Illustrating the ASM Function Classification

- A real time CLOCK:
 - Monitored: CurrTime: Real (supposed to be increasing)
 - Controlled: DisplayTime: Nat x Nat
 - Static: Delta: Real (system dependent time granularity), +,
 conversion to convert Real values into elements of Nat

```
If DisplayTime + Delta = CurrTime
Then DisplayTime := conversion(CurrTime)
```

- With the following derived fct
 - ClockTick = 1 iff (CurrTime = DisplayTime + Delta)

expressing a standard computing procedure, the rule becomes

If ClockTick = 1 Then DisplayTime := CurrTime

Bounded Synchronous Parallelism

```
    CycleThru(R<sub>0</sub>,...,R<sub>n</sub>) =
        forall i=0,...,n
        If cycle = i
        Then
        R<sub>i</sub>
        cycle := cycle+1 (mod n+1)
```

Special case: Alternate(R,S) (n=1)

Conway's game of life: cell evolution rule (Potentially Unbounded Parallelism)

resume(c) = alive(c) := true

suspend(c) = alive(c) := false

Non-deterministic Sorting or Variable Assignment

Non-deterministic sorting by iterating local swap:

Non-deterministic choice of variable assignments in COLD:

```
ColdModify(Var) = \\ choose \ n \in N \\ choose \ x(1),...,x(n) \in Var \ , \ choose \ v(1),...,v(n) \in Value \\ for all \ i=1,...,n \\ val(x(i)) := v(i)
```

Non-deterministic language generation (1)

 generating all and only the pairs vw∈ A* of different words v,w of same length (i.e. v ≠ w and |v| = |w|)

```
choose n, i with i < n  \text{choose a,b} \in A \text{ with a } \neq b \\ v(i) := a \\ w(i) := b \\ \text{forall } j < n, j \neq i \\ \text{choose a,b} \in A \\ v(j) := a \\ w(j) := b \\
```

When all possible choices are realized, the set of reachable states vw of this ASM, started with (say) a b for some a \neq b, is the set of all vw with $v \neq w$ and |v| = |w|.

The power of non-determinism

- Let $L_n = \{ v \# w \mid v \neq w \text{ and } |v| = |w| = n \}.$
- Exercise. Show that for each n, L_n can be accepted by a non-deterministic finite automaton with O(n²) states.
- Every unambiguous automaton that accepts
 L_n needs at least 2ⁿ states.
 - See C. M. R. Kintala and K-Y Pun and D.
 Wotschke: Concise representations of regular languages by degree and probabilistic finite automata. In: Math. Systems Theory 26 (4) 1993, 379—395.

Non-deterministic language generation (2)

- generating the words over alphabet $\{0,1\}$ of length at least n with a 1 in the n-th place, i.e. the words of form $v1w \in \{0,1\}^{n-1} \ 1 \ \{0,1\}^*$.
- Let n be arbitrary, but fixed.

```
choose v \in \{0,1\}^{n-1}
choose w \in \{0,1\}^*
out := v1w
```

- NB. When all possible choices are realized, the set of words appearing as values of out is the desired set.
- For each n, there is a non-deterministic FSM with O(n) states which accepts the set {0,1}ⁿ⁻¹ 1 {0,1}*, but every deterministic FSM accepting this set has at least 2ⁿ states.

Double Linked Lists Desired Operations

- Define an ASM which offers the following operations, predicates and functions on double linked lists, whose elements have values in a given set VALUE:
 - CreateList (VALUE): create a new double linked list with elements taking values in Value
 - Append (L, Val): append at the end a new element with given value
 - Insert (L, Val, Elem): insert after Elem in L a new element with Val
 - Delete (L, Elem) : delete Elem from L
 - AccessByValue (L, Val): return the first element in L with Val
 - AccessByIndex (L, i): return the i-th element in L
 - empty (L), length (L), occurs (L, Elem), position (L, Elem)
 - Update (L, Elem, Val): update the the value of Elem in L to Val
 - Cat (L1,L2): concatenate two given lists in the given order
 - Split (L, Elem, L1, L2): split L into L1, containing L up to including Elem, and L2 containing the rest list of L

Double Linked Lists Desired Properties

- Prove that the Linked List ASM has the following properties:
 - If the next-link of a list element Elem points to Elem', then the previous-link of Elem' points to Elem.
 - L is empty iff the next-link of its head points to its tail.
 - The set ELEM (L) of elements occurring in a list is the set of all E which can be reached, starting from the list head, by applying next-links until the list tail is encountered.
 - After applying Append (L, Val), the list is not empty.
 - A newly created linked list is empty and its length is 0.
 - By Append/Delete the list length in/de-creases by 1.
 - For non empty L and arbitrary elements E the following holds:
 - Append (Delete (L,E),E) = Delete (Append (L,E),E)

