
Reduction Systems Term Rewriting Systems .

Abstract Reduction Systems

Abstract Reduction Systems: Fundamental notions and
notations

Definition 8.1. (U,→) U �= ∅,→ binary relation is called a
reduction system.

� Notions:

� x ∈ U reducible iff ∃y : x → y
irreducible if not reducible.

� x ∗−→ y reflexive, transitive closure, x +→ y transitive closure,
x ∗←→ y reflexive, symmetrical, transitive closure.

� x i→ y i ∈ N defined as usual. Notice x ∗−→ y =
�

i∈N x i→ y.
� x ∗−→ y, y irreducible, then y is a normal form for x. Abb:: NF
� ∆(x) = {y | x → y}, the set of direct successors of x .
� ∆+(x) proper successors, ∆∗(x) successors.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 259

Reduction Systems Term Rewriting Systems .

Abstract Reduction Systems

Notions and notations

� Λ(x) = max{i | ∃y : x i→ y} derivational complexity. Λ : U → N∞
� → noetherian (terminating, satisfies the chain condition), in case

there is no infinite chain x1 → x2 → x3 → · · · .
� → bounded, in case that Λ : U → N.
� → cycle free :: ¬∃x ∈ U : x +→ x

� → locally finite x
�
→
�




 , i.e. ∆(x) finite for every x .

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 260

Reduction Systems Term Rewriting Systems .

Abstract Reduction Systems

Notions and notations

Simple properties:
� → cycle free, then ∗−→ partial ordering.
� → noetherian, then → cycle free.
� → bounded, so → noetherian.

but not the other way around!
� → ⊂ +⇒ and ⇒ noetherian, then → noetherian.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 261

Reduction Systems Term Rewriting Systems .

Principle of the Noetherian Induction

Principle of the Noetherian Induction

Definition 8.2. → binary relation on U, P predicate on U.
P is →-complete, when

∀x [(∀y ∈ ∆+(x) : P(y)) ⊃ P(x)]

Fact:
PNI: If → is noetherian and P is →-complete, then P(x) holds for all
x ∈ U.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 262

Reduction Systems Term Rewriting Systems .

Principle of the Noetherian Induction

Applications

Lemma 8.3. → noetherian, then each x ∈ U has at least one normal
form.

More applications to come.... See e.g. König’s lemma.

Definition 8.4. Main properties for (U,→)
� → confluent iff ∗←− ◦ ∗−→ ⊆ ∗−→ ◦ ∗←−
� → Church-Rosser iff ∗←→ ⊆ ∗−→ ◦ ∗←−
� → locally-confluent iff ←− ◦ −→ ⊆ ∗−→ ◦ ∗←−
� → strong-confluent iff ←− ◦ −→ ⊆ ∗−→ ◦ ≤1←−
� Abbreviation: joinable ↓:

↓= ∗−→ ◦ ∗←−

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 263

Reduction Systems Term Rewriting Systems .

Important relations

Important relations

Lemma 8.5. → confluent iff → Church-Rosser.

Theorem 8.6. (Newmann Lemma) Let → be noetherian, then

→ confluent iff → locally confluent.

Consequence 8.7. a) Let → confluent and x ∗←→ y.
i) If y is irreducible, then x ∗−→ y. In particular, when x , y irreducible,

then x = y.
ii) x ∗←→ y iff ∆∗(x) ∩∆∗(y) �= ∅.
iii) If x has a NF, then it is unique.
iv) If → is noetherian, then each x ∈ U has exactly one NF: notation x ↓

b) If in (U,→) each x ∈ U has exactly one NF, then → is confluent (in
general not noetherian).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 264

Reduction Systems Term Rewriting Systems .

Important relations

Convergent Reduction Systems

Definition 8.8. (U,→) convergent iff → noetherian and confluent.

Important since: x ∗←→ y iff x ↓= y ↓

Hence if → effective � decision procedure for Word Problem (WP):

For programming: x ∗−→ x ↓, f (t1, . . . , tn) ∗−→ „value“

As usual these properties are in general undecidable properties.

Task: Find sufficient computable conditions which guarantee these
properties.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 265

Reduction Systems Term Rewriting Systems .

Important relations

Termination and Confluence

Sufficient conditions/techniques

Lemma 8.9. (U,→), (M,�), � well founded (WF) partial ordering.
If there is ϕ : U → M with ϕ(x) � ϕ(y) for x → y, then → is noetherian.

Example 8.10. Often (N, >), (Σ∗, >) can be used.
For w ∈ Σ∗ let |w | length, |w |a a-length a ∈ Σ.

WF-partial orderings on Σ∗
� x > y iff |x | > |y |
� x > y iff |x |a > |y |a
� x > y iff |x | > |y |, |x | = |y | ∧ x �lex y

Notice that pure lex-ordering on Σ∗ is not noetherian.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 266

Reduction Systems Term Rewriting Systems .

Sufficient conditions for confluence

Sufficient conditions for confluence
Termination: Confluence iff local confluence
Without termination this doesn’t hold!

or

...........

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 267

Reduction Systems Term Rewriting Systems .

Sufficient conditions for confluence

Confluence without termination

Theorem 8.11. → is confluent iff for every u ∈ U holds:

from u → x and u ∗→ y it follows x ↓ y.

� one-sided localization of confluence �

Theorem 8.12. If → is strong confluent, then → is confluent.

Not a necessary condition:

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 268

Reduction Systems Term Rewriting Systems .

Sufficient conditions for confluence

Combination of Relations
Definition 8.13. Two relations →1, →2 on U commute, iff

∗
1← ◦

∗→2 ⊆
∗→2 ◦

∗
1←

.
They commute locally iff 1← ◦ →2 ⊆

∗→2 ◦
∗

1←.

1

2

2

1 1

2

2

1

commutating locally commutating

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 269

Reduction Systems Term Rewriting Systems .

Sufficient conditions for confluence

Combination of Relations

Lemma 8.14. Let → = →1 ∪ →2

(1) If →1 and →2 commute locally and → is noetherian, then →1 and
→2 commute.
(2) If →1 and →2 are confluent and commute, then → is also confluent.

Problem: Non-Orientability:

(a) x + 0 = x , x + s(y) = s(x + y)
(b) x + y = y + x , (x + y) + z = x + (y + z)

� Problem: permutative rules like (b) �

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 270

Reduction Systems Term Rewriting Systems .

Sufficient conditions for confluence

Non-Orientability

Definition 8.15. Let (U,→,��) with → a binary relation, �� a
symmetrical relation.
Let |=| = ↔ ∪ ��, ∼ =

∗
��, ≈ =

∗
|=|,

→∼ = ∼ ◦ → ◦ ∼, ↓∼ = ∗→ ◦ ∼ ◦ ∗←.
If x ↓∼ y holds, then x , y ∈ U are called joinable modulo ∼.
→ is called Church-Rosser modulo ∼ iff ≈ ⊆ ↓∼
→ is called locally confluent modulo ∼ iff ← ◦ → ⊆ ↓∼
→ is called locally coherent modulo ∼ iff ← ◦ �� ⊆ ↓∼

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 271

Reduction Systems Term Rewriting Systems .

Sufficient conditions for confluence

Non-Orientability - Reduction Modulo ��

Theorem 8.16. Let →∼ be terminating. Then → is Church-Rosser
modulo ∼ iff ∼ is local confluent modulo ∼ and local coherent modulo ∼.

Most frequent application: Modulo AC (Associativity + Commutativity)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 272

Reduction Systems Term Rewriting Systems .

Equivalence relations and reduction relations

Representation of equivalence relations by convergent
reduction relations

Situation: Given: (U,��) and a noetherian PO > on U , find: (U,→)
with
(i) → ⊆ >, → convergent on U and
(ii) ∗↔ = ∼ with ∼ =

∗
��

Idea: Approximation of → by stepwise transformations

(��, ∅) = (��0,→0) � (��1,→1) � (��2,→2) � . . .
Invariant in i-th. step:

(i) ∼ = (��i ∪ ↔i)∗ and
(ii) →i ⊆ >

Goal: ��i= ∅ for an i and →i convergent.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 273

Reduction Systems Term Rewriting Systems .

Equivalence relations and reduction relations

Representation of equivalence relations by convergent
reduction relations

Allowed operations in i-th. step:

(1) Orient:: u →i+1 v , if u > v and u ��i v
(2) New equivalences:: u ��i+1 v , if u i← w →i v
(3) Simplify:: u ��i v to u ��i+1 w , if v →i w
Goal: Limit system

→ = →∞ =
�
{→i | i ∈ N} with ��∞ = ∅

Hence:
- −→∞ ⊆ >, i.e. noetherian
- ∗←→ = ∼
- −→∞ convergent !

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 274

Reduction Systems Term Rewriting Systems .

Equivalence relations and reduction relations

Grafical representation of an equivalence relation

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 275

Reduction Systems Term Rewriting Systems .

Equivalence relations and reduction relations

Transformation of an equivalence relation

(a) (b) (c)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 276

Reduction Systems Term Rewriting Systems .

Equivalence relations and reduction relations

Inference system for the transformation of an equivalence
relation

Definition 8.17. Let > be a noetherian PO on U. The inference system
P on objects (��,→) contains the following rules:
(1) Orient

(�� ∪{u �� v},→)
(��,→ ∪{u → v}) if u > v

(2) Introduce new consequence
(��,→)

(�� ∪{u �� v},→) if u ← ◦ → v

(3) Simplify
(�� ∪{u �� v},→)
(�� ∪{u �� w},→) if v → w

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 277

Reduction Systems Term Rewriting Systems .

Equivalence relations and reduction relations

Inference system (Cont.)

(4) Eliminate identities
(�� ∪{u �� u},→)

(��,→)

(��,→) �P (���,→�) if
(��,→) can be transformed in one step with a rule P into (���,→�).

�∗P transformation relation in finite number of steps with P.

A sequence ((��i ,→i))i∈N is called P-derivation, if

(��i ,→i) �P (��i+1,→i+1) for every i ∈ N

.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 278

Reduction Systems Term Rewriting Systems .

Transformation with the inference system

Transformation with the inference system

(d)(a) (b) (c)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 279

Reduction Systems Term Rewriting Systems .

Transformation with the inference system

Properties of the inference system

Lemma 8.18. Let (��,→) �P (���,→�)
(a) If → ⊆ >, then →� ⊆ >
(b) (�� ∪ ↔)∗ = (��� ∪ ↔�)∗

Problem:
When does P deliver a convergent reduction relation → ?
How to measure progress of the transformation?

Idea: Define an ordering >P on equivalence-proofs, and prove that the
inference system P decreases proofs with respect to >P !

In the proof ordering ∗−→ ◦ ∗←− proofs should be minimal.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 280

Reduction Systems Term Rewriting Systems .

Transformation with the inference system

Equivalence Proofs
Definition 8.19. Let (��,→) be given and > a noetherian PO on U.
Furthermore let (�� ∪ ↔)∗ = ∼.
A proof for u ∼ v is a sequence u0 ∗1 u1 ∗2 · · · ∗n un with ∗i ∈ {��,←,→},
ui ∈ U, u0 = u, un = v and for every i ui ∗i+1 ui+1 holds.
P(u) = u is proof for u ∼ u.
A proof of the form u ∗→ z ∗← v is called V-proof.

dc

a b e

Proofs for a ∼ e:
P1(a, e) = a �� b → c �� d ← e P2(a, e) = a �� b → c ← e

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 281

Reduction Systems Term Rewriting Systems .

Transformation with the inference system

Proof orderings

Two proofs in (��,→) are called equivalent, if they prove the equivalence
of the same pair (u, v). Hence e.g. P1(a, e) and P2(a, e) are equivalent.

Notice: If P1(u, v),P2(v ,w) and P3(w , z) are proofs, then
P(u, z) = P1(u, v)P2(v ,w)P3(w , z) is also a proof.

Definition 8.20. A proof ordering >B is a PO on the set of proofs that
is monotonic, i.e.. P >B Q for each subproof, and if P >B Q then
P1PP2 >B P1QP2.

Lemma 8.21. Let > be noetherian PO on U and (��,→), then there
exist noetherian proof orderings on the set of equivalence proofs.

Proof: Using multiset orderings.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 282

Reduction Systems Term Rewriting Systems .

Transformation with the inference system

Multisets and the multiset ordering

Instruments: Multiset ordering
Objects: U, Mult(U) Multisets over U
A ∈ Mult(U) iff A : U → N with {u | A(u) > 0} finite.
Operations: ∪,∩,−

(A ∪ B)(u) := A(u) + B(u)
(A ∩ B)(u) := min{A(u),B(u)}

(A− B)(u) := max{0,A(u)− B(u)}
Explicit notation:
U = {a, b, c} e.g . A = {{a, a, a, b, c, c}},B = {{c, c, c}}

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 283

Reduction Systems Term Rewriting Systems .

Transformation with the inference system

Multiset ordering

Definition 8.22. Extension of (U, >) to (Mult(U),�)

A� B iff there are X ,Y ∈ Mult(U) with ∅ �= X ⊆ A and
B = (A− X) ∪ Y , so that ∀y ∈ Y ∃x ∈ X x > y

Properties:
(1) > PO � � PO
(2) {m1} � {m2} iff m1 > m2

(3) > total � � total
(4) A� B � A ∪ C � B ∪ C
(5) B ⊂ A � A� B
(6) > noetherian iff � noetherian

Example: a < b < c then B � A

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 284

Reduction Systems Term Rewriting Systems .

