Exercises to the Lecture FSVT

Exercise 1:

Let $\leq \subseteq \operatorname{Term}(F, V) \times \operatorname{Term}(F, V)$ be defined as:

$$
\begin{aligned}
& s \lesssim t \text { iff. exists a substitution } \sigma \text { with } t \equiv \sigma(s) \\
& s \approx t \text { iff. } s \lesssim t \text { and } t \lesssim s \\
& s<t \text { iff. } s \lesssim t \text { and } s \not \approx t
\end{aligned}
$$

Show:

1. < is strict part of a well-founded partial order. Which elements is this partial order defined on?
2. $s \approx t$ holds iff. a permutation ξ exists with $s \equiv \xi(t)$ (variable renaming).

Exercise 2:

This exercise is on an alternative specification of the integers INTEGER $=(\operatorname{sig}, E)$ with

$$
\text { sig }=(i n t, 0, \text { succ }, \text { pred }, a d d)
$$

$E=\{\operatorname{succ}(\operatorname{pred}(x))=x, \operatorname{pred}(\operatorname{succ}(x))=x, \operatorname{add}(0, y)=y, \operatorname{add}(\operatorname{succ}(x), y)=\operatorname{succ}(\operatorname{add}(x, y))\}$

1. Show, that $(\mathbb{Z}, 0,+1,-1,+)$ is initial in Alg (INTEGER).
2. Structurize this specification using the specification INT. Show that INTEGER is an enrichment of INT.
3. Extend INTEGER by a function absolute with the properties of the absolute value function on \mathbb{Z}. Show that this is an enrichment of INT.

Exercise 3:

Let INT2 be the specification of integers from example 7.9 of the lecture. We combine INT2 with BOOL and $((\},\{<\}), E)$ to obtain a specification INT3, where
$E=\{<(0, \operatorname{succ}(x))=$ true,$<(\operatorname{pred}(x), 0)=$ true,$<(0, \operatorname{pred}(x))=$ false,$<(\operatorname{succ}(x), 0)=$ false $,<(\operatorname{pred}(x), \operatorname{pred}(y))=<(x, y),<(\operatorname{succ}(x), \operatorname{succ}(y))=<(x, y)\}$

1. Check, whether $\left.T_{\mathrm{INT} 3}\right|_{\text {bool }} \cong$ Bool. Why would this be important? Hint: Look at $<(\operatorname{succ}(\operatorname{pred}(x)), \operatorname{pred}(\operatorname{succ}(y)))$.
2. Show that INT3 can not be fixed by additional equations.
3. Find further problems of INT3.
4. Make a suggestion for a specification INT4, such that $\left.T_{\text {INT4 }}\right|_{\text {int }} \cong \mathbb{Z},\left.T_{\text {INT4 }}\right|_{\text {bool }} \cong$ Bool and $<$ is properly defined by its equations. Hint: Consider further function symbols.

Exercise 4:

Let $\operatorname{sig}_{1}=(\{\mathrm{NAT}, \mathrm{EVEN}\},\{0,1, S, f\},\{0: \rightarrow$ NAT, $1: \rightarrow$ EVEN, $S:$ NAT \rightarrow NAT, $f:$ NAT \rightarrow EVEN $\}$). Further, let the sig_{1}-Algebra \mathfrak{A}_{1} be defined by:

$$
A_{1, \mathrm{NAT}}=\mathbb{N}, A_{1, \mathrm{EVEN}}=2 \mathbb{N} \cup\{1\}, 0_{\mathfrak{A}_{1}}=0,1_{\mathfrak{A}_{1}}=1, S_{\mathfrak{A}_{1}}(x)=x+1, f_{\mathfrak{A}_{1}}(x)= \begin{cases}x, & \text { if } x \text { even } \\ 1, & \text { else }\end{cases}
$$

Prove:

1. There is no specification spec $_{1}=\left(\operatorname{sig}_{1}, E_{1}\right)$ with finite E_{1}, such that $T_{\text {spec }_{1}} \cong \mathfrak{A}_{1}$.
2. There is a specification $\operatorname{spec}_{2}=\left(s i g_{2}, E_{2}\right)$ with $\operatorname{sig}_{1} \subseteq \operatorname{sig}_{2}$, E_{2} finite, such that $\left.T_{\text {spec }_{2}}\right|_{\text {sig }_{1}} \cong \mathfrak{A}_{1}$.

Delivery: until 06.12.2010,
by E-Mail to huechting@informatik.uni-kl.de

