Formal Specification and Verification Techniques

Prof. Dr. K. Madlener

31. Januar 2012

o = - = = 9ar
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques

1

Introduction
@®000000000000

Generalities

Course of Studies , Informatics”, ,Applied Informatics* and
~Master-Inf* WS11/12
Prof. Dr. Madlener
TU- Kaiserslautern

Lecture:

Mo 08.30-10.00 34-420 We 08.30-10.00 34-420
Exercises:??

Fr. 11.45-13.15 32-439 Mo 13.45-15.45 32-439

» Information http://www-madlener.informatik.uni-k1l.de/
teaching/ws2011-2012/fsvt/fsvt

» Evaluation method:
Exercises (efficiency statement) + Final Exam (Credits)

» First final exam: (Written or Oral)
» Exercises (Dates and Registration): See WWW-Site

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 2

Introduction
O@00000000000

Bibliography

Bibliography

M. O’Donnell.
Computing in Systems described by Equations, LNCS 58, 1977.
Equational Logic as a Programming language.

J. Avenhaus.
Reduktionssysteme, (Skript), Springer 1995.

Cohen et.al.
The Specification of Complex Systems.

Bergstra et.al.
Algebraic Specification.

Barendregt.
Functional Programming and Lambda Calculus. Handbook of TCS,
321-363, 1990.

u]
b}
I
i
tht
&
)
)
¢

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 3

Introduction
0O0@0000000000

Bibliography

Bibliography

Gehani et.al.

Software Specification Techniques.

Huet.

Confluent Reductions: Abstract Properties and Applications to TRS,
JACM, 27, 1980.

Nivat, Reynolds.
Algebraic Methods in Semantics.

Loeckx, Ehrich, Wolf.
Specification of Abstract Data Types, Wyley-Teubner, 1996.

J.W. Klop.
Term Rewriting System. Handbook of Logic, INCS, Vol. 2, Abransky,
Gabbay, Maibaum.

u]
b}
I
i
tht

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Introduction
0O00@000000000

Bibliography

Bibliography

Ehrig, Mahr.
Fundamentals of Algebraic Specification.

Peyton-Jones.
The Implementation of Functional Programming Language.

Plasmeister, Eekelen.
Functional Programming and Parallel Graph Rewriting.

Astesiano, Kreowski, Krieg-Briickner.
Algebraic Foundations of Systems Specification (IFIP).

N. Nissanke.
Formal Specification Techniques and Applications (Z, VDM,
algebraic), Springer 1999.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 5

Introduction
O000@00000000
Bibliography

Bibliography

Turner, McCluskey.
The construction of formal specifications. (Model based (VDM) +
Algebraic (OBJ)).

Goguen, Malcom.
Algebraic Semantics of Imperative Programs.

H. Dorr.

Efficient Graph Rewriting and its Implementation.

B. Potter, J. Sinclair, D. Till.
An introduction to Formal Specification and Z. Prentice Hall, 1996.

u]
b}
I
i
tht
&
)
)
¢

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Introduction

0000080000000

Bibliography

Bibliography

El
E

J. Woodcok, J. Davis.
Using Z: Specification, Refinement and Proof, Prentice Hall 1996.

J.R. Abrial.

The B-Book; Assigning Programs to Meanings. Cambridge U. Press,
1996.

E. Borger, R. Stéark

Abstract State Machines: A Method for High-Level System Design
and Analysis. Springer, 2003.

F. Baader, T. Nipkow
Term Rewriting and All That. Cambridge, 1999.

H. Habrias, M. Frappier
Software Specification Methods. ISTE, 2006.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 7

Introduction

000000@000000

Goals
.S S

Goals - Contents
General Goals:

Formal foundations of Methods
for Specification, Verification and Implementation

Summary

The Role of formal Specifications

Abstract State Machines: ASM-Specification methods
Algebraic Specification, Equational Systems
Reduction systems, Term Rewriting Systems
Equational - Calculus and - Programming

Related Calculi: A-Calculus, Combinator- Calculus

vV Vv vV VvV VY VY

Implementation, Reduction Strategies, Graph Rewriting

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 8

Introduction

000000Oe00000
Contents

e
Lecture's Contents

Role of formal Specifications
Motivation

Properties of Specifications

Formal Specifications
Examples

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Introduction

0000000080000
Contents

Abstract State Machines (ASMs)

Abstract State Machines: ASM- Specification’'s method
Fundamentals

Sequential algorithms

Basic-ASM: Main Model of ASM'’s

Induction

Distributed ASM: Concurrency, reactivity, time
Fundamentals: Orders, CPQ's, proof techniques
DASM

Reactive and time-depending systems
Refinement

Lecture Borger's ASM-Buch

= = - = = 9ag
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Introduction
0000000008000

Contents

Algebraic Specification

Algebraic Specification - Equational Calculus
Fundamentals
Introduction
Algebrae
Algebraic Fundamentals
Signature - Terms
Strictness - Positions- Subterms
Interpretations: sig-algebras
Canonical homomorphisms
Equational specifications
Substitution
Loose semantics
Connection between =, =g, Ff
Birkhoff's Theorem

u]
b}
I
i
tht

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 11

Introduction
0000000000800
Contents

Algebraic Specification: Initial Semantics

Initial semantics
Basic properties
Correctness and implementation
Structuring mechanisms
Signature morphisms - Parameter passing
Semantics parameter passing
Specification morphisms

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 12

Introduction
000000000000

Contents

Algebraic Specification: operationalization

Reduction Systems
Abstract Reduction Systems
Principle of the Noetherian Induction
Important relations
Sufficient conditions for confluence
Equivalence relations and reduction relations
Transformation with the inference system
Construction of the proof ordering

Term Rewriting Systems
Principles
Critical pairs, unification
Local confluence
Confluence without Termination
Knuth-Bendix Completion

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 13

Introduction
000000000000 e

Contents

Computability and Implementation

Equational calculus and Computability
Implementations
Primitive Recursive Functions
Recursive and partially recursive functions
Partial recursive functions and register machines
Computable algebrae
Reduction strategies
Generalities
Orthogonal systems
Strategies and length of derivations
Sequential Orthogonal TES: Call by Need
Applications
Formal specification techniques
Case Study: Invoice System
Case Study: CASL Specification
Case Study: ASM-Specification

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 14

Role of formal Specifications .

®00000000000000000000000000000

Motivation
.S S

Role of formal Specifications

» Software and hardware systems must accomplish well defined tasks
(requirements).

» Software Engineering has as goal

» Definition of criteria for the evaluation of SW-Systems

» Methods and techniques for the development of SW-Systems, that
accomplish such criteria

» Characterization of SW-Systems

> Development processes for SW-Systems

» Measures and Supporting Tools

» Simplified view of a SD-Process:
Definition of a sequence of actions and descriptions for the
SW-System to be developed. Process- and Product-Models

Goal: The group of documents that includes an executable program.