Construction of the proof ordering

Construction of the proof ordering
Let (��,→) be given and > a noetherian PO on U with →⊂>
Assign to each „atomic“ proof a complexity

c(u ∗ v) =






{u} if u → v
{v} if u ← v
{{u, v}} if u �� v

Extend this complexity to „composed“ proofs through
c(P(u)) = ∅
c(P(u, v)) = {{c(ui ∗i+1 ui+1) | i = 0, . . . n − 1}}
Notice: c(P(u, v)) ∈ Mult(Mult(U))
Define ordering on proofs through

P >P Q iff c(P)�� c(Q)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 285

Reduction Systems Term Rewriting Systems .

Construction of the proof ordering

Construction of the proof ordering

Fact : >P is notherian proof ordering!

Which proof steps are large and which small?
Consider:
(a) P1 = x ← u → y , P2 = x �� y
c(P1) = {{{u}, {u}}} �� {{x , y}} = c(P2) since u > x and u > y
� P1 >P P2

analogously for
(b) P1 = x �� y , P2 = x → y
(c) P1 = u �� v , P2 = u �� w ← v
(d) P1 = u �� v , P2 = u → w ← v

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 286

Reduction Systems Term Rewriting Systems .

Construction of the proof ordering

Fair Deductions in P

Definition 8.23 (Fair deduction). Let (��i ,→i)i∈N be a P-deduction. Let

��∞=
�

i≥0

�
j≥i
��i and →∞=

�
i≥0
→i .

The P-Deduction is called fair, in case
(1) ��∞= ∅ and
(2) If x ∞← u →∞ y, then there exists k ∈ N with x ��k y.

Lemma 8.24. Let (��i ,→i)i∈N be a fair P-deduction
(a) For each proof P in (��i ,→i) there is an equivalent proof P’ in
(��i+1,→i+1) with P ≥P P �.
(b) Let i ∈ N and P proof in (��i ,→i) which is not a V-proof. Then there
exists a j > i and an equivalent proof P’ in (��j ,→j) with P >P P �.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 287

Reduction Systems Term Rewriting Systems .

Construction of the proof ordering

Main result

Theorem 8.25. Let (��i ,→i)i∈N a fair P-Deduction and → = →∞.
Then
(a) If u ∼ v, then there exists an i ∈ N with u ∗→i ◦ i

∗← v
(b) → is convergent and ∗↔ = ∼

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 288

Reduction Systems Term Rewriting Systems .

Principles

Term Rewriting Systems
Goal: Operationalization of specifications and implementation of

functional programming languages

Given spec = (sig ,E) when is Tspec a computable algebra?

(Tspec)s = {[t]=E
: t ∈ Term(sig)s}

Tspec is a computable Algebra if there is a computable function

rep : Term(sig)→ Term(sig), with rep(t) ∈ [t]=E
the “unique

representative” in its equivalence class.

Paradigm: Choose as representative the minimal object in the equivalence
class with respect to an ordering.

f (x1, ..., xn) : ((Tspec)s1
× ...(Tspec)sn

)→ (Tspec)s

f ([r1], ..., [rn]) := [rep(f (rep(r1), ..., (rep(rn))]

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 289

Reduction Systems Term Rewriting Systems .

Principles

Term Rewriting Systems
Definition 9.1. Rules, rule sets, reduction relation

� Sets of variables in terms: For t ∈ Terms(F ,V) let V (t) be the set
of the variables in t (Recursive definition! always finite)
Notice: V (t) = ∅ iff t is ground term.

� A rule is a pair
(l , r), l , r ∈ Terms(F ,V) (s ∈ S) with Var(r) ⊆ Var(l)
Write: l → r

� A rule system R is a set of rules.
R defines a reduction relation →R over Term(F ,V) by:
t1 →R t2 iff ∃ l → r ∈ R, p ∈ O(t1), σ substitution :

t1|p = σ(l) ∧ t2 = t1[σ(r)]p
� Let (Term(F ,V),→R) be the reduction system defined by R

(term rewriting system).
� A rule system R defines a congruence =R on Term(F ,V) just by

considering the rules as equations.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 290

Reduction Systems Term Rewriting Systems .

Principles

Term Rewriting Systems
Goal: Transform E in R, so that =E = ∗←→R holds and →R has
“sufficiently”good termination and confluence properties.
For instance convergent or confluent. Often it is enough when these
properties hold “only” on the set of ground terms.

Notice:
� The condition V (r) ⊆ V (l) in the rule l → r is necessary for the

termination.
If neither V (r) ⊆ V (l) nor V (l) ⊆ V (r) in an equation l = r of a
specification, we have used superfluous variables in some function’s
definition.

� →R is compatible with substitutions and term replacement. i.e.
From s →R t also σ(s)→R σ(t) and u[s]p →R u[t]p

� In particular: =R= ∗←→R

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 291

Reduction Systems Term Rewriting Systems .

Principles

Matching substitution

Definition 9.2. Let l , t ∈ Terms(F ,V). A substitution σ is called a
match (matching substitution) of l on t, if σ(l) = t.

Consequence 9.3. Properties:
� ∀ σ substitution O(l) ⊆ O(σ(l)).
� ∃σ : σ(l) = t iff for σ defined through
∀u O(l) : l |u = x ∈ V � u ∈ O(t) ∧ σ(x) = t|u
σ is a substitution ∧ σ(l) = t.

� If there is such a substitution, then it is unique on V (l). The
existence and if possible calculation are effective.

� It is decidable whether t is reducible with rule l → r .
� If R is finite, then ∆(s) = {t : s →R t} is finite and computable.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 292

Reduction Systems Term Rewriting Systems .

Principles

Examples
Example 9.4. Integer numbers

sig : 0 :→ int
s, p : int → int

if 0 : int, int, int → int
F : int, int → int

eqns : 1 :: p(0) = 0
2 :: p(s(x)) = x
3 :: if 0(0, x , y) = x
4 :: if 0(s(z), x , y) = y

5 :: F (x , y) = if 0(x , 0,F (p(x),F (x , y)))
Interpretation: �N, ..., � spec- Algebra with functions
ON = 0, sN = λn. n + 1,
pN = λn. if n = 0 then 0 else n − 1 fi
if 0N = λi , j , k. if i = 0 then j else k fi
FN = λm, n. 0
Orient the equations from left to right � rules R (variable condition is
fulfilled).
Is R terminating? Not with a syntactical ordering, since the left side is
contained in the right side.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 293

Reduction Systems Term Rewriting Systems .

Principles

Example (Cont.)
Reduction sequence:

F (s(0), 0)→5 if 0(s(0), 0,F (p(s(0))� �� �
2

,F (s(0), 0)� �� �
5

)

� �� �

)

� �� �
4

→4 F (p(s(0))� �� �,F (s(0), 0)� �� �)
� �� �

5

→2 F (0,F (s(0), 0)� �� �)
� �� �

5

→5 if 0(0, 0,F (p(0)����,F (0,F (s(0), 0)� �� �)
� �� �

)

� �� �

)

� �� �
3

→3 0

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 294

Reduction Systems Term Rewriting Systems .

Principles

Equivalence

Definition 9.5. Let spec = (sig ,E), spec � = (sig ,E �) be specifications.
They are equivalent in case =E = =E � , i.e.. Tspec = Tspec� .
A rule system R over sig is equivalent to E, in case =E = ∗←→R .

Notice: If R is finite, convergent, equivalent to E , then =E is decidable

s =E t iff s ↓= t ↓ i.e.. identical NF

For functional programs and computations in Tspec ground convergence is
suficient, i.e.. convergence on ground terms.
Problems: Decide whether

� R noetherian (ground noetherian)
� R confluent (ground confluent)
� How can we transform E in an equivalent R with these properties?

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 295

Reduction Systems Term Rewriting Systems .

Principles

Decidability questions

For finite ground term-rewriting-systems the problems are decidable.
For terminating systems deciding local confluence is sufficient, i.e.. out of
t1 ← t → t2 prove t1 ↓ t2 � confluent.

u v

t t

u

v

u | v u < v

s(l) t(l’)
s(l) t(l’)

joinable � Critical pairs

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 296

Reduction Systems Term Rewriting Systems .

Critical pairs, unification

Critical pairs
Consider the group axioms:
(x � · y �) · z� �� �

l1

→ x � · (y � · z) and x · x−1

� �� �
l2

→ 1.

“Overlappings” (Superpositions)

(x · x−1) · z (x · y) · (x · y)−1

�l2 �l1 �l2 �l1

1 · z x · (x−1 · z) 1 x · (y · (x · y)−1)

� l1|1 is “unifiable” with l2 with substitution
σ :: {x � ← x , y � ← x−1, x ← x}� σ(l1|1) = σ(l2)

� l1 “unifiable” with l2 with substitution
σ :: {x � ← x , y � ← y , z ← (x · y)−1, x ← x · y}� σ(l1) = σ(l2)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 297

Reduction Systems Term Rewriting Systems .

Critical pairs, unification

Subsumption, unification

Definition 9.6. Subsumption ordering on terms:
s � t iff ∃σ substitution : σ(s) subterm of t
s ≈ t iff (s � t ∧ t � s)
s � t iff (t � s ∧ ¬(s � t))
� is noetherian partial ordering over Term(F ,V) Proof!.

Notice:

O(σ(t)) = O(t) ∪
�

w∈O(t):t|w =x∈V
{wv : v ∈ O(σ(x))}

Compatibility properties:

t|u = t � � σ(t)|u = σ(t �)
t|u = x ∈ V � σ(t)|uv = σ(x)|v (v ∈ O(σ(x)))
σ(t)[σ(t �)]u = σ(t[t �]u) for u ∈ O(t)

Definition 9.7. s, t ∈ Term(F ,V) are unifiable iff there is a substitution
σ with σ(s) = σ(t). σ is called a unifier of s and t.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 298

Reduction Systems Term Rewriting Systems .

Critical pairs, unification

Unification, Most General Unifier

Definition 9.8. Let V � ⊆ V , σ, τ be substitutions.
� σ � τ (V �) iff ∃ρ substitution : ρ ◦ σ|V � = τ |V �

Quote: σ is more general than τ over V �
� σ ≈ τ (V �) iff σ � τ (V �) ∧ τ � σ (V �)
� σ ≺ τ (V �) iff τ � σ (V �) ∧ ¬(σ � τ (V �))
� Notice: ≺ is noetherian partial ordering on the substitutions.

Question: Let s, t be unifiable. Is there a most general unifier mgu(s, t)
over V = Var(s) ∪ Var(t)?
i.e.. for any unifier σ of s, t always mgu(s, t) � σ (V) holds.
Is mgu(s, t) unique? (up to variable renaming).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 299

Reduction Systems Term Rewriting Systems .

Critical pairs, unification

Unification’s problem and its solution

Definition 9.9. � A unification’s problem is given by a set
E = {si

?= ti : i = 1, ..., n} of equations.
� σ is called a solution (or a unifier) in case that σ(si) = σ(ti) for

i = 1, ..., n.
� If τ � σ (Var(E)) holds for each solution τ of E , then mgu(E) := σ

most general solution or most general unifier.
� Let Sol(E) be the set of the solutions of E .

E and E � are equivalent, if Sol(E) = Sol(E �).
� E � is in solved form, in case that

E � = {xj

?= tj : xi �= xj (i �= j), xi /∈ Var(tj) (1 ≤ i ≤ j ≤ m)}
� E � is a solved form for E , iff E � is in solved form and equivalent to E

with Var(E �) ⊆ Var(E).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 300

Reduction Systems Term Rewriting Systems .

Critical pairs, unification

Examples

Example 9.10. Consider

� s = f (x , g(x , a)) ?= f (g(y , y), z) = t
� x ?= g(y , y) g(x , a) ?= z split
� x ?= g(y , y) g(g(y , y), a) ?= z merge
� σ :: x ← g(y , y) z ← g(g(y , y), a) y ← y

� f (x , a) ?= g(a, z) unsolvable (not unifiable).
� x ?= f (x , y) unsolvable, since f (x , y) not x free.
� x ?= f (a, y) � solution σ :: x ← f (a, y) is the most general solution.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 301

Reduction Systems Term Rewriting Systems .

Critical pairs, unification

Inference system for the unification

Definition 9.11. Calculus UNIFY. Let σ = be the binding set.

(1) Erase (E ∪ {s ?= s}, σ)
(E , σ)

(2) Split (Decompose) (E ∪ {f (s1, ..., sm) ?= g(t1, ..., tn)}, σ)
� (unsolvable)

if f �= g

(E ∪ {f (s1, ..., sm) ?= f (t1, ..., tm)}, σ)
(E ∪ {si

?= ti : i = 1, ...,m}, σ)

(3) Merge (Solve) (E ∪ {x ?= t}, σ)
(τ(E), σ ∪ τ)

if x /∈ Var(t), τ = {x ?= t}

“occur check” (E ∪ {x ?= t}, σ)
� (unsolvable)

if x ∈ Var(t) ∧ x �= t

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 302

Reduction Systems Term Rewriting Systems .

Critical pairs, unification

Unification algorithms
Unification algorithms based on UNIFY start always with (E0,S0) :=
(E , ∅) and return a sequence (E0,S0) �UNIFY ... �UNIFY (En,Sn)
They are successful in case they end with En = ∅, unsuccessful in case
they end with Sn = �. Sn defines a substitution σ which represents
Sol(Sn) and consequently also Sol(E).

