and, or) and R1,R2 rules over Sig, then

if ϕ then R1
else R2
endif is a rule

Semantic:: To fire the rule in state X evaluate ϕ in X. If the result is
true, then ∆(R,X ) = ∆(R1,X ), if not ∆(R,X ) = ∆(R2,X ).

Definition 3.12 (Sequential ASM program). A
sequential ASM program Π over the signature Sig is a rule over Sig.
According to this ∆(Π,X ) is well defined for each Sig-structure X. Let
τΠ(X )� X + ∆(Π,X ).

Lemma 3.13. Basic result: For each sequential algorithm A over Sig
there’s a sequential ASM-programm Π over Sig with ∆(Π,X ) = ∆(A,X )
for all the states X of A.
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Sequential ASM-machines

Definition 3.14 (A sequential abstract-state-machine (seq-ASM)). A
seq-ASM B over the signature Σ is given through:

I A sequential ASM-programm Π over Σ.
I A set S(B) of interpretations of Σ that is closed under isomorphisms

and under the mapping τΠ .
I A subset I(B) ⊂ S(B), that is closed under isomorphisms.

Theorem 3.15. For each sequential algorithm A there is an equivalent
sequential ASM.
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Example

Example 3.16. Maximal interval-sum.[Gries 1990]. Let A be a function
from {0, 1, ..., n − 1} → R and i , j , k ∈ {0, 1, ..., n}.
For i ≤ j : S(i , j)


∑
i≤k<j A(k). In particular S(i , i) = 0.

Problem: Compute S 
 maxi≤jS(i , j).

Define y(k)
 maxi≤j≤kS(i , j). Then y(0) = 0, y(n) = S and

y(k+1) = max{maxi≤j≤kS(i , j),maxi≤k+1S(i , k+1)} = max{y(k), x(k+1)}

where x(k)
 maxi≤kS(i , k), thus x(0) = 0 and

x(k + 1) = max{maxi≤kS(i , k + 1),S(k + 1, k + 1)}
= max{maxi≤k(S(i , k) + A(k)), 0}
= max{(maxi≤kS(i , k)) + A(k), 0}

= max{x(k) + A(k), 0}
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Continuation of the example
Due to y(k) ≥ 0, we have

y(k + 1) = max{y(k), x(k + 1)} = max{y(k), x(k) + A(k)}

Assumption: The 0-ary dynamic functions k, x , y are 0 in the initial
state. The required algorithm is then

if k 6= n then
par
x := max{x + A(k), 0}
y := max{y , x + A(k)}
k := k + 1

else S := y

Exercise 3.17. Simulation
Define an ASM, that implements Markov’s Normal-algorithms.
e.g. for ab → A, ba→ B, c → C
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Detailed definition of ASMs

Part 1: Abstract states and update sets

Part 2: Mathematical Logic

Part 3: Transition rules and runs of ASMs

Part 4: The reserve of ASMs

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 1
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Part 1

Abstract states and update sets

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 2
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Signatures

Definition. A signature Σ is a finite collection of function names.

Each function name f has an arity , a non-negative integer.

Nullary function names are called constants.

Function names can be static or dynamic .

Every ASM signature contains the static constants
undef , true, false.

Signatures are also called vocabularies.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 3
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Classification of functions

controlled out

derived

(monitored)
in

(interaction)

static

shared

dynamic

basic

function/relation/location

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 4
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States

Definition. A state A for the signature Σ is a non-empty
set X , the superuniverse of A, together with an interpre-
tation f A of each function name f of Σ.

If f is an n-ary function name of Σ, then f A: Xn → X .

If c is a constant of Σ, then cA ∈ X .

The superuniverse X of the state A is denoted by |A|.

The superuniverse is also called the base set of the state.

The elements of a state are the elements of the superuniverse.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 5
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States (continued)

The interpretations of undef , true, false are pairwise different.

The constant undef represents an undetermined object.

The domain of an n-ary function name f in A is the set of all n-tuples
(a1, . . . , an) ∈ |A|n such that f A(a1, . . . , an) �= undef A.

A relation is a function that has the values true, false or undef .

We write a ∈ R as an abbreviation for R(a) = true.

The superuniverse can be divided into subuniverses represented by
unary relations.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 6
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Locations

Definition. A location of A is a pair

(f , (a1, . . . , an))

where f is an n-ary function name and a1, . . . , an are elements
of A.

The value f A(a1, . . . , an) is the content of the location in A.

The elements of the location are the elements of the set
{a1, . . . , an}.
We write A(l) for the content of the location l in A.

Notation. If l = (f , (a1, . . . , an)) is a location of A and α is a function
defined on |A|, then α(l) = (f , (α(a1), . . . , α(an))).

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 7
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Updates and update sets

Definition. An update for A is a pair (l , v ), where l is a location
of A and v is an element of A.

The update is trivial , if v = A(l).

An update set is a set of updates.

Definition. An update set U is consistent, if it has no clashing
updates, i.e., if for any location l and all elements v ,w ,
if (l , v ) ∈ U and (l ,w ) ∈ U , then v = w .

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 8
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Firing of updates

Definition. The result of firing a consistent update set U in a
state A is a new state A + U with the same superuniverse as A
such that for every location l of A:

(A + U )(l) =

{
v , if (l , v ) ∈ U ;
A(l), if there is no v with (l , v ) ∈ U .

The state A + U is called the sequel of A with respect to U .

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 9
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Homomorphisms and isomorphisms

Let A and B be two states over the same signature.

Definition. A homomorphism from A to B is a function α
from |A| into |B| such that α(A(l)) = B(α(l)) for each loca-
tion l of A.