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 15

Role of formal Specifications

0000000000000 00000000000000000
Motivation

Models for SW-Development

» Waterfall model, Spiral model,. ..

Phases = Activities + Product Parts (partial descriptions)
In each stage of the DP

Description: a SW specification, that is, a stipulation of what must
be achieved, but not always how it is done.

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Role of formal Specifications .
00@000000000000000000000000000

Motivation

Specification

Specifications
actual needs

formal Specification ‘

informal Validation

l

Temporary specification ‘

Validation
(Test)

Refinement

Verification

Verification
(Test)

’ Temporary specification ‘

Y

Verification

’ last formal Specification ‘

(Test

Coding
Generation

Final System

Y

Verification of
the program
correctness

Maintenance

= . Programs
Installation

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

17

Role of formal Specifications

Motivation

000000000000 000000000000000000)
O
Comment
» First Specification: Global Specification
Fundament for the Development

“Contract or Agreement” between Developers and Client
» Intermediate (partial) specifications:

Base of the Communication between Developers.
» Programs: Final products.
Development paradigms

» Structured Programming
» Design + Program

» Transformation Methods
> ...

o = S = = 9Hal
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Role of formal Specifications .
0000@0000000000000000000000000

Properties of Specifications

Properties of Specifications

Consistency Completeness

Validation of the global specification regarding the requirements.
Verification of intermediate specifications regarding the previous one.
Verification of the programs regarding the specification.

vV vV v v

Verification of the integrated final system with respect to the global
specification.

» Activities: Validation, Verification, Testing
Consistency- and Completeness-Check

» Tool support needed!

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 19

Role of formal Specifications

0000080000000 00000000000000000)
Properties of Specifications
.S S
Requirements
Functional -
what

non functional
time aspects
robustness
how
Properties

stability

security
adaptability

ergonomics
Test

maintainability
Correctness: Does the implemented System fulfill the Requirements?

Validate Verify
=) = = = = Al
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

20

Role of formal Specifi
0O00000@00000C

Properties of Specifications

Validation - Verification

From Wikipedia, the free encyclopedia

In common usage, validation is the process of checking if something
satisfies a certain criterion. Examples would include checking if a
statement is true (validity), if an appliance works as intended, if a
computer system is secure, or if computer data are compliant with an
open standard. Validation implies one is able to document that a solution
or process is correct or is suited for its intended use.

In engineering or as part of a quality management system, validation
confirms that the needs of an external customer or user of a product,
service, or system are met. Verification is usually an internal quality
process of determining compliance with a regulation, standard, or
specification. An easy way of recalling the difference between validation
and verification is that

validation is ensuring “you built the right product” and

verification is ensuring “you built the product right.”

Validation is testing to confirm that it satisfies user’s needs.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Role of formal Specifications .
000000080000 000000000000000000
Properties of Specifications

Requirements

» The global specification describes, as exact as possible, what must
be done.

» Abstraction of the how
Advantages

> apriori: Reference document, compact and legible.
» aposteriori: Possibility to follow and document design decisions ~~
traceability, reusability, maintenance.

» Problem: Size and complexity of the systems.

Principles to be supported
» Refinement principle: Abstraction levels
» Structuring mechanisms
Decomposition and modularization principles
Object orientation
Verification and validation concepts

v

v

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 22

Role of formal Specifications .
00000000e000000000000000000000

Properties of Specifications

Requirements Description ~~ Specification Language

» Choice of the specification technique depends on the System.
Frequently more than a single specification technique is needed.
(What — How).

» Type of Systems:

Pure function oriented (1/0), reactive- embedded- real time-
systems.

» Problem : Universal Specification Technique (UST)
difficult to understand, ambiguities, tools, size ...
e.g. UML

» Desired: Compact, legible and exact specifications

Here: formal specification techniques

u]
b}
I
i
tht

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 23

Role of formal Specifications .
000000000 @00000000000000000000
Formal Specifications

Formal Specifications

> A specification in a formal specification language defines all the
possible behaviors of the specified system.

» 3 Aspects: Syntax, Semantics, Inference System
» Syntax: What's allowed to write: Text with structure, Properties
often described by formulas from a logic.
» Semantics: Which models are associated with the specification, ~~
specification models.

> Inference System: Consequences (Derivation) of properties of the
system. ~~ Notion of consequence.

u]
b}
I
i
tht

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 24

Role of formal Specifications .

000000000080 000000000000000000

Formal Specifications
.S S

Formal Specifications

» Two main classes:

Model oriented - - Property oriented
(constructive) (declarative)
e.g.VDM, Z, ASM signature (functions, predicates)
Construction of a Properties
non-ambiguous model (formulas, axioms)
from available

data structures and models
construction rules algebraic specification
Concept of correctness AFFIRM, OBJ, ASF,...

» Operational specifications:
Petri nets, process algebras, automata based (SDL).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 25

Role of formal Specifications .
00000000000 e000000000000000000

Formal Specifications

Specifications: What for?

» The concept of correctness is not well defined without a formal
specification.

» A verification task is not possible without a formal specification.

» Other concepts, like the concept of refinement, simulation become
well defined.

Wish List

» Small gap between specification and program:
Generators, Transformators.

Not too many different formalisms/notations.
Tool support.
Rapid prototyping.

vV v v v

Rules for “constructing” specifications, that guarantee certain
properties (e.g. consistency + completeness).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 26

Role of formal Specifications .
000000000000 e00000000000000000
Formal Specifications

Formal Specifications

» Advantages:

> The concepts of correctness, equivalence, completeness, consistency,

refinement, composition, etc. are treated in a mathematical way
(based on the logic)

> Tool support is possible and often available

» The application and interconnection of different tools are possible.
» Disadvantages:

o = S = = 9Hal
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Role of formal Specifications

0000000000000 e0000000000000000)
Formal Specifications
e
Refinements
Abstraction mechanisms
» Data abstraction
» Control abstraction

» Procedural abstraction
Refinement mechanisms

(representation)
(Sequence)
(only /O description)
» Choose a data representation (sets by lists)
» Choose a sequence of computation steps
» Develop algorithm (Sorting algorithm)
Concept: Correctness of the implementation
» Observable equivalences

» Behavioral equivalences

=] =3 = E =) QA C
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Role of formal Specifications .
000000000000 00e000000000000000

Formal Specifications

Structuring

Problems: Structuring mechanisms

» Horizontal:
Decomposition/Aggregation/Combination /Extension/
Parameterization/Instantiation
(Components)

Goal: Reduction of complexity, Completeness

» Vertical:
Realization of Behavior
Information Hiding/Refinement

Goal: Efficiency and Correctness

=] T = = = HA

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 29

Role of formal Specifications .
000000000000 000@00000000000000

Formal Specifications

Tool support

Syntactic support (grammars, parser,...)