Lemma 9.12. Correctness.
Each sequence (E0,S0) �UNIFY ... �UNIFY (En,Sn) terminates: either with
� (unsolvable, not unifiable) or with (∅,S) and S is a solved form for E .

Notice: Representations in solved form can be quite different
(Complexity!!)
s ?= f (x1, ..., xn) t ?= f (g(x0, x0), ..., g(xn−1, xn−1))
S = {xi

?= g(xi−1, xi−1) : i = 1, ..., n} and
S1 = {xi+1

?= ti : t0 = g(x0, x0), ti+1 = g(ti , ti) i = 0, ..., n − 1}
are both in solved form. The size of ti grows exponentialy with i .

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 303

Reduction Systems Term Rewriting Systems .

Critical pairs, unification

Example

Example 9.13. Execution:

f (x , g(a, b)) ?= f (g(y , b), x)

Ei Si rule
f (x , g(a, b)) ?= f (g(y , b), x) ∅
x ?= g(y , b), x ?= g(a, b) ∅ split
g(y , b) ?= g(a, b) x ?= g(a, b) solve
y ?= a, b ?= b x ?= g(a, b) split
b ?= b x ?= g(a, b), y ?= a solve

x ?= g(a, b), y ?= a delete
Solution: mgu = σ = {x ← g(a, b), y ← a}

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 304

Reduction Systems Term Rewriting Systems .

Local confluence

Critical pairs - Local confluence

Definition 9.14. Let R be a rule system and l1 → r1, l2 → r2 ∈ R with
V (l1) ∩ V (l2) = ∅ (renaming of variables if necessary,
l1 ≈ l2 resp. l1 → r1 ≈ l2 → r2 are allowed).
Let u ∈ O(l1) with l1|u /∈ V s.t. σ = mgu(l1|u, l2) exists.
σ(l1) is called then a overlap (superposition) of l2 → r2 in l1 → r1 and
(σ(r1), σ(l1[r2]u)) is the associated critical pair to the overlap
l1 → r1, l2 → r2, u ∈ O(l1), provided that σ(r1) �= σ(l1[r2]u).
Let CP(R) be the set of all the critical pairs that can be constructed with
rules of R.

Notice: The overlaps and consequently the set of critical pairs is unique
up to renaming of the variables.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 305

Reduction Systems Term Rewriting Systems .

Local confluence

Examples
Example 9.15. Consider

� f (f (x , y), z)→ f (x , f (y , z)) f (f (x �, y �), z �)→ f (x �, f (y �, z �))
unifiable with x ← f (x �, y �), y ← z �

f (f (f (x �, y �), z �), z)
� �

t1 = f (f (x �, y �), f (z �, z)) f (f (x �, f (y �, z �)), z) = t2

� t = f (x , g(x , a))→ h(x) h(x �)→ g(x �, x �), t|1 = t|21 = x
no critical pairs. Consider variable overlaps:

f (h(z), g(h(z), a)))
� �

t1 = h(h(z)) f (g(z , z), g(h(z), a)) = t2

�
↓

f (g(z , z), g(g(z , z), a))
�

h(g(z , z))

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 306

Reduction Systems Term Rewriting Systems .

Local confluence

Properties

� Let σ, τ be substitutions, x ∈ V , σ(y) = τ(y) for y �= x and
σ(x)→R τ(x). Then for each term t holds:

σ(t) ∗→R τ(t)
� Let l1 → r1, l2 → r2 be rules, u ∈ O(l1), l1|u = x ∈ V . Let
σ(x)|w = σ(l2), i.e.. σ(l2) is introduced by σ(x).
Then t1 ↓R t2 holds for

t1 := σ(r1)← σ(l1)→ σ(l1)[σ(r2)]uw =: t2

Lemma 9.16. Critical-Pair Lemma of Knuth/Bendix
Let R be a rule system. Then the following holds:

from t1 ←R t →R t2 either t1 ↓R t2 or t1 ↔CP(R) t2 hold.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 307

Reduction Systems Term Rewriting Systems .

Local confluence

Proofs

s(r)

s(x) t(x)

s(l)

s(t) t(t)

l−>r

2

w

s(l1)

s(x)s(l2)

s(l2)

s(l1)

u

u

s(r2)

t(r1)

t(l1)
left side x’s

*

l1|u = x

r1|ui = x

s(r1)

of appearances of x in t

* (right side x’s)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 308

Reduction Systems Term Rewriting Systems .

Local confluence

Confluence test

Theorem 9.17. Main result: Let R be a rule system.
� R is locally confluent iff all the pairs (t1, t2) ∈ CP(R) are joinable.
� If R is terminating, then:

R confluent iff (t1, t2) ∈ CP(R) � t1 ↓ t2.
� Let R be linear (i.e.. for l , r ∈ l → r ∈ R variables appear at most

once). If CP(R) = ∅ , then R is confluent.

Example 9.18. � Let R = {f (x , x)→ a, f (x , s(x))→ b, a→ s(a)}.
R is locally confluent,but not confluent:

a← f (a, a)→ f (a, s(a))→ b
but not a ↓ b. R is neither terminating nor left-linear.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 309

Reduction Systems Term Rewriting Systems .

Local confluence

Example (Cont.)
� R = {f (f (x))→ g(x)}

t1 = g(f (x))← f (f (f (x)))→ f (g(x)) = t2

It doesn’t hold t1 ↓R t2 � R not confluent.
Add rule t1 → t2 to R. R1 is equivalent to R, terminating and
confluent.

g(f (f (x)))
� �

f (g(f (x))) g(g(x))
� �
f (f (g(x)))

� R = {x + 0→ x , x + s(y)→ s(x + y)}, linear without critical pairs
� confluent.

� R = {f (x)→ a, f (x)→ g(f (x)), g(f (x))→ f (h(x)), g(f (x))→ b}
is locally confluent but not confluent.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 310

Reduction Systems Term Rewriting Systems .

Confluence without Termination

Confluence without Termination

Definition 9.19. �− � - Properties. Let �→ = 0→ ∪ 1→.
� R is called �− � closed , in case that for each critical pair

(t1, t2) ∈ CP(R) there exists a t with t1

�→
R

t �←
R

t2 .

� R is called �− � confluent iff ←
R

◦ →
R

⊆ �→
R

◦ �←
R

Consequence 9.20. � → �− � confluent � → strong-confluent.
� R �− � closed � R �− � confluent

R = {f (x , x)→ a, f (x , g(x))→ b, c → g(c)}. CP(R) = ∅, i.e..
R �− � closed but a← f (c, c)→ f (c, g(c))→ b, i.e.. R not
confluent �.

� If R is linear and �− � closed , then R is strong-confluent, thus
confluent (prove that R is �− � confluent).

These conditions are unfortunately too restricting for programming.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 311

Reduction Systems Term Rewriting Systems .

Confluence without Termination

Example

Example 9.21. R left linear �− � closed is not sufficient:
R = {f (a, a)→ g(b, b), a→ a�, f (a�, x)→ f (x , x), f (x , a�)→ f (x , x),

g(b, b)→ f (a, a), b → b�, g(b�, x)→ g(x , x), g(x , b‘)→ g(x , x)}

It holds f (a�, a�) ∗←→
R

g(b�, b�) but not f (a�, a�) ↓R g(b�, b�).
R left linear �− � closed :

f (a, a)
� ↓ �

g(b, b) f (a�, a) f (a, a�)
↓

� ↓ � � .
f (a, a) f (a�, a�)

↓
f (a�, a�)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 312

Reduction Systems Term Rewriting Systems .

Confluence without Termination

Parallel reduction

Notice: Let →,⇒ with ∗→ = ∗⇒. (Often: → ⊆ ⇒ ⊆ ∗→).
Then → is confluent iff ⇒ confluent.

Definition 9.22. Let R be a rule system.
� The parallel reduction, �→R , is defined through t �→R t � iff
∃U ⊂ O(t) : ∀ui , uj(ui �= uj � ui |uj) ∃li → ri ∈ R, σi with t|ui

=
σi(li) :: t � = t[σi(ri)]ui

(ui ∈ U) (t[u1 ← σ1(r1)]...t[un ← σ1(rn)]).
� A critical pair of R : (σ(r1), σ(l1[r2]u) is parallel 0-joinable in case

that σ(l1[r2]u) �→R σ(r1).
� R is parallel 0-closed in case that each critical pair of R is parallel

0-joinable.

Properties: �→R is stable and monotone. It holds ∗�→R = ∗→R and
consequently, if �→R is confluent then →R too.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 313

Reduction Systems Term Rewriting Systems .

Confluence without Termination

Parallel reduction
Theorem 9.23. If R is left-linear and parallel 0-closed, then �→R is
strong-confluent, thus confluent, and consequently R is also confluent.

Consequence 9.24. � If R fulfills the O’Donnel condition, then R is
confluent. O’Donnel’s condition: R left-linear, CP(R) = ∅, R
left-sequential (Redexes are unambiguous when reading the terms
from left to right: f (g(x , a), y)→ 0, g(b, c)→ 1 has not this
property).
By regrouping of the arguments, the property can frequently be
achieved, for instance f (g(a, x), y)→ 0, g(b, c)→ 1

� Orthogonal systems:: R left-linear and CP(R) = ∅, so R confluent.
(In the literature denominated also as regular systems).

� Variations: R is strongly-closed, in case that for each critical pair
(s, t) there are terms u, v with s ∗→ u ≤1←− t and s ≤1→ v ∗← t.
R linear and strongly-closed, so R strong-confluent.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 314

Reduction Systems Term Rewriting Systems .

Confluence without Termination

Consequences
� Does confluence follow from CP(R) = ∅? No.

R = {f (x , x)→ a, g(x)→ f (x , g(x)), b → g(b)}.
Consider g(b)→ f (b, g(b))→ f (g(b), g(b))→ a
“Outermost” reduction.
g(b)→ g(g(b)) ∗→ g(a)→ f (a, g(a)) not joinable.

� Regular systems can be non terminating:
{f (x , b)→ d , a→ b, c → c}. Evidently CP = ∅.
f (c, a)
↓∗
→ f (c, b)→ d

f (c, a)→ f (c, b). Notice that f (c, a) has a normal form. �
Reduction strategies that are normalizing or that deliver
shortest reduction sequences.

� A context is a term with “holes” �, e.g. f (g(�, s(0)),�, h(�)) as
“tree pattern” (pattern) for rule f (g(x , s(0)), y , h(z))→ x . The
holes can be filled freely. Sequentiality is defined using this notion.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 315

Reduction Systems Term Rewriting Systems .

Confluence without Termination

Termination-Criteria
Theorem 9.25. R is terminating iff there is a noetherian partial ordering
� over the ground terms Term(F), that is monotone, so that σ(l) � σ(r)
holds for each rule l → r ∈ R and ground substitution σ.

Proof:� Define s � t iff s +→ t (s, t ∈ Term(F))
� Asume that →R not terminating, t0 → t1 → ...(V (ti) ⊆ V (t0)).
Let σ be a ground substitution with V (t0) ⊂ D(σ), then
σ(t0) � σ(t1) � ...�.
Problem: infinite test.

Definition 9.26. A reduction ordering is partial ordering � over
Term(F ,V) with
(i) � is noetherian (ii) � is stable and (iii) � is monotone.

Theorem 9.27. R is noetherian iff there exists a reduction ordering �
with l � r for every l → r ∈ R

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 316

Reduction Systems Term Rewriting Systems .

Confluence without Termination

Termination’s criteria
Notice: There are no total reduction orderings for terms with variables..
x � y? � σ(x) � σ(y)
f (x , y) � f (y , x) ? commutativity cannot be oriented.
Examples for reduction orderings:
Knuth-Bendix ordering: Weight for each function symbol and precedence
over F .
Recursive path ordering (RPO): precedence over F is recursively
extended to paths (words) in the terms that are to be compared.
Lexicographic path ordering(LPO), polynomial interpretations, etc.
f (f (g(x))) = f (h(x)) f (f (x)) = g(h(g(x))) f (h(x)) = h(g(x))
KB → l(f) = 3 l(g) = 2 → l(h) = 1 →
RPO ← g > h > f ← ←

Confluence modulo equivalence relation (e.g. AC):
R :: f (x , x)→ g(x) G :: {(a, b)} g(a)← f (a, a) ∼ f (a, b) but not
g(a) ↓∼ f (a, b).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 317

Reduction Systems Term Rewriting Systems .

Knuth-Bendix Completion

Knuth-Bendix Completion method

Input: E set of equations, � reduction ordering, R = ∅.

Repeat while E not empty
(1) Remove t = s of E with t � s, R := R ∪ {t → s} else abort
(2) Bring the right side of the rules to normal form with R
(3) Extend E with every normalized critical pair generated by t → s with
R
(4) Remove all the rules from R, whose left side is properly larger than t
w.r. to the subsumption ordering.
(5) Use R to normalize both sides of equations of E .

Remove identities.

Output: 1) Termination with R convergent, equivalent to E . 2) Abortion
3) not termination (it runs infinitely).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 318

Reduction Systems Term Rewriting Systems .