Definition. An isomorphism from A to B is a homomorphism
from A to B which is a ono-to-one function from |A| onto |B|.

Lemma (Isomorphism). Let α be an isomorphism from A to B.
If U is a consistent update set for A, then α(U ) is a consistent
update set for B and α is an isomorphism from A+U to B+α(U ).

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 10
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Composition of update sets

U ⊕ V = V ∪ {(l , v ) ∈ U | there is no w with (l ,w ) ∈ V }

Lemma. Let U ,V ,W be update sets.

(U ⊕ V ) ⊕ W = U ⊕ (V ⊕ W )

If U and V are consistent, then U ⊕ V is consistent.

If U and V are consistent, then A + (U ⊕V ) = (A +U ) +V .

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 11
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Part 2

Mathematical Logic

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 12
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Terms

Let Σ be a signature.

Definition. The terms of Σ are syntactic expressions generated
as follows:

Variables x , y , z , . . . are terms.

Constants c of Σ are terms.

If f is an n-ary function name of Σ, n > 0, and t1, . . . , tn are
terms, then f (t1, . . . , tn) is a term.

A term which does not contain variables is called a ground term.

A term is called static , if it contains static function names only.

By t s
x we denote the result of replacing the variable x in term t

everywhere by the term s (substitution of s for x in t).

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 13
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Variable assignments

Let A be a state.

Definition. A variable assignment for A is a finite function ζ
which assigns elements of |A| to a finite number of variables.

We write ζ [x �→ a] for the variable assignment which coincides with ζ
except that it assigns the element a to the variable x :

ζ [x �→ a](y) =

{
a, if y = x ;
ζ(y), otherwise.

Variable assignments are also called environments.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 14
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Evaluation of terms

Definition. Let A be a state of Σ.
Let ζ be a variable assignment for A.
Let t be a term of Σ such that all variables of t are defined in ζ.
The value [[t ]]Aζ is defined as follows:

[[x ]]Aζ = ζ(x )

[[c]]Aζ = cA

[[f (t1, . . . , tn)]]Aζ = f A([[t1]]
A
ζ , . . . , [[tn ]]Aζ )

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 15
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Evaluation of terms (continued)

Lemma (Coincidence). If ζ and η are two variable
assignments for t such that ζ(x ) = η(x ) for all
variables x of t , then [[t ]]Aζ = [[t ]]Aη .

Lemma (Homomorphism). If α is a homomorphism
from A to B, then α([[t ]]Aζ ) = [[t ]]Bα◦ζ for each term t .

Lemma (Substitution). Let a = [[s ]]Aζ .

Then [[t s
x ]]Aζ = [[t ]]A

ζ [x �→a]
.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 16
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Formulas

Let Σ be a signature.

Definition. The formulas of Σ are generated as follows:

If s and t are terms of Σ, then s = t is a formula.

If ϕ is a formula, then ¬ϕ is a formula.

If ϕ and ψ are formulas, then (ϕ ∧ ψ), (ϕ ∨ ψ) and (ϕ → ψ)
are formulas.

If ϕ is a formula and x a variable, then (∀x ϕ) and (∃x ϕ) are
formulas.

A formula s = t is called an equation.

The expression s �= t is an abbreviation for ¬(s = t).

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 17
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Formulas (continued)

symbol name meaning

¬ negation not

∧ conjunction and

∨ disjunction or (inclusive)

→ implication if-then

∀ universal quantification for all

∃ existential quantification there is

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 18
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Formulas (continued)

ϕ ∧ ψ ∧ χ stands for ((ϕ ∧ ψ) ∧ χ),

ϕ ∨ ψ ∨ χ stands for ((ϕ ∨ ψ) ∨ χ),

ϕ ∧ ψ → χ stands for ((ϕ ∧ ψ) → χ), etc.

The variable x is bound by the quantifier ∀ (∃) in ∀x ϕ (∃x ϕ).

The scope of x in ∀x ϕ (∃x ϕ) is the formula ϕ.

A variable x occurs free in a formula, if it is not in the scope of a
quantifier ∀x or ∃x .

By ϕ t
x we denote the result of replacing all free occurrences of the

variable x in ϕ by the term t . (Bound variables are renamed.)
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Semantics of formulas

[[s = t ]]Aζ =

{
true, if [[s ]]Aζ = [[t ]]Aζ ;

false, otherwise.

[[¬ϕ]]Aζ =

{
true, if [[ϕ]]Aζ = false;

false, otherwise.

[[ϕ ∧ ψ]]Aζ =

{
true, if [[ϕ]]Aζ = true and [[ψ]]Aζ = true;

false, otherwise.

[[ϕ ∨ ψ]]Aζ =

{
true, if [[ϕ]]Aζ = true or [[ψ]]Aζ = true;

false, otherwise.

[[ϕ→ ψ]]Aζ =

{
true, if [[ϕ]]Aζ = false or [[ψ]]Aζ = true;

false, otherwise.

[[∀x ϕ]]Aζ =

{
true, if [[ϕ]]Aζ[x �→a] = true for every a ∈ |A|;
false, otherwise.

[[∃x ϕ]]Aζ =

{
true, if there exists an a ∈ |A| with [[ϕ]]Aζ[x �→a] = true;

false, otherwise.
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Coincidence, Substitution, Isomorphism

Lemma (Coincidence). If ζ and η are two variable
assignments for ϕ such that ζ(x ) = η(x ) for all free
variables x of ϕ, then [[ϕ]]Aζ = [[ϕ]]Aη .