Verification: theorem proving (proof obligations)
Prototyping (executable specifications)

Code generation (out of the specifications generate C code)

vV Vv v Y

Testing (from the specification generate test cases for the program)

Desired:

To generate the tools out of the syntax and semantics of the specification
language

u]
b}
I
i
tht

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 30

Role of formal Specifications .
000000000000 OOOOeO0000000000000
Examples

O
Example: declarative

Example 2.1. Restricted logic: e.g. equational logic
> Axioms: VX tp =t t1, tr terms.
> Rules: Equals are replaced with equals. (directed).

» Terms /= names for objects (identifier), structuring, construction of
the object.

» Abstraction: Terms as elements of an algebra, term algebra.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Role of formal Specifications

000000000000 O0OO00e000000000000
Examples

O
Example: declarative

Foundations for the algebraic specification method:

» Axioms induce a congruence on a term algebra
> Independent subtasks

> Description of properties with equality axioms
> Representation of the terms

» Operationalization
> spec, t term give out the ,value" of t, i.e.
t' € Value(spec) with spec =t = t'.

» ~- Functional programming: LISP, CAML,. ..
F(ti,..., ta) eval() ~> value.

o = A
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Role of formal Specifications .
000000000000 OOOO00e00000000000

Examples

Example: Model-based constructive: VDM

Unambiguous (Unique model), standard (notations),
Independent of the implementation, formally manipulable, abstract,
structured, expressive, consistency by construction

Example 2.2. Model (state)-based specification technique VDM
» Based on naive set theory, PL 1, preconditions and postconditions.
Primitive types: B Boolean {true, false} 7R
N natural {0,1,2,3,...} '

> Sets: B-Set: Sets of B-'s.
» Operations on sets: €: Element, Element-Set — B, U,n,\
> Sequences: Z*: Sequences of integer numbers.
» Sequence operations: —~: Sequences, Sequences — Sequences.
,,Concatenation”
eg. | | — [true, false, true| = [true, false, true]
len: sequences — N, hd: sequences ~ elem (partial).

tl: sequences ~~ sequences, elem: sequences — Elem-Set.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 33

Role of formal Specifications .
000000000O0OOOOO000eO0000000000
Examples

Operations in VDM

See e.g.: http://www.vdmportal.org/twiki/bin/view
VDM-SL: System State, Specification of operations

Format:

Operation-ldentifier (Input parameters) Output parameters
Pre-Condition

Post-Condition

e.g.
Int_SQR(x :N)z: N
pre x>1

post (22 < x)A(x < (z+1)?)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Role of formal Specifications .
000000000000 OO0OO0000e000000000
Examples

Example VDM: Bounded stack

Example 2.3. » Operations: - Init - Push - Pop - Empty

Full
23
45 45 45
78 78 78
29 29 Newstack | 29

§§ Push (23) §§ P;’P ?2
output:23
Contents = N* Max __ Stack _Size =N
» STATESTACKOF
s : Contents
n : Max_ Stack__Size
inv : mk-STACK(s,n) £ lens < n
END

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 35

Role of formal Specifications .
000000000000 OO0OO00000e00000000

Examples

Bounded stack

Init(size : N) Full()b:B
ext wr s: Contents ext rd s : Contents
wr n: Max__Stack _Size rd n:Max_ Stack_ Size
pre true pre true
post s =] A n=size post b < (lens = n)
Push(c : N) Pop()c: N
ext wr s: Contens ext wr s: Contens
rd n:Max_ Stack _Size pre lens>0
pre lens <n post 5 =[c] ~s

post s =[c] ~

~» Proof-Obligations

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 36

Role of formal Specifications .
000000000O0OOOOO000000e0000000

Examples

General format for VDM-operations

Input Satisfy -5
State postcondition %‘%
Precondition with O
output state
Evaluation and/or 8
-0
Value output parameter 3g e
Input value -8“
parameters Q>
i false i
Operation can’t Operation is
be executed not satisfiable

for this Input

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Role of formal Specifications
000000000O00OOO0OO0000000e000000
Examples

General form VDM-operations

Proof obligations:

For each acceptable input there's (at least) one acceptable output.
Vs;, i - (pre-op(i,s;) = 3s,, 0 - post-op(i, s;, 0, S5))
When there are state-invariants at hand:

alternatively

Vs;, i« (inv(s;) A pre-op(i,s;) = s, 0 (inv(s,) A post-op(i, sj, 0,55)))

Vs, i, So, 0 - (inv(s;) A pre-op(i, s;) A post-op(i, s;, 0,5,) = inv(s,))

See e.g. Turner, McCluskey The Construction of Formal Specifications
or Jones C.B. Systematic SW Development using VDM Prentice Hall.
Do Fr (=r (Zr» I DAl
O
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Role of formal Specifications .
000000000O0OOOOO00000000e00000
Examples

Stack: algebraic specification

Example 2.4. Elements of an algebraic specification: Signature (sorts,

operation names with the arity), Axioms (often only equations)
SPEC STACK

USING NATURAL, BOOLEAN
SORT stack “Principal type”
OPS init : — stack “Constant of the type stack, empty stack”
push : stack nat — stack
pop : stack — stack
top : stack — nat
is_empty? : stack — bool
stack_error : — stack
nat_error : — nat

“Names of known SPECs”

(Signature fixed)

=} =)
O

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 39

Role of formal Specifications .
0O00000000O0OOOOO0000O00000e0000

Examples

Axioms for Stack

FORALL s:stack n:nat
AXIOMS
is_empty? (init) = true
is_empty? (push (s, n)) = false
pop (init) = stack_error
pop (push (s, n)) =s
top (init) = nat_error
top (push (s,n)) =n

Terms or expressions:

top (push (push (init, 2), 3)) “means” 3

How is the “bounded stack” specified algebraically?
Semantics? Operationalization?

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 40

Role of formal Specifications .
0O00000000O00OOO0OO0000O000000e000

Examples

Variant: Z and B- Methods:
Specification-Development-Programs.

» Covering: Technical specification (what), development through
refinement, architecture (layers’ architecture), generation of
executable code.

» Proofs: Program construction = Proof construction.
Abstraction, instantiation, decomposition.

» Abstract machines: Encapsulation of information (Modules, Classes,
ADT).

» Data and operations: SWS is composed of abstract machines.
Abstract machines , get “ data and ,offer" operations.
Data can only be accessed through operations.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 41

Role of formal Specifications .
000000000O0OOOOOO0000O0000000e00

Examples

Z- and B- Methods: Specification-Development-Programs.

» Data specification: Sets, relations, functions, sequences, trees. Rules
(static) with help of invariants.