Knuth-Bendix Completion

Examples for Knuth-Bendix-Procedure

Example 9.28. � SRS:: Σ = {a, b, c},E = {a2 = λ, b2 = λ, ab = c}
u < v iff |u| < |v | or |u| = |v | and u <lex v with a <lex b <lex c
E0 = {a2 = λ, b2 = λ, ab = c},R0 = ∅
E1 = {b2 = λ, ab = c},R1 = {a2 → λ},CP1 = ∅
E2 = {ab = c},R2 = {a2 → λ, b2 → λ},CP2 = ∅
R3 = {a2 → λ, b2 → λ, ab → c},NCP3 = {(b, ac), (a, cb)}
E3 = {b = ac, a = cb}
R4 = {a2 → λ, b2 → λ, ab → c, ac → b},NCP4 = ∅,E4 = {a = cb}
R5 = {a2 → λ, b2 → λ, ab → c, ac → b, cb → a},NCP5 = ∅,E5 = ∅

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 319

Reduction Systems Term Rewriting Systems .

Knuth-Bendix Completion

Examples for Knuth-Bendix-Completion

� E = {ffg(x) = h(x),ff (x) = x , fh(x) = g(x)} >: KBO(3, 2, 1)
R0 = ∅,E0 = E
R1 = {ffg(x)→ h(x)},KP1 = ∅.E1 = {ff (x) = x , fh(x) = g(x)}
R2 = {ffg(x)→ h(x),ff (x)→ x},NKP2 = {(g(x), h(x))},
E2 = {fh(x) = g(x), g(x) = h(x)},R2 = {ff (x)→ x}
R3 = {ff (x)→ x , fh(x)→ g(x)},NKP3 = {(h(x), fg(x))},E3 =
{g(x) = h(x), h(x) = fg(x)}
R4 = {ff (x)→ x , fh(x)→ h(x), g(x)→ h(x)},NKP3 = ∅,E4 = ∅

� E = {fgf (x) = gfg(x)} >: LL :: f > g
R0 = ∅,E0 = E
R1 = {fgf (x)→ gfg(x)},NKP1 = {(gfggf (x), fggfg(x))},E1 =
{gfggf (x) = fggfg(x)}
R1 = {fgf (x)→ gfg(x), fggfg(x)→ gfggf (x)},NKP2 =
{(gfggfggfg(x), fgggfggfg(x), ..}...

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 320

Reduction Systems Term Rewriting Systems .

Knuth-Bendix Completion

Refined Inference system for Completion
Definition 9.29. Let > be a noetherian PO over Term(F ,V). The
inference system PTES is composed by the following rules:

(1) Orientate (E ∪ {s .= t},R)
(E ,R ∪ {s → t}) in case that s > t

(2) Generate (E ,R)
(E ∪ {s .= t},R) in case that s ←R ◦ →R t

(3) Simplify EQ (E ∪ {s .= t},R)
(E ∪ {u .= t},R) in case that s →R u

(4) Simplify RS (E ,R ∪ {s → t})
(E ,R ∪ {s → u)) in case that t →R u

(5) Simplify LS (E ,R ∪ {s → t})
(E ∪ {u .= t},R) in case that s →R u with l → r and

s � l (SubSumOrd.)
(6) Delete identities

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 321

Equational calculus and Computability

Implementations

Equational implementations
Programming = Description of algorithms in a formal system

Definition 10.1. Let f : M1 × ...×Mn � Mn+1 be a (partial) function.
Let Ti , 1 = 1...n + 1 be decidable sets of ground terms over Σ,
f̂ n-ary function symbol, E set of equations.
A data interpretation I is a function I : Ti → Mi .
f̂ implements f under the interpretation I in E iff
1) I(Ti) = Mi (i = 1...n + 1)
2) f (I(t1), ...,I(tn)) = I(tn+1) iff f̂ (t1, ..., tn) =E tn+1 (∀ti ∈ Ti)

T1 × ...× Tn

f̂−→ Tn+1

I ↓ I ↓ I ↓
M1 × ...×Mn

f−→ Mn+1

Abbreviation: (f̂ ,E , I) implements f .

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 322

Equational calculus and Computability

Implementations

Equational implementations

Theorem 10.2. Let E be set of equations or rules (same notations).
For every i = 1, ..., n + 1 assume
1) I(Ti) = Mi

2a) f (I(t1), ...,I(tn)) = I(tn+1) � f̂ (t1, ..., tn) =E tn+1 (∀ti ∈ Ti)
f̂ implements the total function f under I in E when one of the following
conditions holds:
a) ∀t, t � ∈ Tn+1 : t =E t � � I(t) = I(t �)
b) E confluent and ∀t ∈ Tn+1 : t →E t � � t � ∈ Tn+1 ∧ I(t) = I(t �)
c) E confluent and Tn+1 contains only E-irreducible terms.

Application: Assume (f̂ ,E , I) implements the total function f . If E is
extended by E0 under retention of I, then 1 and 2a still hold. If one of
the criteria a, b, c are fullfiled for E ∪ E0, then (f̂ ,E ∪ E0, I) implements
also the function f . This holds specially when E ∪ E0 is confluent and
Tn+1 contains only E ∪ E0 irreducible terms.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 323

Equational calculus and Computability

Implementations

Equational implementations
Theorem 10.3. Let (f̂ ,E , I) implement the (partial) function f . Then
a) ∀t, t � ∈ Tn+1 :: I(t) = I(t �) ∧ I(t) ∈ Image(f) � t =E t �
b) Let E be confluent and Tn+1 contains only normal forms of E . Then I
is injective on {t ∈ Tn+1 : I(t) ∈ Image(f)}.

Theorem 10.4. Criterion for the implementation of total functions.
Assume
1) I(Ti) = Mi (i = 1, ..., n + 1)
2) ∀t, t � ∈ Tn+1 :: I(t) = I(t �) iff t =E t �
3) ∀1≤i≤n ti ∈ Ti ∃tn+1 ∈ Tn+1 ::

f̂ (t1, ..., tn) =E tn+1 ∧ f (I(t1), ...I(tn)) = I(tn+1)

Then f̂ implements the function f under I in E and f is total.

Notice: If Tn+1 contains only normal forms and E is confluent, so 2) is
fulfilled, in case I is injective on Tn+1.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 324

Equational calculus and Computability

Implementations

Equational implementations

Theorem 10.5. Let (f̂ ,E , I) implement f : M1 × ...×Mn → Mn+1. Let
Si = {t ∈ Ti :: ∃t0 ∈ Ti : t �= t0, I(t) = I(t0) t +→E t0} be recursive
sets.
Then f̂ implements also f with term sets T �i = Ti\Si under I|T �

i
in E .

So we can delete terms of Ti that are reducible to other terms of Ti with
the same I-value. Consequently the restriction to E -normal forms is
allowed.

Consequence 10.6. � Implementations can be composed.
� If we extend E by E- consequences then the implementation

property is preserved.
This is important for the KB-Completion since only E-consequences
are added.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 325

Equational calculus and Computability

Implementations

Examples: Propositional logic, natural numbers
Example 10.7. Convention: Equations define the signature. Occasionally
variadic functions and overloading. Single sorted.
Boolean algebra: Let M = {true, false} with ∧,∨,¬,⊃,
Constants tt,ff . Term set Bool := {tt,ff }, I(tt) = true, I(ff) = false.
Strategy: Avoid rules with tt or ff as left side. According to theorem 10.2
c) we can add equations with these restrictions without influencing the
implementation property, as long as confluence is achieved.
Consider the following rules:
(1) cond(tt, x , y)→ x (2) cond(ff , x , y)→ y. (help function).
(3) x vel y → cond(x , tt, y)
E = {(1), (2), (3)} is confluent. Hence: tt vel y =E cond(tt, tt, y) =E tt
holds, i.e.

(∗1) tt vel y = tt and (∗2) x vel tt = cond(x , tt, tt)
x vel tt = tt cannot be deduced out of E .
However vel implements the function ∨ with E.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 326

Equational calculus and Computability

Implementations

Examples: Propositional logic
According to theorem 10.4, we must prove the conditions (1), (2), (3):
∀t, t � ∈ Bool ∃t̄ ∈ Bool :: I(t) ∨ I(t �) = I(t̄) ∧ t vel t � =E t̄
For t = tt (∗1) and t = ff (2) since ff vel t � →E cond(ff , tt, t �)→E t �
Thus x vel tt �=E tt but tt vel tt =E tt, ff vel tt =E tt.
MC Carthy’s rules for cond :

(1) cond(tt, x , y) = x (2) cond(ff , x , y) = y (*) cond(x , tt, tt) = tt

Notice Not identical with cond in Lisp. Difference: Evaluation strategy.
Consider
(**) cond(x , cond(x , y , z), u)→ cond(x , y , u)
� E � = {(1), (2), (3), (∗), (∗∗)} is terminating and confluent.

Conventions: Sets of equations contain always (1), (2), (3) and
x et y → cond(x , y , ff) .
Notation: cond(x , y , z) :: [x → y , z] or
[x → y1, x2 → y2, ..., xn → yn, z] for [x → [...]..., z]

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 327

Equational calculus and Computability

Implementations

Examples: Semantical arguments

Properties of the implementing functions:
(vel ,E , I) implements ∨ of BOOL.
Statement: vel is associative on Bool .
Prove: ∀t1, t2, t3 ∈ Bool : t1 vel (t2 vel t3) =E (t1 vel t2) vel t3

There exist t, t �,T ,T � ∈ Bool with
I(t2) ∨ I(t3) = I(t) and I(t1) ∨ I(t2) = I(t �) as well as
I(t1) ∨ I(t) = I(T) and I(t �) ∨ I(t3) = I(T �)
Because of the semantical valid associativity of ∨
I(T) = I(t1) ∨ I(t2) ∨ I(t3) = I(T �) holds.
Since vel implements ∨ it follows:
t1 vel (t2 vel t3) =E t1 vel t =E T =E T � =E t � vel t3 =E (t1 vel t2) vel t3

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 328

Equational calculus and Computability

Implementations

Examples: Natural numbers
Function symbols: 0̂, ŝ Ground terms: {ŝn(0̂) (n ≥ 0)}
I Interpretation I(0̂) = 0, I(ŝ) = λx .x + 1, i.e. I(ŝn(0̂)) = n (n ≥ 0).
Abbreviation: ˆn + 1 := ŝ(n̂) (n ≥ 0)
Number terms. NAT = {n̂ : n ≥ 0} normal forms (Theorem 10.2 c
holds).
Important help functions over NAT :
Let E = {is_null(0̂)→ tt, is_null(ŝ(x))→ ff }.
is_null implements the predicate Is_Null : N→ {true, false} Zero-test.
Extend E with (non terminating rules)
ĝ(x)→ [is_null(x)→ 0̂, ĝ(x)], f̂ (x)→ [is_null(x)→ ĝ(x), 0̂]
Statement:It holds under the standard interpretation I
f̂ implements the null function f (x) = 0 (x ∈ N) and
ĝ implements the function g(0) = 0 else undefined.
Because of f̂ (0̂)→ [is_null(0̂)→ ĝ(0̂), 0̂] ∗→ ĝ(0̂)→ [...] ∗→ 0̂ and
f̂ (ŝ(x))→ [is_null(ŝ(x))→ ĝ(ŝ(x)), 0̂] ∗→ 0̂ (follows from theorem 10.4).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 329

Equational calculus and Computability

Implementations

Examples: Natural numbers
Extension of E to E � with rule:
f̂ (x , y) = [is_null(x)→ y , 0̂] (f̂ overloaded).
f̂ implements the function F : N× N→ N

F (x , y) =
�

y x = 0
0 x �= 0

f̂ (0̂, ŷ) ∗→ ŷ
f̂ (ŝ(x), ŷ) ∗→ 0̂

Nevertheless it holds:

f̂ (x , ĝ(x)) =E � [is_null(x)→ ĝ(x), 0̂]) =E � f̂ (x)

But f (n) = F (n, g(n)) for n > 0 is not true.

If one wants to implement all the computable functions, then the recursion
equations of Kleene cannot be directly used, since the composition
of partial functions would be needed for it.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 330

Equational calculus and Computability

Primitive Recursive Functions

Representation of primitive recursive functions

The class P contains the functions
s = λx .x + 1, πn

i = λx1, ..., xn.xi , as well as c = λx .0 on N and
is closed w.r. to composition and primitive recursion, i.e.
f (x1, ..., xn) = g(h1(x1, ..., xn), ..., hr (x1, ..., xn)) resp.
f (x1, ..., xn, 0) = g(x1, ..., xn)
f (x1, ..., xn, y + 1) = h(x1, ..., xn, y , f (x1, ..., xn, y))
Statement: f ∈ P is implementable by (f̂ ,E

f̂
, I)

Idea: Show for suitable E
f̂

:

f̂ (k̂1, ..., k̂n) ∗→E
f̂

ˆf (k1, ..., kn) with E
f̂

confluent and terminating.
Assumption: FUNKT (signature) contains for every n ∈ N a countable
number of function symbols of arity n.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 331

Equational calculus and Computability

Primitive Recursive Functions

Implementation of primitive recursive functions
Theorem 10.8. For each finite set A ⊂ FUNKT \ {0̂, ŝ} the
exception set, and each function f : Nn → N, f ∈ P there exist
f̂ ∈ FUNKT and E

f̂
finite, confluent and terminating such that

(f̂ ,E
f̂
, I) implements f and none of the equations in E

f̂
contains function

symbols from A.