Double Linked Lists : Signature

- LINKED-LIST (VALUE): dynamic set, with fcts "pointing" to structures of the following form (often VALUE suppressed):
 - dynamic set ELEM (L) of "objects" currly listed in L
 - distinguished elems Head (L), Tail (L) ∈ ELEM (L)
 - previous (L), next (L): ELEM (L) → ELEM (L) dyn link fcts
 - cont (L): ELEM (L) → VALUE yields curr value of list elems
- initialize(L) for L ∈ LINKED-LIST (as usual, L is suppressed) as empty linked list with values in VALUE, defined as follows:
 - ELEM := { Head, Tail } next (Head) := Tail previous (Tail) := Head
 - previous (Head) := next (Tail) := null (ELEM) Head/Tail start/end the list
 - cont (Head) := cont (Tail) := null (VALUE) Head/Tail have no content

Double Linked Lists: Definition of Operations (1)

- CreateList (VALUE) = let L = new (LINKED-LIST (VALUE)) in initialize (L)
- Append (L, Val) =

Insert (L, Val, Elem) = let e = new (ELEM (L)) in cont (e) := Val Link Elem & e Link e & next (Elem)

with Link a&b = next(a) := bprevious (b) := a

Double Linked Lists: Operations & Derived Fcts (2)

Delete $(L, e) \equiv$

е

Val

Link previous (e) & next (e)


```
length (L) \equiv 1 m ( next <sup>m+1</sup> (Head) = Tail ) well defined by initialization occurs (L, e) \equiv 3 i \leq length (L) : next <sup>i</sup> (Head) = e (e \in ELEM(L)) position (L, Elem) \equiv 1m ( next <sup>m</sup> (Head) = Elem ) if occurs (L, Elem) AccessByIndex (L, i) \equiv next <sup>i</sup> (Head) if i \leq length (L) AccessByValue (L, Val) \equiv next <sup>m</sup> (Head) fst occ of Val where m= min { i | cont (next <sup>i</sup> (Head)) = Val } is defined
```

Double Linked Lists: Definition of Operations (3)

```
Update (L, Elem, Val) \equiv If occurs (L, Elem)
           then cont (Elem) := Val
           else error msg "Elem does not occur in L"
Cat (L_1, L_2) \equiv \text{let L} = \text{new (LINKED-LIST)} in
   Head (L) := Head (L_1)
   Tail (L) := Tail (L_2)
   Link (L) previous (L<sub>1</sub>) ( Tail (L<sub>1</sub>)) & next (L<sub>2</sub>) ( Head (L<sub>2</sub>) )
   forall e \in ELEM(L_1) - {previous (L_1) ( Tail (L_1)), Tail (L_1) }
           Link (L) e & next (L_1) (e)
   forall e∈ ELEM (L<sub>2</sub>) - { Head (L<sub>2</sub>), Tail (L<sub>2</sub>) }
           Link (L) e & next (L<sub>2</sub>) (e)
                                                                             last<sub>1</sub>
```

Head,

Tail₁

last₁

fst,

Double Linked Lists: Definition of Operations (4)

```
Split (L, e, L<sub>1</sub>, L<sub>2</sub>) = let e<sub>1</sub> = new-tail, e<sub>2</sub> = new-head
   Head(L_1) := Head(L)
                                          where e' = new-tail/head ≡
   Tail (L_1) := e_1
                                             cont (e') := null (VALUE)
                                        next/previous (e') := null (ELEM)
   Link (L_1) e & e_1
   forall E \in ELEM(L) if position (L, E) < position(L, e)
                                 then Link (L_1) E & next (L) (E)
   Head (L_2) := e_2
   Link (L_2) e_2 & next (L) (e)
                                              Tail (L_2) := Tail (L)
   forall E∈ ELEM (L)-{Tail(L)}
            if position (L, e) < position (L, E)
             then Link (L<sub>2</sub>) E & next (L) (E)
                                                      Tail (L₁)
                                                      Head (L<sub>2</sub>)
```

Double Linked Lists : Proving the Properties (1)

- If the next-link of a list element Elem points to Elem', then the previous-link of Elem' points to Elem.
 - Initially true by defn of initialize (L), preserved by each opn due to the defn of Link (L) and the fact that next/previous are modified only using this macro.
- L is empty iff
 the next-link of its head points to its tail.
- A newly created linked list is empty and its length is 0.
- After applying Append (L, Val), the list is not empty
- By Append/Delete the list length in/de-creases by 1.

Double Linked Lists: Proving the Properties (2)

- For L≠[]: Append (Delete (L,E),E) = Delete (Append (L,E),E)
 - Follow from the defn of initialize (L), length (L), Append, Delete & the fact that Append/Insert yield a non null cont.
- The set ELEM (L) of elements occurring in a list is the set of all E which can be reached, starting from the list head, by applying nextlinks until the list tail is encountered.
 - -Follows from the defn of ELEM(L).