» Operator specification: not executable , pseudocode”.
Without loops:
Precondition 4 atomic action
PL1 generalized substitution
» Refinement (~ implementation).
» Refinement (as specification technique).
» Refinement techniques:
Elimination of not executable parts, introduction of control

structures (cycles).
Transformation of abstract mathematical structures.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 42

Role of formal Specifications .
000000000O0OOOOOO0000O00000000e0

Examples

Z- and B- Methods: Specification-Development-Programs.

» Refinement steps: Refinement is done in several steps.
Abstract machines are newly constructed. Operations for users
remain the same, only internal changes.
In-between steps: Mix code.
» Nested architecture:
Rule: not too many refinement steps, better apply decomposition.

» Library: Predefined abstract machines, encapsulation of classical DS.
» Reusability

» Code generation: Last abstract machine can be easily translated into
a program in an imperative Language.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 43

Role of formal Specifications .
000000000000 OO0OO0000O000000000e
Examples

Z- and B- Methods: Specification-Development-Programs.

Important here:

» Notation: Theory of sets + PL1, standard set operations, Cartesian
product, power sets, set restrictions {x | x € s A P}, P predicate.

» Schemata (Schemes) in Z Models for declaration and constraint
{state descriptions}.

» Types.

» Natural Language: Connection Math objects — objects of the
modeled world.

» See Abrial: The B-Book,
Potter, Sinclair, Till: An Introduction to Formal Specification and Z,

Woodcock, Davis: Using Z Specification, Refinement, and Proof ~~
Literature

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 44

Abstract State Machines: ASM- Specification’s method
Fundamentals

©000

Introduction to ASM: Fundamentals

Adaptable and flexible specification’s technique
Modeling in the correct abstraction level

Natural and easy understandable semantics.

Material: See http://www.di.unipi.it/AsmBook/
D) (Fr (ZH (Zr = HaAl
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

45

Abstract State Machines: ASM- Specification’s method
000000000000 00

Fundamentals

Theoretical fundaments: ASM Theses

Abstract state machines as computation models

Turing Machines (RAM, part.rec. Fct,..) serve as computation model,
e.g. fixing the notion of computable functions. In principle is possible to
simulate every algorithmic solution with an appropriate TM.

Problem: Simulation is not easy, because there are different abstraction
levels of the manipulated objects and different granularity of the steps.

Question: Is it possible to generalize the TM in such a way that every
algorithm, independent from it's abstraction level, can be naturally and
faithfully simulated with such generalized machine?

How would the states and instructions of such a machine look like?

Easy: If Condition Then Action

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 46

Abstract State Machines: ASM- Specification’s method

00@000

Fundamentals

ASM Thesis

ASM Thesis The concept of abstract state machine provides a universal
computation model with the ability to simulate arbitrary algorithms on

their natural levels of abstraction. Yuri Gurevich

Distributed ASM

Real Time ASM As]

Parallel ASM

Basic Model \
Sequential ASM \
Synch

Deterministic ASM

ynchronous calculations

ronous calculations

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

47

Abstract State Machines: ASM- Specification’s method

000@0000000000000000O00VOOOOOO00O0OOOOOOO0OO0O0OOOOOO0OO0OO0O00O0000OO0O
Sequential algorithms

Sequential ASM Thesis

» The model of the sequential ASM’s is universal for all the sequential
algorithms.

» Each sequential algorithm, independent from its abstraction level,
can be simulated step by step by a sequential ASM.

To confirm this thesis we need definitions for sequential algorithms and
for sequential ASM's.

~~ Postulates for sequentiality

=] T = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

48

Abstract State Machines: ASM- Specification’s method

000080000000 0000000000VOOOOOO00O0OOOOOOO0OO000OOOOOO0OO0OO0O00O0000O00O
Sequential algorithms

Sequentiality Postulates

» Sequential time:
Computations are linearly arranged.
» Abstract states:

Each kind of static mathematical reality can be represented by a
structure of the first order logic (PL 1). (Tarski)

» Bounded exploration:

Each computation step depends only on a finite (depending only on
the algorithm) bounded state information.

Y. Gurevich:: Sequential Abstract State Machines Capture

Sequential Algorithms, ACM Transactions on Computational Logic,
1, 2000, 77-111.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Abstract State Machines: ASM- Specification’s method
Sequential algorithms

000008000000 0000000000VOOOOOO00O0OOOOOOO0OOOOOOOO0OO0OOOOO0O00O0O00OO0O

The postulates in detail: Sequential time

Let A be a sequential algorithm. To A belongs:

> A set (Set of states) S(A) of States of A.

> A subset /(A) of S(A) which elements are called initial states of A.
» A mapping 74 : S(A) — S(A), the one-step-function of A.
A

An run (or a computation) of A is a finite or infinite sequence of states of
X07 Xl7 X27

Logical time and not physical time.

o = = = = 9Hal
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

in which Xj is an initial state and 74(X;) = X1 holds for each i.

Abstract State Machines: ASM- Specification’s method
Sequential algorithms

Equivalence of Algorithms

000000@000000000000000VOOOOOO00OOOOOOOOO0OOO0OOOOOO0OOOOO0O00O0OO0OO0O

Definition 3.1 (Equivalent algorithms). The sequential algorithms A and
B are equivalent if S(A) = S(B), I(A) = I(B) and 74 = 7B.
In particular equivalent algorithms have the “same” runs.

What are the right conditions for sets of states?

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

51

Abstract State Machines: ASM- Specification’s method
000000080000 00000000O00VOOOOOO00O0OOOOOOOOOOO0OOOOOO0OOOOO0O00O0O00OO0O
Sequential algorithms

Abstract States

Let A be a sequential algorithm:
> States of A are first order (PL1) structures.
> All the states of A have the same vocabulary (signature).

» The one-step-function doesn’t change the base set (universe) B(X)
of a state.

» S(A) and I(A) are closed under isomorphisms and each isomorphism

from state X to state Y is also an isomorphism of state 74(X) to
TA(Y).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Abstract State Machines: ASM- Specification’s method
0O0000000@0000000000000VOOOOOO00OO0OOOOOO0OO00OOOOOO0OO0OO0O00O0000OO0O
Sequential algorithms

Exercises
States: Signatures, interpretations, universe, terms, ground terms, value

Signatures (vocabulary): function- and relation-names, arity (n > 0)

Assumption: true, false, undef (constants), Boole (monadic) and = are
contained in every signature.
The interpretation of true is different from the one for false, undef.
Relations are considered as functions with the value of true, false in the
interpretations.
Monadic relations are seen as subsets of the base set of the interpretations.
Let Val(t, X) be the value in state X for a ground term t that is in the
vocabulary.
Functions are divided in dynamic and static, according whether they can
change or not, when a state transition occurs.
Exercise: Model the states of a TM as an abstract state.