Proof: Induction over construction of P: 0̂, ŝ /∈ A. Set A� = A ∪ {0̂, ŝ}
� ŝ implements s with Eŝ = ∅
� π̂n

i ∈ FUNKT n \ A� implem. πn
i with Eπ̂n

i
= {π̂n

i (x1, ..., xn)→ xi}
� ĉ ∈ FUNKT 1 \ A� implements c with Eĉ = {ĉ(x)→ 0}
� Composition: [ĝ ,Eĝ ,A0], [ĥi ,Eĥi

,Ai] with
Ai = Ai−1 ∪ {f ∈ FUNKT : f ∈ E

ĥi−1
} \ {0̂, ŝ}. Let f̂ ∈ FUNKT \ A�r

and E
f̂

= Eĝ ∪
�r

1
E

ĥi
∪ {f̂ (x1, ..., xn)→ ĝ(ĥ1(...), ..., ĥr (...))}

� Primitive recursion: Analogously with the defining equations.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 332

Equational calculus and Computability

Primitive Recursive Functions

Implementation of primitive recursive functions
All the rules are left-linear without overlappings � confluence.
Termination criteria: Let J : FUNKT → (N∗ → N), i.e
J(f) : Nst(f) → N, strictly monotonous in all the arguments. If E is a rule
system, l → r ∈ E , b : VAR → N (assignment), if J[b](l) > J[b](r) holds,
then E terminates.
Idea: Use the Ackermann function as bound:
A(0, y) = y + 1,A(x + 1, 0) = A(x , 1),A(x + 1, y + 1) = A(x ,A(x + 1, y))
A is strictly monotonic,
A(1, x) = x + 2,A(x , y + 1) ≤ A(x + 1, y),A(2, x) = 2x + 3
For each n ∈ N there is a βn with

�n

1
A(xi , x) ≤ A(βn(x1, ..., xn), x)

Define J through J(f̂)(k1, ..., kn) = A(p
f̂
,
�

ki) with suitable p
f̂
∈ N.

� pŝ := 1 :: J[b](ŝ(x)) = A(1, b(x)) = b(x) + 2 > b(x) + 1 =
J[b](ˆx + 1)

� pπ̂n

i
:= 1 :: J[b](π̂n

i (x1, ..., xn)) = A(1,
�n

1
b(xi)) > b(xi) = J[b](xi)

� pĉ := 1 :: J[b](ĉ(x)) = A(1, b(x)) > 0 = J[b](0̂)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 333

Equational calculus and Computability

Primitive Recursive Functions

Implementation of primitive recursive functions

� Composition: f (x1, ..., xn) = g(h1(...), ..., hr (...)).
Set c∗ = βr (pĥ1

, ..., p
ĥr

) and p
f̂

:= pĝ + c∗ + 2. Check that
J[b](f̂ (x1, ..., xn)) > J[b](ĝ(ĥ1(x1, ..., xn), ..., ĥr (x1, ..., xn)))

� Primitive recursion:
Set m = max(pĝ , pf̂

) and p
f̂

:= m + 3. Check that
J[b](f̂ (x1, ..., xn, 0)) > J[b](ĝ(x1, ..., xn)) and
J[b](f̂ (x1, ..., xn, ŝ(y))) > J[b](ĝ(....)).
Apply A(m + 3, k + 3) > A(p

ĥ
, k + A(p

f̂
, k))

� By induction show that
f̂ (k̂1, ..., k̂n) ∗→E

f̂

ˆf (k1, ..., kn)
� From the theorem 10.4 the statement follows.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 334

Equational calculus and Computability

Recursive and partially recursive functions

Representation of recursive functions

Minimization:: µ-Operator µy [g(x1, ..., xn, y) = 0] = z iff
i) g(x1, ..., xn, i) defined �= 0 for 0 ≤ i < z ii) g(x1, ..., xn, z) = 0

Regular minimization: µ is applied to total functions for which
∀x1, ..., xn∃y : g(x1, ..., xn, y) = 0
R is closed w.r. to composition, primitive recursion and regular
minimization.
Show that: regular minimization is implementable with exception set A.
Assume ĝ ,Eĝ implement g where ĝ(k̂1, ..., k̂n+1) ∗→Eĝ

ˆg(k1, ..., kn+1)
Let f̂ , f̂ +, f̂ ∗ be new and E

f̂
:= Eĝ ∪ {f̂ (x1, ..., xn)→ f̂ ∗(x1, ..., xn, 0̂),

f̂ ∗(x1, ..., xn, y)→ f̂ +(ĝ(x1, ..., xn, y), x1, ..., xn, y),
f̂ +(0̂, x1, ..., xn, y)→ y , f̂ +(ŝ(x), x1, ..., xn, y)→ f̂ ∗(x1, ..., xn, ŝ(y))}
Claim: (f̂ ,E

f̂
) implements the minimization of g .

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 335

Equational calculus and Computability

Recursive and partially recursive functions

Implementation of recursive functions
Assumption: For each k1, ..., kn ∈ N there is a smallest k ∈ N with
g(k1, ..., kn, k) = 0
Claim: For every i ∈ N, i ≤ k f̂ ∗(k̂1, ..., k̂n, ˆ(k − i)) ∗→E

f̂
k̂ holds

Proof: induction over i :
� i = 0 :: f̂ ∗(k̂1, ..., k̂n, k̂)→ f̂ +(ĝ(k̂1, ..., k̂n, k̂), k̂1, ..., k̂n, k̂) ∗→Eĝ

f̂ +(ˆg(k1, ..., kn, k), k̂1, ..., k̂n, k̂)→ k̂
� i > 0 :: f̂ ∗(k̂1, ..., k̂n, ˆk − (i + 1))→

f̂ +(ĝ(k̂1, ..., k̂n, ˆk − (i + 1)), k̂1, ..., k̂n, ˆk − (i + 1)) ∗→Eĝ

f̂ +(ŝ(x̂), k̂1, ..., k̂n, ˆk − (i + 1))→ f̂ ∗(k̂1, ..., k̂n, ŝ(ˆk − (i + 1))) =
f̂ ∗(k̂1, ..., k̂n, ˆk − i)) ∗→Eĝ

k̂
For appropiate x and Induction hypothesis.

� E
f̂

is confluent and according to Theorem 10.4, (f̂ ,E
f̂
) implements

the total function f .
� E

f̂
is not terminating.g(k,m) = δk,m � f̂ ∗(k̂, ˆk + 1) leads to

NT-chain. Termination is achievable!.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 336

Equational calculus and Computability

Recursive and partially recursive functions

Representation of partial recursive functions
Problem: Recursion equations (Kleene’s normal form) cannot be directly
used. Arguments must have “number” as value. (See example). Some
arguments can be saved:

Example 10.9.

f (x , y) = g(h1(x , y), h2(x , y), h3(x , y)). Let g , h1, h2, h3 be
implementable by sets of equations as partial functions.
Claim: f is implementable. Let f̂ , f̂1, f̂2 be new and set:

f̂ (x , y) =
f̂1(ĥ1(x , y), ĥ2(x , y), ĥ3(x , y), f̂2(ĥ1(x , y)), f̂2(ĥ2(x , y)), f̂2(ĥ3(x , y)))
f̂1(x1, x2, x3, 0̂, 0̂, 0̂) = ĝ(x1, x2, x3), f̂2(0̂) = 0̂, f̂2(ŝ(x)) = f̂2(x)
(f̂ ,Eĝ ,Eĥ1

,E
ĥ2
,E

ĥ3
∪ REST) implements f.

Theorem 10.4 cannot be applied!!.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 337

Equational calculus and Computability

Recursive and partially recursive functions

(f̂ ,Eĝ ,Eĥ1
,Eĥ2
,Eĥ3
∪ REST) implements f.

Apply definition 10.1:
� For number-terms let f (I(t1), I(t2)) = I(t). There are number-terms
Ti (i = 1, 2, 3) with
g(I(T1), I(T2), I(T3)) = I(t) and hi(I(t1), I(t2)) = I(Ti).
Assumption: ĝ(T1,T2,T3) =E

f̂
t and ĥi(t1, t2) =E

f̂
Ti(i = 1, 2, 3). The

Ti are number-terms:: f̂2(Ti) =E
f̂

0̂ i.e. f̂2(ĥi(t1, t2)) =E
f̂

0̂ (i = 1, 2, 3).
Hence
f̂ (t1, t2) =E

f̂
f̂1(T1,T2,T3, 0̂, 0̂, 0̂) � f̂ (t1, t2) =E

f̂
t(=E

f̂
ĝ(T1,T2,T3))

� For number-terms t1, t2, t let f̂ (t1, t2) =E
f̂

t, so
f̂1(ĥ1(t1, t2), ĥ2(t1, t2), ĥ3(t1, t2), f̂2(ĥ1(t1, t2),) =E

f̂
t. If for an

i = 1, 2, 3 f̂2(ĥi(t1, t2)) would not be E
f̂

equal to 0̂, then the E
f̂

equivalence class contains only f̂1 terms. So there are number-terms
T1,T2,T3 with ĥi(t1, t2) =E

f̂
= Ti (i = 1, 2, 3) (Otherwise only f̂2 terms

equivalent to f̂2(ĥi(t1, t2)). From Assumption:
� hi(I(T1), I(T2)) = I(Ti), g(I(T1), I(T2), I(T3)) = I(t)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 338

Equational calculus and Computability

Partial recursive functions and register machines

Rp and normalized register machines

Definition 10.10. Program terms for RM: Pn (n ∈ N) Let 0 ≤ i ≤ n
Function symbols: ai , si constants , ◦ binary ,W i unary
Intended interpretation:
ai :: Increase in one the value of the contents on register i .
si :: Decrease in one the value of the contents on register i .(−̇1)
◦(M1,M2) :: Concatenation M1M2 (First M1, then M2)
W i(M) :: While contents of register i not 0, execute M Abbr.: (M)i

Note: Pn ⊆ Pm for n ≤ m
Semantics through partial functions: Me : Pn × Nn → Nn

� Me(ai , �x1, ..., xn�) = �...xi−1, xi + 1, xi+1...� (si :: xi−̇1)
� Me(M1M2, �x1, ..., xn�) = Me(M2,Me(M1, �x1, ..., xn�))

� Me((M)i , �x1, ..., xn�) =
�
�x1, ..., xn� xi = 0
Me((M)i ,Me(M, �x1, ..., xn�)) otherwise

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 339

Equational calculus and Computability

Partial recursive functions and register machines

Implementation of normalized register machines
Lemma 10.11. Me can be implemented by a system of equations.

Proof: Let tupn be n-ary function symbol. For ti ∈ N (0 < i ≤ n) let
�t1, ..., tn� be the interpretation for tupn(t̂1, ..., t̂n). Program terms are
interpreted by themselves (since they are terms). For m ≥ n ::

Pn tupm(t̂1, ..., t̂m) syntactical level
I ↓ I ↓
Pn �t1, ..., tm� Interpretation

Let eval be a binary function symbol for the implementation of Me and
i ≤ n. Define En := {
eval(ai , tupn(x1, ..., xn))→ tupn(x1, ..., xi−1, ŝ(xi), xi+1, ..., xn)
eval(si , tupn(..., xi−1, 0̂, xi+1...))→ tupn(..., xi−1, 0̂, xi+1...)
eval(si , tupn(..., xi−1, ŝ(x), xi+1...))→ tupn(..., xi−1, x , xi+1...)
eval(x1x2, t)→ eval(x2, eval(x1, t))
eval((x)i , tupn(..., xi−1, 0̂, xi+1...))→ tupn(..., xi−1, 0̂, xi+1...)
eval((x)i , tupn(..., xi−1, ŝ(y), xi+1...)→

eval((x)i , eval(x , tupn(..., xi−1, ŝ(y), xi+1...))}

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 340

Equational calculus and Computability

Partial recursive functions and register machines

(eval ,En, I) implements Me

Consider program terms that contain at most registers with 1 ≤ i ≤ n.
� En is confluent (left-linear, without critical pairs).
� Theorem 10.4 not applicable, since Me is not total.