Lemma (Substitution). Let t be a term and a = [[t ]]Aζ .

Then [[ϕ t
x ]]Aζ = [[ϕ]]A

ζ [x �→a]
.

Lemma (Isomorphism). Let α be an isomorphism
from A to B. Then [[ϕ]]Aζ = [[ϕ]]Bα◦ζ .
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Models

Definition. A state A is a model of ϕ (written A |= ϕ),
if [[ϕ]]Aζ = true for all variable assignments ζ for ϕ.
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Part 3

Transition rules and runs of ASMs
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Transition rules

Skip Rule: skip

Meaning: Do nothing

Update Rule: f (s1, . . . , sn) := t

Meaning: Update the value of f at (s1, . . . , sn) to t .

Block Rule: P par Q

Meaning: P and Q are executed in parallel.

Conditional Rule: if ϕ then P else Q

Meaning: If ϕ is true, then execute P , otherwise execute Q .

Let Rule: let x = t in P

Meaning: Assign the value of t to x and then execute P .
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Transition rules (continued)

Forall Rule: forall x with ϕ do P

Meaning: Execute P in parallel for each x satisfying ϕ.

Choose Rule: choose x with ϕ do P

Meaning: Choose an x satisfying ϕ and then execute P .

Sequence Rule: P seq Q

Meaning: P and Q are executed sequentially, first P and then Q .

Call Rule: r (t1, . . . , tn)

Meaning: Call transition rule r with parameters t1, . . . , tn .
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Variations of the syntax

if ϕ then
P

else
Q

endif

if ϕ then P else Q

[do in-parallel]
P1
...
Pn

[enddo]

P1 par . . . par Pn

{P1, . . . ,Pn} P1 par . . . par Pn
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Variations of the syntax (continued)

do forall x : ϕ
P

enddo

forall x with ϕ do P

choose x : ϕ
P

endchoose

choose x with ϕ do P

step
P

step
Q

P seq Q
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Example

Example 3.18. Sorting of linear data structures in-place,
one-swap-a-time.
Let a : Index → Value

choose x , y ∈ Index : x < y ∧ a(x) > a(y)
do in − parallel
a(x) := a(y)
a(y) := a(x)

Two kinds of non-determinisms:
“Don‘t-care” non-determinism: random choice
choose x ∈ {x1, x2, ..., xn} with ϕ(x) do

R(x)
“Don‘t-know” indeterminism

Extern controlled actions and events (e.g. input actions)
monitored f : X → Y
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Free and bound variables

Definition. An occurrence of a variable x is free in a transition
rule, if it is not in the scope of a let x , forall x or choose x .

let x = t in P︸︷︷︸
scope of x

forall x with ϕ do P︸ ︷︷ ︸
scope of x

choose x with ϕ do P︸ ︷︷ ︸
scope of x
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Rule declarations

Definition. A rule declaration for a rule
name r of arity n is an expression

r (x1, . . . , xn) = P

where

P is a transition rule and

the free variables of P are contained in the
list x1, . . . , xn .

Remark: Recursive rule declarations are allowed.
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Abstract State Machines

Definition. An abstract state machine M consists of

a signature Σ,

a set of initial states for Σ,

a set of rule declarations,

a distinguished rule name of arity zero called the
main rule name of the machine.
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Semantics of transition rules

The semantics of transition rules is defined in a calculus by rules:

Premise1 · · · Premisen
Conclusion

Condition

The predicate

yields(P , A, ζ,U )

means:

The transition rule P yields the update set U in
state A under the variable assignment ζ.
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Semantics of transition rules (continued)

yields(skip, A, ζ, ∅)

yields(f (s1, . . . , sn) := t , A, ζ, {(l , v )})
where l = (f , ([[s1]]

A
ζ , . . . , [[sn ]]Aζ ))

and v = [[t ]]Aζ

yields(P , A, ζ,U ) yields(Q , A, ζ,V )

yields(P par Q , A, ζ,U ∪ V )

yields(P , A, ζ,U )

yields(if ϕ then P else Q , A, ζ,U )
if [[ϕ]]Aζ = true

yields(Q , A, ζ,V )

yields(if ϕ then P else Q , A, ζ,V )
if [[ϕ]]Aζ = false

yields(P , A, ζ[x �→ a],U )

yields(let x = t in P , A, ζ,U )
where a = [[t ]]Aζ

yields(P , A, ζ[x �→ a],Ua) for each a ∈ I

yields(forall x with ϕ do P , A, ζ,
⋃

a∈I Ua)
where I = range(x , ϕ, A, ζ)
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Semantics of transition rules (continued)

yields(P , A, ζ[x �→ a],U )

yields(choose x with ϕ do P , A, ζ,U )
if a ∈ range(x , ϕ, A, ζ)

yields(choose x with ϕ do P , A, ζ, ∅) if range(x , ϕ, A, ζ) = ∅

yields(P , A, ζ,U ) yields(Q , A + U , ζ,V )

yields(P seq Q , A, ζ,U ⊕ V )
if U is consistent

yields(P , A, ζ,U )

yields(P seq Q , A, ζ,U )
if U is inconsistent

yields(P t1···tn
x1···xn , A, ζ,U )

yields(r (t1, . . . , tn), A, ζ,U )

where r (x1, . . . , xn) = P is a
rule declaration of M

range(x , ϕ, A, ζ) = {a ∈ |A| : [[ϕ]]Aζ[x �→a] = true}
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Coincidence, Substitution, Isomorphisms

Lemma (Coincidence). If ζ(x ) = η(x ) for all free variables x of
a transition rule P and P yields U in A under ζ, then P yields U
in A under η.