Model the states of the standard Euclidean algorithm.

[m] = =

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 53

Abstract State Machines: ASM- Specification’s method

000000000 @0000000000O00VOOOOOO00O0OOOOOOO0OO0O0OOOOOO0OO0OO0O00O0000OO0O

Sequential algorithms
.S S

Bounded exploration

» Unbounded-Parallelism: Consider the following graph-reachability
algorithm that iterates the following step. (It is assumed that at the
beginning only one node satisfies the unary relation R.)

do for all x,y with Edge(x,y) A R(x) A =R(y) R(y) := true

In each computation step an unbounded number of local changes is
made on a global state.

» Unbounded-Step-Information:
Test for isolated nodes in a graph:

if VxJy Edge(x,y) then Output := false else Output := true

In one step only bounded local changes are made, though an
unbounded part of the state is considered in one step.
How can these properties be formalized?~+ Atomic actions

o = = V v
S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 54

Abstract State Machines: ASM- Specification’s method
0000000000000 000000O00VOOOOOO00O0OOOOOOO0OOO0OOOOOO0OOOOO0O00O0O00O00O

Sequential algorithms

Update Sets

Consider the structure X (state) as memory:

If fis a function name of arity j and 3 a j-tuple of base elements from X,
then the pair (f,3) is called a location and Contentx(f,3) is the value of
the interpretation of f for a in X.

Is (f,3) a location of X and b an element of X, then (f,3, b) is called an
update of X at location (f,3) with value b. The update is trivial when
b = Contentx(f,3).

To make (fire) an update, the actual content of the location is replaced
by b.

A set of updates of X is consistent when in the set there is no pair of
updates with the same location and different values.

A set A of updates is executed by making all updates in the set
simultaneously (in case the set is consistent, in other case nothing is
done). The result is denoted by X + A.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 55

Abstract State Machines: ASM- Specification’s method
00000000000 @0000000000VOOOOOO00OOOOOOOOO0OOO0OOOO0OO0OOOOO0O00O0OO0OO0O

Sequential algorithms

Update sets of algorithms, Reachable elements

Lemma 3.2. If X, Y are structures over the same signature and with the
same base set, then there is a unique consistent set A of non-trivial
updates of X with Y = X+ A. Let A = Y — X.

Definition 3.3. Let X be a state of algorithm A. According to the
definition, X and 7a(X) have the same signature and base set. Set:

A(AX) = 1a(X) = X i Ta(X) = X + A(A, X)

How can we bring up the elements of the base set in the description
of the algorithm at all? ~» Using the ground terms of the signature.

Definition 3.4 (Reachable element). An element a of a structure X is
reachable when a = Val(t, X) for a ground term t in the vocabulary of X.
A location (f,3) of X is reachable when each element in the tuple 3 is
reachable.

An update (f,3,b) of X is reachable when (f,3) and b are reachable.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 56

Abstract State Machines: ASM- Specification’s method

0000000000000 00000000VOOOOOO00O0OOOOOOO0OO000OOOOOO0OO0OO0O00O0000OO0O

Sequential algorithms
.S S

Bounded exploration postulate

Two structures X and Y with the same vocabulary Sig coincide on a set
T of Sig- terms, when Val(t, X) = Val(t,Y) forall t € T . The
vocabulary (signature) of an algorithm is the vocabulary of his states.

Let A be a sequential algorithm.

» There exist a finite set T of ground terms in the vocabulary of A, so
that:
A(A, X) = A(A,Y), for all states X, Y of A, that coincide on T.

[ntuition: Algorithm A examines only the part of a state that is reachable
with the set of terms T. If two states coincide on this term-set, then the
update-sets of the algorithm for both states should be the same.

The set T is a bounded-exploration witness for A.

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 57

Abstract State Machines: ASM- Specification’s method

000000000000 0e00000000VOOOOOO00O0OOOOOOOOOOO0OOOOOO0OOOOO0O00O00O0OO0O
Sequential algorithms

Example

Example 3.5. Consider algorithm A:
if P(f) then f := 5(f)

States with interpretations with base set N, P subset of the natural
numbers, for S the successor function and f a constant.

Evidently A fulfills the postulates of sequential time and abstract states.

One could believe that
To =A{f,P(f),S(f)} is a bounded-exploration witness for A.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Abstract State Machines: ASM- Specification’s method
000000000000 00®0000000VO0OOOO00V0OOOOOOOO0OO0O0OOOOOO0OO0OO0O00O0OO00OO0O
Sequential algorithms

Example: Continued

Let X be the canonical state of A with f =0 and P(0) holding.
Set a = Val(true, X) and b = Val(false, X), so that
Val(P(0), X) = Val(true, X) = a.

Let Y be the state that is obtained out of X through reinterpretation of
true as b and false as a, i.e. Val(true,Y) = b and Val(false, Y) = a.
The values of f and P(0) are left unchanged:

Val(P(0), Y) = a, thus P(0) is not valid in Y.
Consequently X, Y coincide on To but A(A, X) # 0 = A(A,Y).

The set T = To U {true} is a bounded-exploration witness for A.

=] = = =

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

59

Abstract State Machines: ASM- Specification’s method

0000000000000 00@000000V00OOOO00O00OOOOOO0OO0O0OOOOOO0OO0OO0O00O0OO0OO0O

Sequential algorithms
.S S

Sequential algorithms

Definition 3.6 (Sequential algorithm). A sequential algorithm is an
object A, which fulfills the three postulates.

In particular A has a vocabulary and a bounded-exploration witness T .
Without loss of generality (w.l.o.g.) T is subterm-closed and contains
true, false, undef. The terms of T are called critical and their
interpretations in a state X are called critical values in X.

Lemma 3.7. If (f, a1, ...,a;,a0) is an update in A(A, X), then all the
elements ag, a1, ..., a; are critical values in X.

Proof: exercise (Proof by contradiction).

The set of the critical terms does not depend of X, thus there is a fixed
upper bound for the size of A(A, X) and A changes in every step a
bounded number of locations. Each one of the updates in A(A, X) is an
atomic action of A. l.e. A(A, X) is a bounded set of atomic actions of A.

o & =
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 60

Abstract State Machines: ASM- Specification’s method

000000000000 0000eO00000VO0OOOO00V000OOOOOO0OO0O0OOOOOO0OOOOO0O00O0OO0OO0O
Sequential algorithms

Sequential ASM-programs: Rules

Definition 3.8 (Update rule). An update rule over the signature Sig has
the form

f(tl,...,tj) =1

in which f is a function and t; are (ground) terms in Sig. To fire the rule
in the Sig-structure X, compute the values a; = Val(t;, X) and execute
update ((f, a1, ..., aj), ao) over X.