Prove conditions of the Definition 10.1.
(1) I(Ti) = Mi according to the definition.
(2) Me(p, �k1, ..., kn�) = �m1, ...,mn� iff

eval(p, tupn(k̂1, ..., k̂n)) =En
tupn(m̂1, ..., m̂n)

� out of the def. of Me res. En. induction on construction of p.
� Structural induction on p ::
1. p = ai(si) ::k̂j = m̂j(j �= i), ŝ(k̂i) = m̂i res. k̂i = m̂i = 0̂

(k̂i = ŝ(m̂i)) for si

2.Let p = p1p2 and
eval(p2, eval(p1, tupn(k̂1, ..., k̂n))) ∗→En

tupn(m̂1, ..., m̂n)
Because of the rules in En it holds:

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 341

Equational calculus and Computability

Partial recursive functions and register machines

(eval ,En, I) implements Me

There are i1, ..., in ∈ N with eval(p1, tupn(k̂1, ..., k̂n)) ∗→En
tupn (̂i1, ..., în)

hence
eval(p2, tupn (̂i1, ..., în)) ∗→En

tupn(m̂1, ..., m̂n)
According to the induction hypothesis (2-times) the statement holds.
3. Let p = (p1)i . Then:
eval((p1)i , tupn(k̂1, ..., k̂n)) ∗→En

tupn(m̂1, ..., m̂n)
There exists a finite sequence (tj)1≤j≤l with
t1 = eval((p1)i , tupn(k̂1, ..., k̂n)), tj → tj+1, tl = tupn(m̂1, ..., m̂n)
There exists subsequence (Tj)1≤j≤m of form eval((p1)i , tupn (̂i1,j , ..., în,j))
For Tm ii,m = 0 holds, i.e. i1,m = m1, ..., ii,m = 0 = mi , ..., in,m = mn.
For j < m always ii,j �= 0 holds and
eval(p1, tupn (̂i1,j , ..., în,j) ∗→En

tupn (̂i1,j+1, ..., în,j+1).
The induction hypothesis gives:
Me(p1, �i1,j , ..., in,j�) = �i1,j+1, ..., in,j+1� for j = 1, ...,m.
But then Me((p1)i , �i1,j , ..., in,j�) = �m1, ...,mn� (1 ≤ j < m)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 342

Equational calculus and Computability

Partial recursive functions and register machines

Implementation of Rp

For f ∈ Rn,1
p there are r ∈ N, program term p with at most r-registers

(n + 1 ≤ r), so that for every k1, ..., kn, k ∈ N holds:
f (k1, ..., kn) = k iff ∀m ≥ 0

eval(p, tupr+m(k̂1, ..., k̂n, 0̂, 0̂, ..., 0̂, x̂1, ..., x̂m)) =Er+m

tupr+m(k̂1, ..., k̂n, k̂, 0̂, ..., 0̂, x̂1, ..., x̂m) iff

eval(p, tupr (k̂1, ..., k̂n, 0̂, 0̂, ..., 0̂)) =Er
tupr (k̂1, ..., k̂n, k̂, 0̂, ..., 0̂)

Note: Er � Er+m via tupr (...) � tupr+m(..., 0̂, ..., 0̂).
Let f̂ , R̂ be new function symbols, p program for f . Extend Er by
f̂ (y1, ..., yn)→ R̂(eval(p, tupr (y1, ..., yn), 0̂, ..., 0̂)) and
R̂(tupr (y1, ..., yr)) = yn+1 to Eext(f).

Theorem 10.12. f ∈ Rn,1
p is implemented by (f̂ ,Eext(f), I).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 343

Equational calculus and Computability

Partial recursive functions and register machines

Non computable functions
Let E be recursive, Ti recursive. Then the predicate

P(t1, ..., tn, tn+1) iff f̂ (t1, ..., tn) =E tn+1

is a r.a. predicate on T1 × ...× Tn × Tn+1

If the function f̂ implements f , then P represents the graph of the
function f � f ∈ Rp.
Kleene’s normal form theorem:
f (x1, ..., xn) = U(µ

y

[Tn(p, x1, ..., xn, y) = 0])
Let h be the total non recursive function, defined by:

h(x) =





µ
y

[T1(x , x , y) = 0] in case that ∃y : T1(x , x , y) = 0

0 otherwise
h is uniquely defined through the following predicate:
(1) (T1(x , x , y) = 0 ∧ ∀z(z < y � T1(x , x , z) �= 0)) � h(x) = y
(2) (∀z(z < y ∧ T1(x , x , z) �= 0)) � (h(x) = 0 ∨ h(x) ≥ y)
If h(x) is replaced by u, then these are prim. rec. predicates in x , y , u.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 344

Equational calculus and Computability

Partial recursive functions and register machines

Non computable functions
There are primitive recursive functions P1,P2 in x , y , u, so that

(1‘) P1(x , y , h(x)) = 0 and (2�) P2(x , y , h(x)) = 0

represent (1) and (2).
Hence there are an equational system E and function symbols P̂1, P̂2,
that implement P1,P2 under the standard interpretation.
(As prim. rec. functions in the Var. x , y , u)
Let ĥ be fresh. Add to E the equations

P̂1(x , y , ĥ(x)) = 0̂ and P̂2(x , y , ĥ(x)) = 0̂.
The equational system is consistent (there are models) and ĥ is
interpreted by the function h on the natural numbers.�
It is possible to specify non recursive functions implicitly with a finite set
of equations, in case arbitrary models are accepted as interpretations.
Through non recursive sets of equations any function can be
implemented by a confluent, terminating ground system :
E = {ĥ(t̂) = t̂ � : t, t � ∈ N, h(t) = t �} (Rule application is not effective).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 345

Equational calculus and Computability

Computable algebrae

Computable algebras

Definition 10.13. � A sig-Algebra A is recursive (effective,
computable), if the base sets are recursive and all operations are
recursive functions.

� A specification spec = (sig ,E) is recursive, if Tspec is recursive.
Example 10.14. Let sig = ({nat, even}, odd :→ even, 0 :→ nat,
s : nat → nat, red : nat → even).
As sig-Algebra A choose: Aeven = {2n : n ∈ N} ∪ {1},Anat = N with
odd as 1, red as λx .if x even then x else 1, s successor
Claim: There is no finite (init-Algebra) specification for A

� No equations of the sort nat.
� odd , red(sn(0)), red(sn(x)) (n ≥ 0) terms of sort even. No equations

of the form red(sn(x)) = red(sm(x) (n �= m) are possible.
� Infinite number of ground equations are needed.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 346

Equational calculus and Computability

Computable algebrae

Computable algebras
Solution: Enrichment of the signature with:
even : nat → nat and cond : nat even even→ even with
interpretation
λx . if x even then 0 else 1, λx , y , z . if x = 0 then y else z

Equations:
even(0) = 0, even(s(0)) = s(0), even(s(s(x)) = even(x)
cond(0, y , z) = y , cond(s(x), y , z) = z
red(x) = cond(even(x), red(x), odd)
Alternative: Conditional equations:
red(s(0)) = odd , red(s(s(x)) = odd if red(x) = odd

Conditional equational systems (term replacement systems) are more
“expressive” as pure equational systems. They also define reduction
relations. Confluence and termination criteria can be derived. Negated
equations in the conditions lead to problems with the initial semantics
(non Horn-clause specifications).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 347

Equational calculus and Computability

Computable algebrae

Computable algebras: Results

Theorem 10.15. Let A be a recursive term generated sig- Algebra.
Then there is a finite enrichment sig � of sig and a finite specification
spec � = (sig �,E) with Tspec� |sig ∼= A.

Theorem 10.16. Let A be a term generated sig- Algebra. Then there
are equivalent:

� A is recursive.
� There is a finite enrichment (without new sorts) sig � of sig and a

finite convergent rule system R, so that
A ∼= Tspec� |sig for spec � = (sig �,R)

See Bergstra, Tucker: Characterization of Computable Data Types
(Math. Center Amsterdam 79).

Attention: Does not hold for signatures with only unary function symbols.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 348

Reduction strategies .

Generalities

Reduction strategies for replacement systems
Main implementation problems for functional programming languages.
Which reduction strategies guarantee the calculation of normal forms, in
case these exist. Let R be TES, t ∈ term(Σ).
Assuming that there is t̄ irreducible with t ∗→R t̄.

� Which choice of the redexes guarantees a “computation” of t̄?
� Which choice of the redexes delivers the “shortest” derivation

sequence?
� Let R be terminating. Is there a reduction strategy that delivers

always the shortest derivation sequence? How much does it cost?
For SKI−calculus and λ−calculus the Left-Most-Outermost strategy
(normal strategy) is normalizing, i.e. calculates a normal form of a term if
it exists. It doesn’t deliver the shortest derivation sequences. Though it
holds: If t k→ t̄ is a shortest derivation sequence, then t �2

k

→LMOM t̄. By
using structure-sharing-methods, the bounds for LMOM can be lowered.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 349

Reduction strategies .

Generalities

Functional computability models

� Partial recursive functions (Basic functions + Operators)
� Term rewriting systems (Algebraic Specification)
� λ-Calculus and Combinator Calculus
� Graph replacement Systems (Implementation + efficiency)

Central Notion: Application:

Expressions represent (denote) functions.
Application of functions on functions � Self application problem

See e.g. Barendregt: Functional Programming and λ-Calculus Handbook
of Theoretical Computer Science.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 350

Reduction strategies .

Generalities

λ-Calculus und Combinator Calculus: Informal
Basic operations:

� Application:: For “expressions” F ,A:: F .A or (FA)
F as program term is “applied” on A as argument term.

� Abstraction:: For an “expression” M, Variable x :: λx .M
Denotes a function which maps x into M, M can “depend”on x .

� Example: (λx .2 ∗ x + 1).3 should give as result 2 ∗ 3 + 1, hence 7.
� β-Equation:: (λx .M[x])N = M[x := N]

“Free” occurrences of x in M are “replaced” by N. β-Conversion
(yx(λx .x))[x := N] ≡ (yN(λx .x))

Notice: Free occurrences of variables in N remain free.
Renaming of (bound) variables if necessary

(λx .y)[y := xx] ≡ λz .xx z “new”

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 351

Reduction strategies .

Generalities

λ-Calculus und Combinator Calculus: Informal
� α-Equation:: λx .M = λy .M[x := y] with y “new”
λx .x = λy .y . Same effect as “Functions” α-Conversion

� Set of λ- terms in C and V ::
Λ(C ,V) = C |V |(ΛΛ)|(λV .Λ)

� Set of free variables of M:: FV (M)
� M is closed (Combinator) if FV (M) = ∅
� Standard Combinators:: I ≡ λx .x K ≡ λxy .x ≡ λx .(λy .x)

B ≡ λxyz .x(yz) K∗ ≡ λxy .y S ≡ λxyz .xz(yz)
� Following equalities hold:

IM = M KMN = M K∗MN = N SMNL = ML(NL)
BLMN = L(M(N)) left parenthesis !

� Fixpoint Theorem:: ∀F∃X FX = X with e.g.
X ≡WW and W ≡ λx .F (xx)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 352

Reduction strategies .

Generalities

λ-Calculus und Combinator Calculus: Informal

� Representation of functions, numbers cn ≡ λfx .f n(x)
F combinator represents f iff Fzn1...znk = zf (n1,...,nk)

� f is partial recursive iff f is represented by a combinator.
� Theorem of Scott: Let A ⊂ Λ,A non trivial and closed under =,

then A not recursively decidable.
� β-Reduction:: (λx .M)N →β M[x := N]
� NF = Set of terms which have a normal form is not recursive.
� (λx .xx)y is not in normal form, yy is in normal form.
� (λx .xx)(λx .xx) has no normal form.
� Church Rosser Theorem:: →β ist confluent
� Theorem of Curry If M has a normal form then M →∗

l
N, i.e.

Leftmost Reduction is normalizing.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 353

Reduction strategies .

Generalities

Reduction strategies for replacement systems
Definition 11.1. Let R be a TES.

� A one-step reduction strategy S for R is a mapping
S : term(R,V)→ term(R,V) with t = S(t) in case that t is in
normal form and t →R S(t) otherwise.

� S is a multiple-step-reduction strategy for R if t = S(t) in case
that t is in normal form and t +→R S(t) otherwise.

� A reduction strategy S is called normalizing for R, if for each term t
with a R- normal form, the sequence (Sn(t))n≥0 contains a normal
form. (Contains in particular a finite number of terms).

� A reduction strategy S is called cofinal for R, if for each t and
r ∈ ∆∗(t) there is a n ∈ N with r ∗→R Sn(t).

Cofinal reduction strategies are optimal in the following sense: they
deliver maximal information gain.
Assuming that normal forms contain always maximal information.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 354

Reduction strategies .

Generalities

Known reduction strategies

Definition 11.2. Reduction strategies:
� Leftmost-Innermost (Call-by-Value). One-step-RS, the redex that

appears most left in the term and that contains no proper redex is
reduced.

� Paralell-Innermost. Multiple-step-RS. PI(t) = t̄ , at which t �→ t̄
(All the innermost redexes are reduced).

� Leftmost-Outermost (Call-by-Name). One-step-RS.
� Parallel-Outermost. Multiple-step-RS. PO(t) = t̄ , at which t �→ t̄

(All the disjoint outermost redexes are reduced).
� Fair-LMOM. A left-most outermost redex in a red-sequence is

eventually reduced. (A LMOR in such a strategy doesn’t remain
unreduced for ever). (Lazy strategy).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 355

Reduction strategies .

Generalities

Known reduction strategies

� Full-substitution-rule. (Only for orthogonal systems).
Multiple-step-RS. GK (t) :: t +→ GK (t) all the redexes in t are
reduced, in case they’re not disjunct, then the residuals of the
redexes are also reduced.

� Call-By-Need. One-step-RS. It reduces always a necessary redex. A
redex in t is necessary, when it must be reduced in order to compute
the normal form. (Only for certain TES e.g. LMOM for SKI calculus)
Problem: How can one decide whether a redex is necessary or not?

� Variable-Delay-Strategy: One-step-RS. Reduce redex, that doesn’t
appear as redex in the instance of a variable of another redex.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 356

Reduction strategies .

Generalities

Examples

Example 11.3. :
� and(true, x)→ x , and(false, x)→ false,

or(true, x)→ true, or(false, x)→ x
Orthogonal, strong left sequential (constants “before” the variables).

true and

and

and

true true false

or

or

truefalse

and

false

LMIM, PIM, LMOM, POM, FSR

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 357

Reduction strategies .