Lemma (Substitution). Let t be a static term and a = [[t ]]Aζ .

Then the rule P t
x yields the update set U in state A under ζ iff

P yields U in A under ζ [x �→ a].

Lemma (Isomorphism). If α is an isomorphism from A to B
and P yields U in A under ζ, then P yields α(U ) in B under
α ◦ ζ.
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Move of an ASM

Definition. A machine M can make a move from state A

to B (written A
M

=⇒ B), if the main rule of M yields a
consistent update set U in state A and B = A + U .

The updates in U are called internal updates.

B is called the next internal state.

If α is an isomorphism from A to A′, the following diagram commutes:

A
M

=⇒ B

α ↓ ↓ α

A′ M
=⇒ B′
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Run of an ASM

Let M be an ASM with signature Σ.

A run of M is a finite or infinite sequence A0, A1, . . . of states
for Σ such that

A0 is an initial state of M

for each n,

– either M can make a move from An into the next internal
state A′

n and the environment produces a consistent set of
external or shared updates U such that An+1 = A′

n + U ,

– or M cannot make a move in state An and An is the last state
in the run.

In internal runs, the environment makes no moves.

In interactive runs, the environment produces updates.
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Example

Example 3.19. Minimal spanning tree:: Prim’s algorithm

Two separated phases: initial, run

Signature: Weighted graph (connected, without loops) given by sets
NODE, EDGE, . . . functions
weight : EDGE → REAL, frontier : EDGE → Bool , tree : EDGE → Bool

if mode = initial then
choose p : NODE
Selected(p) := true
forall e : EDGE : p ∈ endpoints(e)
frontier(e) := true

mode := run
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Example: Prim’s algorithm (Cont.)

if mode = run then
choose e : EDGE : frontier(e)∧

((∀f ∈ EDGE ) : frontier(f )⇒ weight(f ) ≥ weight(e))
tree(e) := true
choose p : NODE : p ∈ endpoints(e) ∧ ¬Selected(p)
Selected(p) := true
forall f : EDGE : p ∈ endpoints(f )
frontier(f ) := ¬frontier(f )

ifnone mode := done

How can we prove the correctness, termination?

Exercise 3.20. Construct an ASM-Machine that implements Kruskal’s
algorithm.
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Part 4

The reserve of ASMs
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Importing new elements from the reserve

Import rule: import x do P

Meaning: Choose an element x from the reserve, delete it from the
reserve and execute P .

let x = new (X ) in P abbreviates
import x do

X (x ) := true
P
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Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 106



Abstract State Machines: ASM- Specification’s method

ASM-Specifications

The reserve of a state

New dynamic relation Reserve.

Reserve is updated by the system, not by rules.

Res(A) = {a ∈ |A| : ReserveA(a) = true}
The reserve elements of a state are not allowed to be in the domain
and range of any basic function of the state.

Definition. A state A satisfies the reserve condition with respect
to an environment ζ, if the following two conditions hold for each
element a ∈ Res(A) \ ran(ζ):

The element a is not the content of a location of A.

If a is an element of a location l of A which is not a location for
Reserve, then the content of l in A is undef .

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 39
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Semantics of ASMs with a reserve

yields(P , A, ζ[x �→ a],U )

yields(import x do P , A, ζ,V )

if a ∈ Res(A) \ ran(ζ) and
V = U ∪ {((Reserve, a), false)}

yields(P , A, ζ,U ) yields(Q , A, ζ,V )

yields(P par Q , A, ζ,U ∪ V )
if Res(A) ∩ El(U ) ∩ El(V ) ⊆ ran(ζ)

yields(P , A, ζ[x �→ a],Ua) for each a ∈ I

yields(forall x with ϕ do P , A, ζ,
⋃
a∈I

Ua)

if I = range(x , ϕ, A, ζ) and for a �= b
Res(A) ∩ El(Ua) ∩ El(Ub) ⊆ ran(ζ)

El(U ) is the set of elements that occur in the updates of U .

The elements of an update (l , v ) are the value v and the elements of
the location l .
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Problem

Problem 1: New elements that are imported in parallel must be different.

import x do parent(x ) = root

import y do parent(y) = root

Problem 2: Hiding of bound variables.

import x do

f (x ) := 0

let x = 1 in

import y do f (y) := x

Syntactic constraint. In the scope of a bound variable the same
variable should not be used again as a bound variable (let, forall,
choose, import).
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Preservation of the reserve condition

Lemma (Preservation of the reserve condition).
If a state A satisfies the reserve condition wrt. ζ and P yields a
consistent update set U in A under ζ, then

the sequel A + U satisfies the reserve condition wrt. ζ,

Res(A + U ) \ ran(ζ) is contained in Res(A) \ El(U ).
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Permutation of the reserve

Lemma (Permutation of the reserve). Let A be a state that
satisfies the reserve condition wrt. ζ. If α is a function from |A|
to |A| that permutes the elements in Res(A) \ ran(ζ) and is the
identity on non-reserve elements of A and on elements in the range
of ζ, then α is an isomorphism from A to A.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland. 43
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Independence of the choice of reserve elements

Lemma (Independence).
Let P be a rule of an ASM without choose. If

A satisfies the reserve condition wrt. ζ,

the bound variables of P are not in the domain of ζ,

P yields U in A under ζ,

P yields U ′ in A under ζ,

then there exists a permutation α of Res(A) \ ran(ζ) such that
α(U ) = U ′.
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Example: Abstract Data Types (ADT)

Example 3.21. Double-linked lists

See ASM-Buch.