Parallel update rule over Sig: Let R; be update rules over Sig, then
par

Ry
R»

Notation: Block (when empty skip)
Ry

endpar fires through simultaneously firing of R;.

=) F)
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

61

Abstract State Machines: ASM- Specification’s method
000000000000 00000®0000VO0OOOO00O000OOOOOO0OOO0OOOOOO0OO0OO00O00O0000O00O

Sequential algorithms

Sequential ASM-programs

Definition 3.9 (Semantics of update rules). If R is an update rule
f(ti,....,t;) ==ty and a; = Val(t;, X) then set
A(R’ X) = {(fv (31, XY aj)a ‘90)}

If R is a par-update rule with components Ry, ...Ry then set
AR, X) = A(RL, X)U---UA(Rk, X).

Consequence 3.10. There exists in particular for each state X of a
sequential algorithm A a rule RX that uses only critical terms with
A(RX, X) = A(A, X).

Notice: If X, Y coincide on the critical terms, then A(RX,Y) = A(A,Y)
holds. If X, Y are states and A(RX,Z) = A(A, Z) for a state Z, that is
isomorphic to Y, then also A(RX,Y) = A(A, Y) holds.

Consider the equivalence relation Ex(t1,t2) = Val(t1, X) = Val(t2, X)
on T.

X,Y are T-similar, when Ex = Ey ~ A(RX,Y) = A(A, Y). Exercise

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 62

Abstract State Machines: ASM- Specification’s method
000000000000 000000@000V00O0OO00O000OOOOOOOOOO0OOOOOO0OOOOO0O00O0OO00OO0O

Sequential algorithms

Sequential ASM-programs

Definition 3.11 (Conditional rules). Let ¢ be a boolean term over Sig
(i.e. containing ground equations, not, and, or) and Ry, Rx rules over Sig,
then

if @ then Ry
else R2
endif is a conditional rule

Semantics:: To fire the rule in state X evaluate ¢ in X. If the result is
true, then A(R,X) = A(Ry, X), if not A(R, X) = A(Ry, X).

Definition 3.12 (Sequential ASM program). A

sequential ASM program 11 over the signature Sig is a rule over Sig.
According to this A(I1, X) is well defined for each Sig-structure X. Let
m(X) = X + A, X).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 63

Abstract State Machines: ASM- Specification’s method
000000000000 0000000eO0VO0OO0O00O000OOOOOO0OO000OOOOOO0OO0OO0O00O0O00O00O

Sequential algorithms

Sequential ASM-machines

Lemma 3.13. Basic result: For each sequential algorithm A over Sig
there’s a sequential ASM-programm 11 over Sig with A(II, X) = A(A, X)
for all the states X of A.

Definition 3.14 (A sequential abstract-state-machine (seq-ASM)). A
seq-ASM B over the signature ¥ is given through:

» A sequential ASM-programm I1 over X.

» A set S(B) of interpretations of ¥ that is closed under isomorphisms
and under the mapping T .

> A subset I(B) C S(B), that is closed under isomorphisms.

Theorem 3.15. For each sequential algorithm A there is an equivalent
sequential ASM.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 64

Abstract State Machines: ASM- Specification’s method
000000000000 00000000e0VO0O00O000V000OOOOOO0OO0O0OOOOOO0OOOOO0O00O0OO0OO0O

Sequential algorithms

Example

Example 3.16. Maximal interval-sum.[Gries 1990]. Let A be a function
from {0,1,....,.n—1} — R and i,j, k € {0,1,...,n}.
Fori<j:S(i,j)=3" A(k). In particular S(i, i) = 0.

Problem: Compute S = maxi<;S(i,j).

i<k<j

Define y(k) = maxi<j<«S(i,j). Then y(0) =0,y(n) = S and

y(k+1) = max{maxj<j<kS(i,), maxi<x+1S(i, k+1)} = max{y(k),x(k+1)}
where x(k) = max;<xS(i, k), thus x(0) = 0 and

x(k +1) = max{max;<,S(i,k+1),S(k+1,k+1)}
= max{max;<x(S(i, k) + A(k)),0}
= max{(max;<kS(i, k)) + A(k),0}
= max{x(k) + A(k),0}

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 65

Abstract State Machines: ASM- Specification’s method

0000000000000 00000000eOOOOOOO0O00OO0OOOO0OO00000OO0OOOO0OO000000OO0O000
Sequential algorithms
e
Continuation of the example
Due to y(k) > 0, we have
k

y(k +1) = max{y(k). x(k + 1)} = max{y(k). x(k) + A(K)}

k

Assumption: The 0-ary dynamic functions k, x, y are 0 in the initial
state. The required algorithm is then

if k#n then

par

X :

max{x + A(k),0}
y = max{y,x + A(k)}

k:=k+1
else S:=y

Exercise 3.17. Simulation

Define an ASM, that implements Markov’'s Normal-algorithms.
eg forab— A, ba— B, c — C
CRERY-) =, (= Da e

66

Abstract State Machines: ASM- Specification’s method

000000000000 OOOO0O0OOOe0000000000000000O0000000000000000000000000000000

Basic-ASM: Main Model of ASM’s
.S S

Detailed definition of ASMs

m Part 1: Abstract states and update sets

= Part 2: Mathematical Logic

m Part 3: Transition rules and runs of ASMs
m Part 4: The reserve of ASMs

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 1

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 67

Abstract State Machines: ASM- Specification’s method

000000000000 OOOO0OOOOO0e000000000000000O0000000000000000000000000000000

Basic-ASM: Main Model of ASM’s
.S S

Part 1

Abstract states and update sets

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 2

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 68

Abstract State Machines: ASM- Specification’s method

0000000000000 000O0O00000V0O00O0O0O0O000000000O000000000
Basic-ASM: Main Model of ASM’s

Signatures

m Each function name f has an arity, a non-negative integer.
m Nullary function names are called constants.
m Function names can be static or dynamic.

m Every ASM signature contains the static constants
undef, true, false.

Definition. A signature X is a finite collection of function names.

Signatures are also called vocabularies.

Copyright © 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

69

Abstract State Machines: ASM- Specification’s method
000000000000 OOOO0OO00OO000e000000000000000000000000O00000000000O000000000

Basic-ASM: Main Model of ASM’s

Classification of functions

’ function/relation/location ‘

derived

static dynamic

in controlled shared out

(monitored) (interaction)

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 4

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 70

Abstract State Machines: ASM- Specification’s method
0O000@000000000000O00000V000O00O0O00000000000O00000000
Basic-ASM: Main Model of ASM’s

States

Definition. A state 2 for the signature X is a non-empty
set X, the superuniverse of 2, together with an interpre-
tation f2% of each function name f of ¥.

ulf f is an n-ary function name of X, then f%: X" — X.
ulf ¢ is a constant of X, then ¢¥ € X.

m The superuniverse X of the state 2 is denoted by |2].

m The superuniverse is also called the base set of the state.
m The elements of a state are the elements of the superuniverse.

