lllustrating the ASM Function Classification

« A real time CLOCK:
— Monitored:  CurrTime: Real (supposed to be increasing )
— Controlled:  DisplayTime: Nat x Nat

— Static: Delta: Real (system dependent time granularity), +,
conversion to convert Real values into elements of Nat

|f DisplayTime + Delta = CurrTime
Then DisplayTime := conversion(CurrTime)

 With the following derived fct
— ClockTick = 1 iff (CurrTime = DisplayTime + Delta)

expressing a standard computing procedure, the rule becomes
If ClockTick = 1 Then DisplayTime := CurrTime



Bounded Synchronous Parallelism

» CycleThru(R,,..,R.) =
forall i=0,...,n

If cycle =1
Then
=]

|
cycle := cycle+1 (mod n+1)

» Special case: Alternate(R,S) (n=1)



Conway’s game of life: cell evolution rule
| (Potentially Unbounded Parallelism)

forall ¢ in Cell

aliveNeighb(c) < 2
or aliveNeighb(c) > 3

aliveNeighb(c) = 3

resume(c) = alive(c) := true suspend(c) = alive(c) := false




Non-deterministic Sorting or Variable Assignment

* Non-deterministic sorting by iterating local swap:
choose i,j in dom(a) s.t.i < ] & a(i) > a(j)
CIORER:()
a(j) := a(i)
* Non-deterministic choice of variable assignments in COLD:
ColdModify(Var) =
choose neN
choose x(1),...,x(n) e Var , choose v(1),...,v(n) € Value
forall i=1,...,n
val(x(i)) := v(i)



Non-deterministic language generation (1)
« generating all and only the pairs vwe A* of different words v,w
of same length (i.e. v=w and |v| = |w| )
choose n, iwithi<n

choose a,b € A witha #Db
V(i) :=a
w(i) :=b
forallj<n,j#I
choose a,b € A
v(j) :=a
w(j) :=b
When all possible choices are realized, the set of reachable

states vw of this ASM, started with (say) a b for some a #Db,
IS the set of all vw with v #w and |v| = |w]|.



The power of non-determinism

e LletL, ={v#WwW|v=wand|v| =|w| =n}.

» Exercise. Show that for each n, L, can be
accepted by a non-deterministic finite
automaton with O(n?) states.

» Every unambiguous automaton that accepts
L needs at least 2" states.

— See C. M. R. Kintala and K-Y Pun and D.
Wotschke: Concise representations of regular
languages by degree and probabilistic finite
automata. In: Math. Systems Theory 26 (4) 1993,
379—395.



Non-deterministic language generation (2)

* generating the words over alphabet {0,1} of length at
least n with a 1 in the n-th place, i.e. the words of form
viwe{0,1}"11 {0,1}* .

* Let n be arbitrary, but fixed.
choose v €{0,1}n-
choose w € {0,1}"
out :=viw

NB. When all possible choices are realized, the set of
words appearing as values of out is the desired set.

For each n, there is a non-deterministic FSM with O(n)
states which accepts the set {0,1}"-11 {0,1}* , but
every deterministic FSM accepting this set has at least
2" states.



Double Linked Lists :Desired Operations

« Define an ASM which offers the following operations,
predicates and functions on double linked lists, whose elements
have values in a given set VALUE:

— Createlist (VALUE) : create a new double linked list with elements
taking values in Value

— Insert (L, Val, Elem) : insert after Elem in L a new element with Val
— AccessByValue (L, Val) : return the first element in L with Val
— empty (L), length (L), occurs (L, Elem), position (L, Elem)

— Cat (L1,L2) : concatenate two given lists in the given order



Double Linked Lists :Desired Properties

* Prove that the Linked List ASM has the following
properties:

— If the next-link of a list element Elem points to Elem’, then
the previous-link of Elem’ points to Elem.

— The set ELEM (L) of elements occurring in a list is the set of
all E which can be reached, starting from the list head, by
applying next-links until the list tail is encountered.

— A newly created linked list is empty and its length is O.