Exercise 3.22. Give an ASM-Specification for the data structure
bounded stack.
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Distributed ASM: Concurrency, reactivity, time

Distributed ASM (DASM)

I Computation model:
I Asynchronous computations
I Autonomous operating agents

I A finite set of autonomous ASM-agents, each with a program of his
own.

I Agents interact through reading and writing common locations of
global machine states.

I Potential conflicts are solved through the underlying semantic
model, according to the definition of (partial-ordered) runs.
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Foundations: Orders, CPO’s, Proof techniques

Properties of binary relations
I X set
I ρ ⊆ X × X binary relation
I Properties

(P1) x ρ x (reflexive)
(P2) (x ρ y ∧ y ρ x)→ x = y (antisymmetric)
(P3) (x ρ y ∧ y ρ z)→ x ρ z (transitive)
(P4) (x ρ y ∨ y ρ x) (linear)
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Quasi-Orders

I .⊆ X × X Quasi-order iff . reflexive and transitive.
I Kernel:

≈ = . ∩ .−1

I Strict part: < = . \ ≈
I Y ⊆ X left-closed (in respect of .) iff

(∀y ∈ Y : (∀x ∈ X : x . y → x ∈ Y ))

I Notation: Quasi-order (X ,.)
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Partial-Orders

I ≤⊆ X × X partial-order iff ≤ reflexive, antisymmetric and transitive.
I Kernel: Following holds

idX =≤ ∩ ≤−1

I Strict part: < = ≤ \ idX

I Often: < Partial-order iff < irreflexive, transitive.
I Notation: Partial-order (X ,≤)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 117



Distributed ASM: Concurrency, reactivity, time Refinement

Fundamentals: Orders, CPO’s, proof techniques

Well-founded Orderings

I Partial-order ≤⊆ X × X well-founded iff

(∀Y ⊆ X : Y 6= ∅ → (∃y ∈ Y : y minimal in Y in respect of ≤))

I Quasi-order . well-founded iff strict part of . is well-founded.
I Initial segment: Y ⊆ X , left-closed
I Initial section of x : sec(x) = {y : y < x}
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Supremum

I Let (X ,≤) be a partial-order and Y ⊆ X
I S ⊆ X is a chain iff elements of S are linearly ordered through ≤.
I y is an upper bound of Y iff

∀y ′ ∈ Y : y ′ ≤ y

I Supremum: y is a supremum of Y iff y is an upper bound of Y and

∀y ′ ∈ X : ((y ′ upper bound of Y )→ y ≤ y ′)

I Analog: lower bound, Infimum inf(Y )
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CPO

I A Partial-order (D,v) is a complete partial ordering (CPO) iff
I ∃ the smallest element ⊥ of D (with respect of v)
I Each chain S has a supremum sup(S).
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Example

Example 4.1. I (P(X ),⊆) is CPO.
I (D,v) is CPO with

I D = X 9 Y : set of all the partial functions f with dom(f ) ⊆ X and
cod(f ) ⊆ Y .

I Let f , g ∈ X 9 Y .

f v g iff dom(f ) ⊆ dom(g) ∧ (∀x ∈ dom(f ) : f (x) = g(x))
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Monotonous, continuous

I (D,v), (E ,v′) CPOs
I f : D → E monotonous iff

(∀d , d ′ ∈ D : d v d ′ → f (d) v′ f (d ′))

I f : D → E continuous iff f monotonous and

(∀S ⊆ D : S chain → f (sup(S)) = sup(f (S)))

I X ⊆ D is admissible iff

(∀S ⊆ X : S chain → sup(S) ∈ X )
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Fixpoint

I (D,v) CPO, f : D → D
I d ∈ D fixpoint of f iff

f (d) = d
I d ∈ D smallest fixpoint of f iff d fixpoint of f and

(∀d ′ ∈ D : d ′ fixpoint → d v d ′)
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Fixpoint-Theorem

Theorem 4.2 (Fixpoint-Theorem:). (D,v) CPO, f : D → D continuous,
then f has a smallest fixpoint µf and

µf = sup{f i(⊥) : i ∈ N}

Proof: (Sketch)
I sup{f i(⊥) : i ∈ N} fixpoint:

f (sup{f i(⊥) : i ∈ N}) = sup{f i+1(⊥) : i ∈ N}
(continuous)

= sup{sup{f i+1(⊥) : i ∈ N},⊥}
= sup{f i(⊥) : i ∈ N}
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Fixpoint-Theorem (Cont.)

Fixpoint-Theorem: (D,v) CPO, f : D → D continuous, then f has a
smallest fixpoint µf and

µf = sup{f i(⊥) : i ∈ N}

Proof: (Continuation)
I sup{f i(⊥) : i ∈ N} smallest fixpoint:

1. d ′ fixpoint of f
2. ⊥v d ′
3. f monotonous, d ′ FP: f (⊥) v f (d ′) = d ′
4. Induction: ∀i ∈ N : f i(⊥) v f i(d ′) = d ′
5. sup{f i(⊥) : i ∈ N} v d ′
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Induction

Induction over N

Induction’s principle:

(∀X ⊆ N : ((0 ∈ X ∧ (∀x ∈ X : x ∈ X → x + 1 ∈ X )))→ X = N)

Correctness:
1. Let’s assume no, so ∃X ⊆ N : N \ X 6= ∅
2. Let y be minimum in N \ X (with respect to <).
3. y 6= 0
4. y − 1 ∈ X ∧ y 6∈ X
5. Contradiction
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Induction

Induction over N (Alternative)

Induction’s principle:

(∀X ⊆ N : (∀x ∈ N : sec(x) ⊆ X → x ∈ X )→ X = N)

Correctness:
1. Let’s assume no, so ∃X ⊆ N : N \ X 6= ∅
2. Let y be minimum in N \ X (with respect to <).
3. sec(y) ⊆ X , y 6∈ X
4. Contradiction
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Induction

Well-founded induction

Induction’s principle: Let (Z ,≤) be a well-founded partial order.