Copyright © 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

71

Abstract State Machines: ASM- Specification’s method
000000000O00OOOOO0OO0OOO000000eO00000000000O00000000000O00000000000O000000000
Basic-ASM: Main Model of ASM’s

States (continued)

= The interpretations of undef, true, false are pairwise different.
m The constant undef represents an undetermined object.

m The domain of an n-ary function name f in 2 is the set of all n-tuples
(ar,...,an) € |A|" such that f2(ay, ..., an) # undef2.

m A relation is a function that has the values true, false or undef.
= We write @ € R as an abbreviation for R(a) = true.

m The superuniverse can be divided into subuniverses represented by
unary relations.
Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 6

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 72

Abstract State Machines: ASM- Specification’s method
0O00000@0000000000O00000O00000O0O0000000000O00000000
Basic-ASM: Main Model of ASM’s

Locations

Definition. A location of 2l is a pair

(fv (ala ceey an))

where f is an n-ary function name and ay, ..., a, are elements
of 2.
m The value fm(al7 ..., ap) is the content of the location in 2.

m The elements of the location are the elements of the set
{a17 AR} an}-
= We write 2((/) for the content of the location [in 2.

Notation. If [= (f, (ay,. .., apn)) is a location of 2 and « is a function
defined on |2, then a(l) = (f, (a(ay), ..., a(an))).

Copyright © 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

73

Abstract State Machines: ASM- Specification’s method
0000000800000 0000O00000O00000O0O00000000000O00000000
Basic-ASM: Main Model of ASM’s

Updates and update sets

Definition. An update for 2 is a pair (I, v), where [is a location
of % and v is an element of 2.

m The update is trivial, if v = ().
m An update set is a set of updates.

Definition. An update set U is consistent, if it has no clashing
updates, i.e., if for any location [and all elements v, w,
if (I,v) € U and (I,w) € U, then v = w.

Copyright © 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

74

Abstract State Machines: ASM- Specification’s method
0O0000000@00000000O00000V000O0O0O00000000000O00000000

Basic-ASM: Main Model of ASM’s

Firing of updates

Definition. The result of firing a consistent update set U in a
state 2 is a new state 2 + U with the same superuniverse as 2
such that for every location [of 2:

o, if ([,v) e U;
(B O = A(1), if there is no v with (I, v) € U.

The state A + U is called the sequel of 2 with respect to U.

Copyright © 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

75

Abstract State Machines: ASM- Specification’s method
000000000 @0000000O00000V00000O0O0000000000O000000000
Basic-ASM: Main Model of ASM’s

Homomorphisms and isomorphisms

Let A and B be two states over the same signature.

Definition. A homomorphism from 2 to B is a function «
from |2A| into |B| such that a(2A(l)) = B(«(l)) for each loca-
tion [of 2.

Definition. An isomorphism from 2 to B is a homomorphism
from 2 to B which is a ono-to-one function from |2(| onto |B|.

Lemma (Isomorphism). Let o be an isomorphism from 2/ to 8.
If U is a consistent update set for 2, then «(U) is a consistent
update set for B and v is an isomorphism from A+ U to B+a(U).

Copyright © 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Abstract State Machines: ASM- Specification’s method

000000000O00OOOOO0OO0OOO00000000000e00000000000000000O00000000000000000000

Basic-ASM: Main Model of ASM’s
.S S

| Composition of update sets |

| UV =VU{(l,v) € U|thereis no w with (I,w) € V}|

Lemma. Let U, V, W be update sets.
n(UsV)oW=Uq (Ve W)

ulf U and V are consistent, then U @ V is consistent.

mlf U and V are consistent, then A+ (U V) = (A+U)+ V.

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Zirich, Switzerland. 1

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 7

Abstract State Machines: ASM- Specification’s method

000000000000 OOOO0OOOOO00000000000e000000000000000000000000000000000000

Basic-ASM: Main Model of ASM’s
.S S

Part 2

Mathematical Logic

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 12

) Q>

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 78

Abstract State Machines: ASM- Specification’s method

000000000000 e00000000000000O0O00000000000O000000000
Basic-ASM: Main Model of ASM’s

Terms

Let) be a signature.

Definition. The terms of X are syntactic expressions generated
as follows:

m Variables z, y, z, ...are terms.
m Constants ¢ of X are terms.

ulf f is an n-ary function name of X, n > 0, and #;,...,t, are
terms, then f(t1,..., ;) is a term.

m A term which does not contain variables is called a ground term.

= A term is called static, if it contains static function names only.

u By 2 we denote the result of replacing the variable z in term ¢
everywhere by the term s (substitution of s for z in t).

Copyright © 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

79

Abstract State Machines: ASM- Specification’s method
0000000000000 eO000O0000000000O0O00000000000O00000000

Basic-ASM: Main Model of ASM’s

Variable assignments

Let 2 be a state.

Definition. A variable assignment for 2 is a finite function (
which assigns elements of |2 to a finite number of variables.

n We write ([z +— a] for the variable assignment which coincides with ¢
except that it assigns the element a to the variable z:

a, if y =,
[z — al(y) = ¢(y), otherwise.

m Variable assignments are also called environments.

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 14

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

80

Abstract State Machines: ASM- Specification’s method

000000000O00OOOOO0OO0OOO00000000000000e000000000000000000000000000000000

Basic-ASM: Main Model of ASM’s
.S S

Evaluation of terms

Definition. Let 2 be a state of Y.

Let ¢ be a variable assignment for 2.

Let ¢ be a term of X such that all variables of ¢ are defined in (.
The value [[t}]?[is defined as follows:

a2 = ()

n [[c]]%l =4

[t)] = P el

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 15

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 81

Abstract State Machines: ASM- Specification’s method
0000000000000 00@00000000000O0O00000000000O00000000

Basic-ASM: Main Model of ASM’s

Evaluation of terms (continued)

Lemma (Coincidence). If ¢ and 7 are two variable
assignments for ¢ such that {(z) = n(z) for all

variables z of ¢, then [[t]]gl = [[t]]g

Lemma (Homomorphism). If « is a homomorphism
from A to B, then a(ﬂtﬂ?) = [t]B. . for each term t.

ao(

Lemma (Substitution). Let a = M%

Then ﬂt%]]? = [[t}]?[[x'_)a].

Copyright © 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Abstract State Machines: ASM- Specification’s method

0000000000000 000eO000000000O0O00000000000O000000000
Basic-ASM: Main Model of ASM’s

Formulas

Let X be a signature.