Generalities

Examples
� Σ = {0, s, p, if 0,F},R = {p(0)→ 0, p(s(x))→ x , if 0(0, x , y)→

x , if 0(s(z), x , y)→ y ,F (x , y)→ if 0(x , 0,F (p(x),F (x , y)))}
Left-linear, without overlaps. (orthogonal).
F (0, 0)→ if 0(0, 0,F (p(0),F (0, 0)))

↓ PIM

OM→ 0

if 0(0, 0,F (0, if 0(0, 0,F (p(0),F (0, 0)))))
No IM-strategy is for all orthogonal systems normalizing or cofinal.

� FSR (Full-Substitution-Rule): Choose all the redexes in the term and
reduce them from innermost to outermost (notice no redex is
destroyed). Cofinal for orthogonal systems.

� Σ = {a, b, c, di : i ∈ N}
R := {a→ b, dk(x)→ dk+1(x), c(dk(b))→ b

confluent (left linear parallel 0-closed).
c(d0(a))→1 c(d1(a))→1 not normalizing (POM).
c(d0(a))→1,1 c(d0(b))→0 b

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 358

Reduction strategies .

Generalities

Examples

� Σ = {a, bi , c, d : i ∈ N}. Non confluent SRS:
R = {ab0c → acb0, ab0d → ad , c → d , cbi → d , bi → bi+1(i ≥ 1)}
ab0c →11 ab0d → ad
ab0c →0 acb0 →11 acb1 → adb1 → ...

� Σ = {f , a, b, c, d} R = {f (x , b)→ d , a→ b, c → c} Orthogonal.
LMOM must not be normalizing:
f (c, a)→ f (c, a)→ but f (c, a)→ f (c, b)→ d

� f (a, f (x , y))→ f (x , f (x , f (b, b))) left linear with overlaps.
f (a, f (a, f (b, b)))

↓INN

→OUT f (a, f (a, f (b, b)))→OUT

f (a, f (b, f (b, f (b, b))))→ f (b, f (b, f (b, b)))
� R = {f (g(x), c)→ h(x , d), b → c}

f (g(f (a, f (a, b))), c)→VD h(f (a, f (a, b)), d)→VD

h(f (a, f (a, c)), d)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 359

Reduction strategies .

Orthogonal systems

Strategies for orthogonal systems
Theorem 11.4. For orthogonal systems the following holds:

� Full-Substitution-Rule is a cofinal reduction strategy.
� POM is a normalizing reduction strategy.
� LMOM is normalizing for λ-calculus and CL-calculus.
� Every fair-outermost strategy is normalizing.
� Main tools:

Elementary reduction diagrams,residuals and reduction diagrams

Sab(Ic)
↓

→ a(Ic)(b(Ic))
↓

Ka(Ib)
↓

→ Kab
↓

ac(b(Ic))
↓

Sabc → ac(bc) a →∅ a

Ia
↓∅
→ a

↓∅
Ia
↓
→ a

↓∅
a → a

Ia → a a →∅ a a a

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 360

Reduction strategies .

Orthogonal systems

Composition of E-reduction diagrams
Reduction diagrams and projections:

t0 → t1 → . . . → tn

↓ ↓ ∗ ∗→ ∗→ ↓ ∗
t �
1

∗→ ∗→ ∗→ ↓ ∗
↓ ↓ ∗ ∗→ ∗→ ↓ ∗ R4 = R2�R1

↓ ↓ ∗ ∗→ ∗→ ↓ ∗
...

... ↓ ∗
↓ ↓ ∗ ∗→ ∗→ ↓ ∗
t �m

∗→ ∗→ ∗→ ↓ ∗
R3 = R1�R2 projections

Let R1 :: t +→ t � and R2 :: t +→ t � be two reduction sequences of r from t
to t �. They are equivalent R1

∼= R2 iff R1�R2 = R2�R1 = ∅.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 361

Reduction strategies .

Orthogonal systems

Strategies for orthogonal systems
Lemma 11.5. Let D be an elementary reduction diagram for orthogonal
systems, Ri ⊆ Mi (i = 0, 2, 3) redexes with R0 − .− .→ R2 − .− .

∗→ R3

i.e. R2 is residual of R0 and R3 is residual of R2. Then there is a unique
redex R1 ⊆ M1 with R0 − .− .→ R1 − .− .

∗→ R3, i.e.
M0 M1

M3M2

R0

R2 R3

R1
*

*

Notice, that in the reduction sequences M1

∗→ M3 and M2

∗→ M3 only
residuals of the corresponding used redex in the reduction in M0 are
reduced.
Property of elementary reduction diagrams!

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 362

Reduction strategies .

Orthogonal systems

Strategies for orthogonal systems
Definition 11.6. Let Π be a predicate over term pairs M,R so that
R ⊆ M and R is redex (e.g. LMOM, LMIM,...).
i) Π has property I when for a D like in the lemma it holds:

Π(M0,R0) ∧Π(M2,R2) ∧Π(M3,R3) � Π(M1,R1)

ii) Π has property II if in each reduction step M →R M � with ¬Π(M,R),
each redex S � ⊆ M � with Π(M �,S �) has an ancestor-redex S ⊆ M with
Π(M,S). (i.e. ¬Π steps introduce no new Π-redexes).

Lemma 11.7. Separability of developments. Assume Π has property II.
Then each development R :: M0 → ...→ Mn can be partitioned in a
Π-part followed by a ¬Π-part.
More precisely: There are reduction sequences
RΠ :: M0 = N0 →R0 ...→Rk−1 Nk with Π(Ni ,Ri) (i < k) and
R¬Π :: Nk →Rk ...→Rk+l−1 Nk+l with ¬Π(Nj ,Rj) (k ≤ j < k + l) and R
is equivalent to RΠ ×R¬Π.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 363

Reduction strategies .

Orthogonal systems

Example 11.8. � Π(M,R) iff R is redex in M. I and II hold.
� Π(M,R) iff R is an outermost redex in M. Then properties I and II

hold: To I
M0 M1

M3M2

R0

R2 R3

R1
*

*

R0,R2,R3 outermost redexes
Let Si be the redex in M0 → Mi

Assuming that is not OM � In M1 a
redex (P) is generated by the
reduction of S1, that contains R1.

In M1 →> M3 R1 becomes again outermost. i.e. P is reduced: But
in M1 →> M3 only residuals of S2 are reduced and P is not residual,
since was newly introduced.�. II is clear.

� Π(M,R) iff R is left-most redex in M. I holds. II not always:
F (x , b)→ d , a→ b, c → c :: F (c, a)→ F (c, b)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 364

Reduction strategies .

Orthogonal systems

Descendants of redexes (residuals)

Definition 11.9. Traces in reduction sequences:
� Let R :: M0 → M1 → . . . be a reduction sequence. Let Mj be fixed

and Li ⊆ Mi (i ≥ j) (provided that Mi exists) redexes with
Lj − .− .→ Lj+1 − .− .→
The sequence L = (Lj+i)i≥0 is a trace of descendants (residuals) of
redexes in Mj .

� L is called Π-trace, in case that ∀i ≥ j Π(Mi , Li).
� Let R be a reduction sequence, Π a predicate. R is Π-fair, if R has

no infinite Π-Traces.

Results from Bergstra, Klop :: Conditional Rewrite Rules:
Confluence and Termination. JCSS 32 (1986)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 365

Reduction strategies .

Orthogonal systems

Properties of Traces

Lemma 11.10. Let Π be a predicate with property I.
� Let D be a reduction diagram with

Ri ⊆ Mi ,R0 − .− .→> R2 − .− .→> R3 is Π trace.
M

M0 M1

M3

R0

R2 R3

*

*

** *

*

*

*

M2

R1

Then R0 − .− .→> R1 − .− .→> R3 via M1 also a Π trace
� Let R,R� be equivalent reduction sequences from M0 to M.

S ⊆ M0,S � ⊆ M redexes, so that a Π-trace S − .− .→> S � via R
exists. Then there is a unique Π-trace S − .− .→> S � via R�.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 366

Reduction strategies .

Orthogonal systems

Main Theorem of O’Donnell 77
Theorem 11.11. Let Π be a predicate with properties I,II. Then the
class of Π-fair reduction sequences is closed w.r. to projections.
Proof Idea:

M0

N0 N1 Nk Nk+1

M1 Mk Mk+1... Ml

Nl... ...* * * *

S *

Rk Rl

Ak

Pi

−Pi

Bk+1
Ak+1

Pi

−Pi

Pi
−Pi

Pk Qk+1

Pk+1

*

Rk+1

Let R :: M0 → ... be Π-fair and R� :: N0

∗→ a projection.
∀k∃Mk

Π→> Ak

¬Π→> Nk equivalent to the complete development
Mk →> Nk . In the resulting rearrangement both derivations between Nk

and Nk+1 are equivalent. In particular the Π-Traces remain the same.
Results in an echelon form: Ak − Bk+1 − Ak+1 − Bk+2 −

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 367

Reduction strategies .

Orthogonal systems

Main Theorem: Proof

This echelon reaches R after a finite number of steps, let’s say in Ml ::
If not R would have an infinite trace of S residuals with property Π.

Let’s assume that R� is not Π fair. Hence it contains an infinite Π -trace
Rk , ...,Rk+1... that starts from Nk .

There are Π-ancestors Pk ⊆ Ak from the Π-redex Rk ⊆ Nk , i.e with
Π(Ak ,Pk). Then the Π-trace Pk − .− .→> Rk − .− .→> Rk+1 can be
lifted via Bk+1 to the Π-trace Pk − .− .→> Qk+1 − .− .→> Rk+1.

Iterating this construction until Ml , a redex Pl that is predecessor of Rl

with Π(Ml ,Pl) is obtained. This argument can be now continued with
Rl+1.
Consequently R is not Π-fair.�.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 368

Reduction strategies .

Orthogonal systems

Consequences

Lemma 11.12. Let R :: M0 → M1 → ... be an infinite sequence of
reductions with infinitely outermost redex-reductions. Let S ⊆ M0 be a
redex. Then R� = R�{S} is also infinite.

Proof: Assume that R� is finite with length k. Let l ≥ k and Rl be the
redex in the reduction of Ml → Ml+1 and let Rl the reduction sequence
from Ml to M �

l

• If Rl is outermost, then M �
l

∗→ M �
l+1

can only be empty if Rl is one of
the residuals of S which are reduced in Rl . Thus Rl+1 has one step less
than Rl .
• Otherwise Rl is properly contained in the residual of S reduced in Rl .

However given that R must contain infinitely many outermost
redex-reductions then Rq would become empty. Consequently R� must
coincide with R from some position on, hence it is also infinite.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 369

Reduction strategies .

Orthogonal systems

Consequences for orthogonal systems

Theorem 11.13. Let Π(M,R) iff R is outermost redex in M.
� The fair outermost reduction sequences are terminating, when they

start from a term which has a normal form.
� Parallel-Outermost is normalizing for orthogonal systems.

Proof: If t has a normal form, then there is no infinite Π-fair reduction
sequence that starts with t.
Let R :: t → t1 →→ be an infinite Π-fair and R� :: t → t �

1
→ ...→ t̄

a normal form.
R contains infinitely many outermost reduction steps (otherwise it would
not Π-fair). Then R�R� also infinite. �.

Observe that: The theorem doesn’t hold for LMOM-strategy: property II
is not fulfilled. Consider for this purpose a→ b, c → c, f (x , b)→ d .

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 370

Reduction strategies .

Orthogonal systems

Consequences for orthogonal systems

Definition 11.14. Let R be orthogonal, l → r ∈ R is called left normal,
if in l all the function symbols appear left of the variables. R is
left normal, if all the rules in R are left normal.

Consequence 11.15. Let R be left normal. Then the following holds:
� Fair leftmost reduction sequences are terminating for terms with a

normal form.
� The LMOM-strategy is normalizing.

Proof: Let Π(M, L) iff L is LMO-redex in M. Then the properties I and II
hold. For II left normal is needed.
According to theorem 11.11 the Π-fair reduction sequences are closed
under projections. From Lemma 11.12 the statement follows.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 371

Reduction strategies .

Orthogonal systems

Summary

A strategy is called perpetual if it can induce infinite reduction sequences.

Strategy Orthogonal LN-Ortogonal Orthogonal-NE

LMIM p p p n

PIM p p p n

LMOM n p n

POM n n p n

FSR n c n c p n c

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 372

Reduction strategies .

Strategies and length of derivations

Classification of TES according to appearances of variables

Definition 11.16. Let R be TES, Var(r) ⊆ Var(l) for
l → r ∈ R, x ∈ Var(l).

� R is called variable reducing, if for every l → r ∈ R, |l |x > |r |x
R is called variable preserving, if for every l → r ∈ R, |l |x = |r |x
R is called variable augmenting, if for every l → r ∈ R, |l |x ≤ |r |x

� Let D[t, t �] be a derivation from t to t �. Let |D[t, t �]| the length of
the reduction sequence. D[t, t �] is optimal if it has the minimal
length among all the derivations from t to t �.

Lemma 11.17. Let R be orthogonal, variable preserving. Then every
redex remains in each reduction sequence, unless it is reduced. Each
derivation sequence is optimal.

Proof: Exchange technique: residuals remain as residuals, as long as they
are not reduced, i.e. the reduction steps can be interchanged.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 373

Reduction strategies .

Strategies and length of derivations

Examples

Example 11.18. Lengths of derivations:
� Variable preserving:

R :: f (x , y)→ g(h(x), y)), g(x , y)→ l(x , y), a→ c, b → d.
Consider the term f (a, b) and its derivations.
All derivation sequences to the normal form are of the same length (4).