(∀X ⊆ Z : (∀x ∈ Z : sec(x) ⊆ X → x ∈ X )→ X = Z )

Correctness:
1. Let’s assume no, so Z \ X 6= ∅
2. Let z be a minimum in Z \ X (in respect of ≤).
3. sec(z) ⊆ X , z 6∈ X
4. Contradiction
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Induction

FP-Induction: Proving properties of fixpoints

Induction’s principle: Let (D,v) CPO, f : D → D continuous.

(∀X ⊆ D admissible : (⊥∈ X ∧ (∀y : y ∈ X → f (y) ∈ X ))→ µf ∈ X )

Correctness: Let X ⊆ D admissible.

µf ∈ X ⇔ sup{f i(⊥) : i ∈ N} ∈ X (FP-theorem)
⇐ ∀i ∈ N : f i(⊥) ∈ X (X admissible )
⇐ ⊥∈ X ∧ (∀n ∈ N : f n(⊥) ∈ X → f (f n(⊥)) ∈ X )

(Induction N)
⇐ ⊥∈ X ∧ (∀y ∈ X → f (y) ∈ X ) (Ass.)
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Induction

Problem

Exercise 4.3. Let (D,v) CPO with
I X = Y = N
I D = X 9 Y : set all partial functions f with dom(f ) ⊆ X and

cod(f ) ⊆ Y .
I Let f , g ∈ X 9 Y .

f v g iff dom(f ) ⊆ dom(g) ∧ (∀x ∈ dom(f ) : f (x) = g(x))

Consider

F : D → P(N× N)

g 7→

{
{(0, 1)} g = ∅
{(x , x · g(x − 1)) : x − 1 ∈ dom(g)} ∪ {(0, 1)} otherwise
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Induction

Problem

Prove:
1. ∀g ∈ D : F (g) ∈ D, i.e. F : D → D
2. F : D → D continuous
3. ∀n ∈ N : µF (n) = n!

Note:
I µF can be understood as the semantics of a function’s definition

function Fac(n : N⊥) : N⊥ =def
if n = 0 then 1
else n · Fac(n − 1)

I Keyword: ’derived functions’ in ASM
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Induction

Problem

Exercise 4.4. Prove: Let G = (V ,E ) be an infinite directed graph with
I G has finitely many roots (nodes without incoming edges).
I Each node has finite out-degree.
I Each node is reachable from a root.

There exists an infinite path that begins on a root.
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DASM

Distributed ASM

Definition 4.5. A DASM A over a signature (vocabulary) Σ is given
through:

I A distributed programm ΠA over Σ.
I A non-empty set IA of initial states

An initial state defines a possible interpretation of Σ over a potential
infinite base set X.

A contains in the signature a dynamic relation’s symbol AGENT, that is
interpreted as a finite set of autonomous operating agents.

I The behaviour of an agent a in state S of A is defined through
programS(a).

I An agent can be ended through the definition of
programS(a) := undef (representation of an invalid programm).
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DASM

Partially ordered runs
A run of a distributed ASM A is given through a triple %
 (M, λ, σ)
with the following properties:
1. M is a partial ordered set of “moves”, in which each move has only

a finite number of predecessors.
2. λ is a function on M, that assigns an agent to each move, so that

the moves of a particular agent are always linearly ordered.
3. σ asociates a state of A with each finite initial segment Y of M.

Intended meaning:: σ(Y ) is the “result of the execution of all moves
in Y ”. σ(Y ) is an initial state when Y is empty.

4. The coherence condition is satisfied:
If max is a set of maximal elements in a finite initial segment X of
M and Y = X \max , then for x ∈ max :: λ(x) is an agent in σ(Y )
and we get σ(X ) from σ(Y ) by firing {λ(x) : x ∈ max} (their
programs ) in σ(Y ).
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DASM

Comment, example

The agents of A modell the concurrent control-threads in the execution
of ΠA.
A run can be seen as the common part of the history of the same
computation from the point of view of multiple observers.

The role of λ:

m1 m3

m2 m4 m6

m7

m8

m9m5
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DASM

Comment, example (cont.)
The role of σ: Snap-shots of the computation are the initial segments of
the partial ordered set M. To each initial segment a state of A is assigned
(interpretation of Σ), that reflects the execution of the programs of the
agents that appear in the segment.
 “Result of the execution of all the moves” in the segment.

m1 m3

m2 m4 m6 m8

m9

Kein Segment

m7m5
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DASM

Coherence condition, example

If max is a set of maximal elements in a finite initial segment X of M and
Y = X \max , then for x ∈ max :: λ(x) is an agent in σ(Y ) and we get
σ(X ) from σ(Y ) by firing {λ(x) : x ∈ max} (their programs ) in σ(Y ).

m1 m3

m4 m6

m7

m8

m9

S1
S2

S3

S4

S5 S6

S2 S1

S4
S3

S5

S6

m2

Initialer Zustand

m5
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DASM

Consequences of the coherence condition

Lemma 4.6. All the linearizations of an initial segment (i.e. respecting
the partial ordering) of a run % lead to the same “final” state.

