sheet 8

Exercises to the Lecture FSVT

Prof. Dr. Klaus Madlener

Exercise 1: [Confluence and termination of rule sets over ground terms]

Let $R = \{(l_k, r_k) | k = 1, ..., n)\}$ be a finite rule set over ground terms. Prove:

- 1. If there is an infinite chain, then there is a rule $(l, r) \in R$ with an infinite chain from r.
- 2. If there is an infinite chain, then there is a j with $1 \le j \le n$ and a ground term t, such that $l_j \stackrel{+}{\Rightarrow} t$ and l_j is a subterm of t.
- 3. Termination of R is decidable. (Termination is often denounced as 'Kettenbedingung' in german literature.)
- 4. Develop sufficient conditions for local confluence.

Exercise 2: [Knuth-Bendix-ordering]

Let $\varphi:F\cup V\to \mathbb{N}$ be a weight function with

$\varphi(x) = \alpha > 0$	for all $x \in V$	(1)
$\varphi(f) \ge \alpha$	if f 0-ary	(2)
()		(2)

- $\varphi(f) > 0$ if f 1-ary (3)
- $\varphi(f) \ge 0$ else (4)

Extend φ to φ : Term $(F, V) \to \mathbb{N}$ by

$$\varphi(f(t_1,\ldots,t_n)) = \varphi(f) + \sum_{i=1,\ldots,n} \varphi(t_i)$$

Define s > t iff. $\varphi(s) > \varphi(t)$ and $|s|_x \ge |t|_x$ for all $x \in V$. Then > is called a Knuth-Bendix-ordering. Prove for any Knuth-Bendix-ordering >:

- 1. >is strict part of a wellfounded partial ordering
- 2. >is compatible with substitution
- 3. >is compatible with term replacement

Exercise 3:

Let

$$R_1 = \{F(0, 1, x) \to F(x, x, x)\}$$

$$R_2 = \{G(x, y) \to x, G(x, y) \to y\}.$$

- 1. Prove: R_1 and R_2 are terminating.
- 2. Prove or disprove: The rule set $R_1 \cup R_2$ is terminating.

Exercise 4: [Example confluence and critical pairs]

Consider the rule system $R: h(x, f(x)) \to c, h(x, x) \to b, k(x) \to x, g(a) \to f(g(k(a))).$

- 1. Prove: There are no critical pairs of R.
- 2. Prove: R is not confluent.
- 3. Why is there no contradiction?

Exercise 5: [Local coherence and critical pairs]

Prove: Let CP(R, G) be defined as the set of critical pairs regarding R and the set of equations G oriented in both ways. If R is left-linear, then the following statements are equivalent.

- 1. \rightarrow_R is locally coherent modulo \sim .
- 2. For every critical pair $(t_1, t_2) \in \operatorname{CP}(R, G)$ holds $t_1 \downarrow_{\sim} t_2$.

Delivery: until 20.12.2010, by E-Mail to huechting@informatik.uni-kl.de