� Variable augmenting (non erasing):
R :: f (x , b)→ g(x , x), a→ b, c → d. Consider the term f (c, a) and
its derivations.
Innermost derivation sequences are shorter than the outermost ones.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 374

Reduction strategies .

Strategies and length of derivations

Further Results
Lemma 11.19. Let R be overlap free, variable augmenting. Then an
innermost redex remains until it is reduced.

Theorem 11.20. Let R be orthogonal variable augmenting (ne). Let
D[t, t �] be a derivation sequence from t to its normal form t �, which is
non-innermost. Then there is an innermost derivation D�[t, t �] with
|D�| ≤ |D|.

Proof: Let L(D) = derivation length from the first non-innermost
reduction in D to t �.
Induction over L(D) :: t → t1 → ...→ ti

S→ ...→ tj

∗→ t �.
Let i be this position.
S is non-innermost in ti , hence it contains an innermost redex Si that
must be reduced later on, let’s say in the reduction of tj . Consider the

reduction sequence D� :: t → t1 → ...→ ti

Si→ t �
i+1

S→ ...t �j
<
∗→ t �

|D�| ≤ |D|, L(D�) < L(D) � there is a derivation D� with L(D�) = 0.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 375

Reduction strategies .

Strategies and length of derivations

Further Results
Theorem 11.21. Let R be overlap free, variable augmenting. Every two
innermost derivations to a normal form are equally long.
Sure! given that innermost redexes are disjoint and remain preserved as
long as they are not reduced.
Consequence:Let R be left linear, variable augmenting. Then innermost
derivations are optimal. Especially LMIM is optimal.
Example 11.22. If there are several outermost redexes, then the length
of the derivation sequences depend on the choice of the redexes.
Consider:
f (x , c)→ d , a→ d , b → c and the derivations:
f (a, b)→ f (d , b)→ f (d , c)→ d and respectively f (a, b)→ f (a, c)→ d
� variable delay strategy. If an outermost redex after a reduction step is
no longer outermost, then it is located below a variable of a redex
originated in the reduction. If this rule deletes this variable, then the
redex must not be reduced.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 376

Reduction strategies .

Strategies and length of derivations

Further Results

Theorem 11.23. Let R be overlap free.
� Let D be an outermost derivation and L a non-variable outermost

redex in D. Then L remains a non-variable outermost redex until it is
reduced.

� Let R be linear. For each outermost derivation D[t, t �], t � normal
form, exists a variable delaying derivation D�[t, t �] with |D�| ≤ |D|.
Consequently the variable delaying derivations are optimal.

Theorem 11.24. Ke Li. The following problem is NP-complete:

Input: A convergent TES R, term t and D[t, t ↓].
Question: Is there a derivation D�[t, t ↓] with |D�| < |D|.

Proof Idea: Reduce 3-SAT to this problem.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 377

Reduction strategies .

Strategies and length of derivations

Computable Strategies

Definition 11.25. A reduction strategy S is computable, if the mapping
S : Term→ Term with t ∗→ S(t) is recursive.

Observe that: The strategies LMIM, PIM, LMOM, POM, FSR are
polynomially computable.
Question: Is there a one-step computable normalizing strategy for
orthogonal systems ?.

Example 11.26. � (Berry) CL-calculus extended by rules
FABx → C ,FBxA→ C ,FxAB → C is orthogonal, non-left-normal.
Which argument does one choose for the reduction of FMNL? Each
argument can be evaluated to A resp. B, however this is undecidable
in CL.

� Consider or(true, x)→ true, or(x , true)→ true + CL.
Parallel evaluation seems to be necessary!

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 378

Reduction strategies .

Strategies and length of derivations

Computable Strategies: Counterexample

Example 11.27. Signature: Constants: S,K ,S �,K �,C , 0, 1
unary: A, activate binary: ap, ap� ternary: B

Rules:
ap(ap(ap(S, x), y), z)→ ap(ap(x , y), ap(y , z))
ap(ap(K , x), y)→ x
activate(S �)→ S, activate(K �)→ K
activate(ap�(x , y))→ ap(activate(x), activate(y))
A(x)→ B(0, x , activate(x)), A(x)→ B(1, x , activate(x))
B(0, x ,S)→ C , B(1, x ,K)→ C , B(x , y , z)→ A(y)
Terms: Starting with terms of form A(t) where t is constructed from
S �,K � and ap�.
Claim: R is confluent and has no computable one step strategy which is
normalizing.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 379

Reduction strategies .

Strategies and length of derivations

A sequential Strategy for paror Systems
Example 11.28. Let f , g : N+ → N recursive functions. Define a “term
rewriting system” R on N× N with rules:

� (x , y)→ (f (x), y) if x , y > 0
� (x , y)→ (x , g(y)) if x , y > 0
� (x , 0)→ (0, 0) if x > 0
� (0, y)→ (0, 0) if y > 0

Obviously R is confluent. Unique normal form is (0, 0) and for x , y > 0,
(x , y) has a normal form iff ∃n. f n(x) = 0 ∨ gn(x) = 0.

A one step reductions strategy must choose among the application of f
res. g in the first res. second argument.
Such a reduction strategy cannot compute first the zeros of f n(x) res.
gn(y) in order to choose the corresponding argument. One could expect,
that there are appropriate functions f and g for which no computable
one step strategy exists. But this is not the case!!

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 380

Reduction strategies .

Strategies and length of derivations

A sequential strategy for paror systems
There exists a computable one step reduction strategy which is
normalizing.

Lemma 11.29. Let (x , y) ∈ N× N. Then:
� x < y:: For n either f n(x) = 0 or f n(x) ≥ y or there exists an i < n

with f n(x) = f i(x) �= 0 holds. Choose n minimal with this property.
The three alternatives are mutually excluding.
If one of the first two holds then S(x , y) = L else R

� x ≥ y:: For n either gn(y) = 0 or gn(y) > x or there exists an i < n
with gn(y) = g i(y) �= 0. Choose n minimal with this property. The
three alternatives are mutually excluding. If one of the first two
holds then S(x , y) = R else L

� Claim: S is a computable one step reduction strategy for R which is
normalizing. (Proof: Exercise)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 381

Reduction strategies .

Strategies and length of derivations

Computable Strategies
Theorem 11.30. Kennaway (Annals of Pure and Applied Logic 43(89))
For each orthogonal system there is a computable sequential (one step)
normalising reduction strategy.

Definition 11.31. Standard reduction sequences
Let R :: t0 → t1 → ... be a reduction sequence in the TES R. Mark in
each step in R all top-symbols of redexes that appear on the left side of
the reduced redex. R is a standard reduction sequence if no redex with
marked top-symbol is ever reduced.

Theorem 11.32.

Standardization theorem for left-normal orthogonal TES.
Let R be LNO.
If t ∗→ s holds, then there exists a standard reduction sequence in R with
t ∗→ST s.
Especially LMOM is normalizing.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 382

Reduction strategies .

Sequential Orthogonal TES: Call by Need

Sequential Orthogonal TES

Example 11.33. For applicative TES:: PxQ → xx ,R → S, Ix → x
Consider R :: PR(IQ)→ PRQ → RR → SR
There exists no standard reduction sequence from PR(IQ) to SR

Fact: λ-Calculus and CL-Calculus are sequential, i.e. always needed
redexes are reduced for computing the normal form.

Definition 11.34. Let R be orthogonal, t ∈ Term(R) with normal form
t ↓. A redex s ⊆ t is a needed redex, if in every reduction sequence
t → ...→ t ↓ some residual of s is reduced (contracted).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 383

Reduction strategies .

Sequential Orthogonal TES: Call by Need

Sequential Orthogonal TES: Call-by-need
Theorem 11.35. Huet- Levy (1979) Let R be orthogonal

� Let t with a normal form but reducible , then t contains a needed
redex

� “Call-by-need” Strategy (needed redexes are contracted) is
normalizing

� Fair needed-redex reduction sequences are terminating for terms
with a normal form.

Lemma 11.36. Let R be orthogonal, t ∈ Term(R), s, s � redexes in t s.t.
s ⊆ s �. If s is needed, then also s � is.
In particular:: If t is not in normal form, then a outermost redex is a
needed redex.
Let C [..., ..., ...] be a context with n-places (holes), σ a substitution of
the redexes s1, ..., sn in places 1, ..., n. The Lemma implies the following
property:
∀C [..., ..., ...] in normal form, ∀σ∃i .si needed in C [s1, ..., sn].
Which one of the si is needed, depends on σ .

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 384

Reduction strategies .

Sequential Orthogonal TES: Call by Need

Sequential Orthogonal TES

Definition 11.37. Let R be orthogonal.
� R is sequential* iff ∀C [..., ..., ...] in normal form ∃i∀σ.si is needed in

C [s1, ..., sn]
Unfortunately this property is undecidable

� Let C [...] context. The reduction relation →? (possible reduction) is
defined by

C [s]→? C [r] for each redex s and arbitrary term r
→∗? and residuals defined in analogy.

� A redex s in t is called strongly needed if in every reduction
sequence t →? ...→? t �, where t � is a normal form, some
descendant of s gets reduced.

� R is strongly sequential if ∀C [..., ..., ..] in normal form ∃i∀σ.si is
strongly needed.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 385

Reduction strategies .

Sequential Orthogonal TES: Call by Need

Example

F

G F

A x B y
x y

G

D

F

D

G

A

F

C

Is not strong sequential F(G(1,2),F(G(3,4),5))

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 386

Reduction strategies .

Sequential Orthogonal TES: Call by Need

Strong Sequentiality

Lemma 11.38. Let R be orthogonal.
� The property of being strongly sequential is decidable. The needed

index i is computable.
Proof: See e.g. Huet-Levy

� Call-by-need is a computable one step reduction strategy for such
systems.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 387

Summary .

Summary

Summary: Formal Specification and Verification Techniques

� What have we learned? � See contents of lecture.
� Which were the important notions about FSVT?
� Are formal methods helpful for better software development?
� Can formal methods be integrated in SD-Process models?
� What is needed in order to understand and use formal methods?
� Are there criteria for evaluating formal methods?
� The importance of knowing what one does....

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 388

Summary .

Summary

Principles to make a formal method a useful tool in system
development

� formal syntax
� formal semantics
� clear conceptual system model
� uniform notion of an interface
� sufficient expressiveness and descriptive power
� concept of development techniques with a proper notion of

refinement and implementation

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 389

Summary .

Summary

Model oriented specification techniques

� ASM
� VDM
� Z and B-Methods
� SDL
� STATECHARTS
� CSP, Petri-Nets (concurrent)
�

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 390

Summary .

Summary

Property oriented specification techniques

� Algebraic Specification Techniques (equational logic)
� Logical Specification Techniques (Prolog, temporal- and modal

logics)
� Hybrids
� LARCH, OBJ, MAUDE,....
� Tools: http://rewriting.loria.fr/
�

Interesting reading:
http://www.comp.lancs.ac.uk/computing/resources/IanS/SE6/Slides/PDF/ch9.pdf
http://libra.msra.cn/ConferenceDetail.aspx?id=1618

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 391

Summary .

Summary

Verification techniques

Important: What and where should something hold...
What to do when it does not hold?
Use the proper tools depending on the abstraction level.

� Equational Logic (Term Rewriting ...)
� Equational properties in a single model (Induction methods....)
� First order Logics (General theorem provers...)
� First order properties of single models (Inductive methods...)
� Temporal and modal logics (Propositional part...Model checking)
� Propositional logics (Sat solvers, Davis Putman, tableaux,...)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 392

Summary .

Summary

FSVT

� Thanks for your attention

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 393

	Introduction
	Generalities
	Bibliography
	Goals
	Contents

	Role of formal Specifications .
	Motivation
	Properties of Specifications
	Formal Specifications
	Examples

	Abstract State Machines: ASM- Specification's method
	Fundamentals
	Sequential algorithms
	ASM-Specifications

	Distributed ASM: Concurrency, reactivity, time
	Fundamentals: Orders, CPO's, proof techniques
	Induction
	DASM
	Reactive and time-depending systems

	Refinement
	Lecture Börger's ASM-Buch

	Algebraic Specification - Equational Calculus
	Fundamentals
	Introduction
	Algebrae
	Algebraic Fundamentals
	Signature - Terms
	Strictness - Positions- Subterms
	Interpretations: sig-algebras
	Canonical homomorphisms
	Equational specifications
	Substitution
	Loose semantics
	Connection between |-3mu, =E, E
	Birkhoff's Theorem

	Initial semantics
	Basic properties
	Correctness and implementation
	Structuring mechanisms
	Signature morphisms - Parameter passing
	Semantics parameter passing
	Specification morphisms

	Reduction Systems
	Abstract Reduction Systems
	Principle of the Noetherian Induction
	Important relations
	Sufficient conditions for confluence
	Equivalence relations and reduction relations
	Transformation with the inference system
	Construction of the proof ordering

	Term Rewriting Systems .
	Principles
	Critical pairs, unification
	Local confluence
	Confluence without Termination
	Knuth-Bendix Completion

	Equational calculus and Computability
	Implementations
	Primitive Recursive Functions
	Recursive and partially recursive functions
	Partial recursive functions and register machines
	Computable algebrae

	Reduction strategies .
	Generalities
	Orthogonal systems
	Strategies and length of derivations
	Sequential Orthogonal TES: Call by Need

	Summary .
	Summary