Lemma 4.7. A property P is valid in all the reachable states of a run %,
iff it is valid in each of the reachable states of the linearizations of %.
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DASM

Simple example

Example 4.8. Let {door ,window} be propositional-logic constants in
the signature with natural meaning:
door = true means “ door open ” and analog for window.

The program has two agents, a door-manager d and a window-manager
w with the following programs:

programd = door := true // move x
programw = window := true // move y

In the initial state S0 let the door and window be closed, let d and w be
in the agent set.

Which are the possible runs?
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DASM

Simple example (Cont.)

Let %1 = (({x , y}, x < y), id , σ), %2 = (({x , y}, y < x), id , σ),
%3 = (({x , y}, <>), id , σ) (coarsest partial order)

Sx Sy Sx Sy

Sxy Sxy Sxy

So So So
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DASM

Variants of simple example
The program consists of two agents, a door-Manager d and a
window-manager w with the following programs:
programd = if ¬window then door := true // move x
programw = if ¬door then window := true // move y
In the initial state S0 let the door and window be closed, let d and w be
in the agent set. How do the runs look like? Same %’s as before.

Sx Sy Sx Sy

Sxy

So So So

Sx Sy
not equal

not equal

Not a run, since
coherence violated
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DASM

More variations

Exercise 4.9. Consider the following pair of agents
x , y ∈ N (x = 2, y = 1 in the initial state)
1. a = x := x + 1 and b = x := x + 1
2. a = x := x + 1 and b = x := x − 1
3. a = x := y and b = y := x

Which runs are possible with partial-ordered sets containing two
elements?

Try to characterize all the runs.
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DASM

More variations

Consider the following agents with the conventional interpretation:
1. Programd = if ¬window then door := true //move x
2. Programw = if ¬door then window := true //move y
3. Programl = if ¬light ∧ (¬door ∨ ¬window) then //move z

light := true
door := false
window := false

Which end states are possible, when in the initial state the three
constants are false?
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DASM

Further exercises

Consumer-producer problem: Assume a single producer agent and two or
more consumer agents operating concurrently on a global shared
structure. This data structure is linearly organized and the producer adds
items at the one end side while the consumers can remove items at the
opposite end of the data structure. For manipulating the data structure,
assume operations insert and remove as introduced below.

insert : Item × ItemList → ItemList
remove : ItemList → (Item × ItemList)

(1) Which kind of potential conflicts do you see?
(2) How does the semantic model of partially ordered runs resolve such
conflicts?
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Reactive and time-depending systems

Environment
Reactive systems are characterized by their interaction with the
environment. This can be modeled with the help of an
environment-agent. The runs can then contain this agent (with λ), λ
must define in this case the update-set of the environment in the
corresponding move.
The coherence condition must also be valid for such runs.

For externally controlled functions this surely doesn’t lead to
inconsistencies in the update-set, the behaviour of the internal agents can
of course be influenced. Inconsistent update-sets can arise in shared
functions when there’s a simultaneous execution of moves by an internal
agent and the environment agent.

Often certain assumptions or restrictions (suppositions) concerning the
environment are done.
In this aspect there are a lot of possibilities: the environment will be only
observed or the environment meets stipulated integrity conditions.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 145



Distributed ASM: Concurrency, reactivity, time Refinement

Reactive and time-depending systems

Time
The description of real-time behaviour must consider explicitly time
aspects. This can be done successfully with help of timers (see SDL),
global system time or local system time.

I The reactions can be instantaneous (the firing of the rules by the
agents don’t need time)

I Actions need time
Concerning the global time consideration, we assume, that there is on
hand a linear ordered domain TIME , for instance with the following
declarations:

domain (TIME ,≤), (TIME ,≤) ⊂ (R,≤)

In these cases the time will be measured with a discrete system watch:
e.g.

monitored now :→ TIME
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Reactive and time-depending systems

ATM (Automatic Teller Machine)

Exercise 4.10. Abstract modeling of a cash terminal:
Three agents are in the model: ct-manager, authentication-manager,
account-manager. To withdraw an amount from an account, the
following logical operations must be executed:
1. Input the card (number) and the PIN.
2. Check the validity of the card and the PIN (AU-manager).
3. Input the amount.
4. Check if the amount can be withdrawn from the account

(ACC-manager).
5. If OK, update the account’s stand and give out the amount.
6. If it is not OK, show the corresponding message.

Implement an asynchronous communication model in which timeouts can
cancel transactions .
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Reactive and time-depending systems

Distributed Termination Detection

Example 4.11. Implement the following termination detection protocol:

A passive machine
becomes active, iff it
receives a message from
another machine.

Only active machines can
send messages. Token

Message

Active / Passive
Machine 0

Machine n−1

Machine n−2

Machine n−3

Machine 1

Edsger W. Dĳkstra, W. H. J. Feĳen, and A.J.M. van Gasteren. Derivation
of a Termination Detection Algorithm for Distributed Computations. IPL
16 (1983).
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Reactive and time-depending systems

Assumptions for distributed termination detection
Rules for a probe

Rule 0 When active, Machinei+1 keeps the token; when passive, it hands
over the token to Machinei .

Rule 1 A machine sending a message makes itself red.
Rule 2 When Machinei+1 propagates the probe, it hands over a red token

to Machinei when it is red itself, whereas while being white it leaves
the color of the token unchanged.

Rule 3 After the completion of an unsuccessful probe, Machine 0 initiates a
next probe.

Rule 4 Machine 0 initiates a probe by making itself white and sending to
Machinen−1 a white token.