— For non empty L and arbitrary elements E the following
holds:



Double Linked Lists :Signature

LINKED-LIST (VALUE) : dynamic set, with fcts “pointing” to
structures of the following form (often VALUE suppressed) :

— dynamic set ELEM (L) of “objects” currly listed in L

— distinguished elems Head (L), Tail (L) € ELEM (L)

— previous (L), next (L): ELEM (L) - ELEM (L) dyn link fcts
— cont (L) : ELEM (L) —» VALUE vyields curr value of list elems
initialize(L) for L € LINKED-LIST (as usual, L is suppressed) as empty
linked list with values in VALUE, defined as follows:

— ELEM = { Head, Tail} next (Head) := Talil
— previous (Head) := next (Tail) := null (ELEM) Head/Tail start/end the list
— cont (Head) := cont (Tail) := null (VALUE) Head/Tail have no content

m NULL  null null NULL

previous, cont next




Double Linked Lists :Definition of Operations (1)
 CreatelList (VALUE) =

let L = new (LINKED-LIST ( VALUE ))

in initialize (L)
* Append (L, Val) =

et e = new (ELEM (L)) in €T 1

Link previous (Tail) & e
Link e &Tall

cont (e) := Val ;

 Insert (L, Val, Elem) = let e = new (ELEM (L)) in
cont (e) = Val
Link Elem & e

with Link a&b = next (a) :
Link e & next (Elem)

previous (b) :

b
a



Double Linked Lists :Operations & Derived Fcts (2)

Delete (L, e) = a»
Link previous () & next (e) 1

length (L) =1 m ( next ™1 (Head) = Tail ) well defined by initialization
occurs (L, e)=3i<length (L) : next' (Head) =e (e e ELEM(L))
position (L, Elem) = 1m ( next ™ (Head) = Elem ) if occurs (L, Elem)
AccessBylndex (L, i) = next ' (Head) if i <length (L)
AccessByValue (L, Val) = next ™ (Head) fst occ of Val
where m=min {i | cont (next ! (Head)) = Val } is defined



Double Linked Lists : Definition of Operations (3)

Update (L, Elem, Val) = If occurs (L, Elem)

then cont (Elem) := Val
else error msg “Elem does not occur in L*

Cat (L, L,) = let L = new (LINKED-LIST) in

Head (L) := Head (L,)

Tail (L) := Tail (L,)

Link (L) previous (L,) ( Tail (L)) & next (L,) ( Head (L,) )

forall ee ELEM (L,) - {previous (L,) ( Tail (L,)),Tail (L,) }
Link (L) e & next (L,) (e)

forall ee ELEM (L,) - { Head (L,) ,Tail (L,) }
Link (L) e & next (L,) (e)

last, Tail, Head, fst, 1



Double Linked Lists : Definition of Operations (4)

Split (L, e, L,, L,) =let e, = new-tail, e, = new-head
Head (L,) := Head (L) where @ = new-tail’head =
Tail (L,) := e; cont (€') := null (VALUE)
Link (L1) e &e. next/previous (€') := null (ELEM)
forall Ee ELEM (L) if position (L, E) < position (L, e)

then Link (L) E & next (L) (E)

Head (L,) :=e,
Link (L,) e, & next (L) (e) Tail (L,) := Tail (L)
forall Ee ELEM (L)-{Tail(L)}
If position (L, e) < position (L, E)
then Link (L,) E & next (L) (E)

T —



Double Linked Lists :Proving the Properties (1)
If the next-link of a list element Elem points to Elem’,
then the previous-link of Elem’ points to Elem.

— Initially true by defn of initialize (L), preserved by
each opn due to the defn of Link (L) and the fact
that next/previous are modified only using this
macro.

L is empty iff

the next-link of its head points to its tail.
A newly created linked list is empty and

its length is 0.
After applying Append (L, Val), the list is not empty
By Append/Delete the list length in/de-creases

by 1.



Double Linked Lists :Proving the Properties (2)

* For L#[ ]. Append (Delete (L,E),E) = Delete
(Append (L,E),E)
— Follow from the defn of initialize (L), length

(L), Append, Delete & the fact that
Append/Insert yield a non null cont.

* The set ELEM (L) of elements occurring in a
list is the set of all E which can be reached,
starting from the list head, by applying next-
links until the list tail is encountered.

—Follows from the defn of ELEM(L).