Rule 5 Upon transmission of the token to Machinei , Machinei+1becomes
white. (Notice that the original color of Machinei+1 may have
affected the color of the token).
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Reactive and time-depending systems

Distributed Termination Detection: Procedure

Signature:

static
COLOR = {red ,white} TOKEN = {redToken,whiteToken}
MACHINE = {0, 1, 2, . . . , n − 1}
next : MACHINE → MACHINE
e.g. with next(0) = n − 1, next(n − 1) = n − 2, . . . , next(1) = 0

controlled
color : MACHINE → COLOR token : MACHINE → TOKEN
RedTokenEvent,WhiteTokenEvent : MACHINE → BOOL

monitored Active : MACHINE → BOOL
SendMessageEvent : MACHINE → BOOL
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Reactive and time-depending systems

Distributed Termination Detection: Procedure
Macros: (Rule definitions)

I ReactOnEvents(m : MACHINE ) =
if RedTokenEvent(m) then

token(m) := redToken
RedTokenEvent(m) := undef

if WhiteTokenEvent(m) then
token(m) := whiteToken
WhiteTokenEvent(m) := undef

if SendMessageEvent(m) then color(m) := red Rule 1

I Forward(m : MACHINE , t : TOKEN) =
if t = whiteToken then

WhiteTokenEvent(next(m)) := true
else

RedTokenEvent(next(m)) := true
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Reactive and time-depending systems

Distributed Termination Detection: Procedure
Programs

I RegularMachineProgram =

ReactOnEvents(me)
if ¬ Active(me) ∧ token(me) 6= undef then Rule 0

InitializeMachine(me) Rule 5
if color(me) = red then

Forward(me, redToken) Rule 2
else

Forward(me, token(me)) Rule 2
I With InitializeMachine(m : MACHINE ) =

token(m) := undef
color(m) := white
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Reactive and time-depending systems

Distributed Termination Detection: Procedure

Programs
I SupervisorMachineProgram =

ReactOnEvents(me)
if ¬ Active(me) ∧ token(me) 6= undef then

if color(me) = white ∧ token(me) = whiteToken then
ReportGlobalTermination

else Rule 3
InitializeMachine(me) Rule 4
Forward(me,whiteToken) Rule 4
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Distributed Termination Detection
Initial states

∃m0 ∈ MACHINE
(program(m0) = SupervisorMachineProgram ∧
token(m0) = redToken ∧
(∀m ∈ MACHINE )(m 6= m0 ⇒

(program(m) = RegularMachineProgram ∧ token(m) = undef )))

Environment constraints For all the executions and all linearizations
holds:

G (∀m ∈ MACHINE )
(SendMessageEvent(m) = true ⇒ (P(Active(m)) ∧ Active(m)))

∧ ((Active(m) = true ∧ P(¬Active(m))⇒
(∃m′ ∈ MACHINE ) (m′ 6= m ∧ SendMessageEvent(m′))))

Nextconstraints
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Distributed Termination Detection
Correctness of the abstract version: Dĳkstra
Suppositions: The machines constitute a closed system, i.e. messages can
only be dispatched among each other (no outside messages). The system
in the initial state can have any color and several machines can be active.
The token is located in the 0’th. machine. The given rules describe the
transfer of the token and the coloration of the machines upon certain
activities.
The task is to determine a state in which all the machines are passive
(not active). This is a stable state of the system, because only active
machines can dispatch messages and passive machines can only become
active by receiving a message.
The invariant: Let t be the position on which the token is, then following
invariant holds

(∀i : t < i < n Machinei is passive) ∨ (∃j : 0 ≤ j ≤ t Machinej is red)∨
(Token is red)
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Distributed Termination Detection

(∀i : t < i < n Machinei is passive) ∨ (∃j : 0 ≤ j ≤ t Machinej is red)∨
(Token is red)

Correctness argument
When the token reaches Machineo , t = 0 and the invariant holds.
If
(Machineo is passive) ∧ (Machineo is white) ∧ (Token is white)
then
(∀i : 0 < i < n Machinei is passive) must hold, i.e. termination.

Proof of the invariant Induction over t:
The case t = n - 1 is easy.
Assume the invariant is valid for 0 < t < n, prove it is valid for t − 1.
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Distributed Termination Detection
Is the invariant valid in all the states of all the linearizations of the runs
of the DASM ? No

I Problem 1 The red coloration of an active machine (that forwards a
message) occurs in a later state. It should occur in the same state in
which the message-receiving machine turns active. (Instantaneous
message passing)
Solution color is a shared function. Instead of using
SendMessageEvent(m) to set the color, it will be set by the
environment: color(m) = red .

I Problem 2 There are states in which none of the machines has the
token:: The machine that has the token, initializes itself and sets an
event, that leads to a state in which none of the machines has the
token.
Solution Instead of using FarbTokenEvent to reset, it is directly
properly set: token(next(m)).

I Result More abstract machine. The environment controls the
activity of the machines, message passing and coloration.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 157



Distributed ASM: Concurrency, reactivity, time Refinement

Lecture Börger’s ASM-Buch

Refinement’s concepts for ASM’s

Question: Is in the termination detection example the given DASM a
refinement of the abstracter DASM?  

General refinement concepts for ASM’s
I Refinements are normally defined for BASM, i.e. the executions are

linear ordered runs, this makes the definition of refinements easier.
I Refinements allow abstractions, realization of data and procedures.
I ASM refinements are usually problem-oriented: Depending on the

application a flexible notion of refinement should be used.
I Proof tasks become structured and easier with help of correct and

complete refinements.
See ASM-Buch.
Example Shortest Path
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