Definition. The formulas of X' are generated as follows:
mlf s and ¢ are terms of X, then s = ¢ is a formula.
ulf © is a formula, then =y is a formula.

mlf © and ¢ are formulas, then (p A), (¢ V¥) and (¢ —)
are formulas.

mlf p is a formula and z a variable, then (Vz ¢) and (3z ¢) are
formulas.

m A formula s = ¢ is called an equation.

= The expression s # t is an abbreviation for =(s = ¢).

Copyright © 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

83

Abstract State Machines: ASM- Specification’s method
000000000000 OOOO0OO0OOO00000000000000000e000000000000000000000000000000
Basic-ASM: Main Model of ASM’s

Formulas (continued)

symbol name meaning
— | negation not
A | conjunction and
V| disjunction or (inclusive)
— | implication if-then
V | universal quantification |for all
d |existential quantification | there is

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 18

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 84

Abstract State Machines: ASM- Specification’s method
0000000000000 0000OeO00000000O00000000000O00000000

Basic-ASM: Main Model of ASM’s

Formulas (continued)

@AY A x stands for ((p A1) A x),
©V 1V x stands for ((¢ V)V x),
@ A1 — x stands for ((¢ A1) — x), etc.

m The variable z is bound by the quantifier V (3) in Vz ¢ (32 ¢).
m The scope of z in Vz ¢ (3 ¢) is the formula ¢.

m A variable z occurs free in a formula, if it is not in the scope of a
quantifier Vz or Jz.

= By @% we denote the result of replacing all free occurrences of the
variable z in ¢ by the term ¢. (Bound variables are renamed.)

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 19

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

85

Abstract State Machines: ASM- Specification’s method

000000000O00OOOOO0OO0OOO00000000000000000000e0000000000000000000000000000

Basic-ASM: Main Model of ASM’s
.S S

Semantics of formulas

[s = 2 { true, if [s]2 = [¢]12;

false, otherwise.

true, if [go]]? = false;
false, otherwise.

o A w12 true, i [p]? = true and [y]2 = true;
false, otherwise.

Tl —
[oVl2 = true, if |[Lp]]<-7 true or [} = true;
false, otherwise.
o — 1/’ _ [true, if [cp]]?: false or |[1/1]]? = true;
false, otherwise.
true, if [p]%
. Pl =
Iv W {false, otherwise.
[Bo] true, if there_ exists an a € || with |[¢]]§‘[1Ha] = true;
false, otherwise.
Copyright © 2002 Robert F. Stirk, Computer Science Department, ETH Zirich, Switzerland. 2

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 86

Abstract State Machines: ASM- Specification’s method
0000000000000 0000O00O0e0000000O00000000000O000000000
Basic-ASM: Main Model of ASM’s

Coincidence, Substitution, Isomorphism

Lemma (Coincidence). If ¢ and 7 are two variable
assignments for ¢ such that ((z) = n(z) for all free
variables z of ¢, then [[cp]]? = [[4,0]]%[

Lemma (Substitution). Let ¢ be a term and a = [[ﬂ]%l
Then [0312 = [¢13;.

Lemma (Isomorphism). Let « be an isomorphism

from A to B. Then ﬂgo]]? = [M]?og-

Copyright © 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Abstract State Machines: ASM- Specification’s method

000000000O00OOOOO0OOOOO0000000000000000000000e00000000000000000000000000
Basic-ASM: Main Model of ASM’s
.S S
Models

Definition. A state 2 is a model of o (written 2 = ¢),
if |[<p]]%[= true for all variable assignments ¢ for .

Copyright (© 2002 Robert F. Stiirk, Computer Science Department, ETH Ziirich, Switzerland. 2
o & =
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

88

Abstract State Machines: ASM- Specification’s method

000000000O00OOOOO0OO0OOO000000000000000000O00000e0000000000000000000000000

Basic-ASM: Main Model of ASM’s
.S S

Part 3

Transition rules and runs of ASMs

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 23

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 89

Abstract State Machines: ASM- Specification’s method
000000000O00OOOOO0OOOOO00000000000000000000000e000000000000000000000000

Basic-ASM: Main Model of ASM’s

Transition rules

Skip Rule:

Meaning: Do nothing

Update Rule: |f(51, sy 8p) =1t |

Block Rule:

Meaning: P and @ are executed in parallel.

Conditional Rule: |if ¢ then P else Q|

Meaning: If o is true, then execute P, otherwise execute Q.

Let Rule:

Meaning: Assign the value of ¢ to x and then execute P.

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Zirich, Switzerland. 2%

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 90

Abstract State Machines: ASM- Specification’s method
0000000000000 000O0O00000VOeO0O0O00000000000O000000000

Basic-ASM: Main Model of ASM’s

Transition rules (continued)

Forall Rule: | forall z with do P |

Meaning: Execute P in parallel for each z satisfying (.

Choose Rule: | choose z with ¢ do P |

Meaning: Choose an z satisfying ¢ and then execute P.

Sequence Rule:

Meaning: P and () are executed sequentially, first P and then Q.

Call Rule: r(t1,

Meaning: Call transition rule with parameters i1, ..., .

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 25

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Abstract State Machines: ASM- Specification’s method

000000000O00OOOOO0OO0OOO000000000000000000O00000000e0000000000000000000000

Basic-ASM: Main Model of ASM’s
.S S

Variations of the syntax

if © then if o then P else @
P

else

Q
endif

[do in-parallel] | P, par ... par P,
P

Py
[enddo]
{Py,...,P,} | Pppar ... par P,

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 2

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 92

Abstract State Machines: ASM- Specification’s method

000000000O00OOOOO0OO0OOO000000000000000000O000000000e000000000000000000000

Basic-ASM: Main Model of ASM’s
.S S

Variations of the syntax (continued)

do forall z: ¢ [forall z with do P
P
enddo

choose z: ¢ |choose z with ¢ do P
P
endchoose

step P seq @
P
step

Q

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 27

u]
b}
I
i
tht

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 93

Abstract State Machines: ASM- Specification’s method

00000000000 O00O000000OO000000000000000000000000000e00000000000000000000
Basic-ASM: Main Model of ASM'’s
.S S
Example
Example 3.18. Sorting of linear data structures in-place,
one-swap-a-time.
Let a: Index — Value

choose x,y € Index : x < y A a(x) > a(y)
do in — parallel

a(x) = a(y)
a(y) := a(x)

Two kinds of non-determinisms:

“Don‘t-care” non-determinism: random choice
choose x € {x1,Xz,...,xn} with p(x) do
R(x)

“Don‘t-know” indeterminism

Extern controlled actions and events (e.g. input actions)
monitored f: X —Y
O e e == e
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Abstract State Machines: ASM- Specification’s method
0000000000000 000O0O00000V00000Oe0000000000O000000000

Basic-ASM: Main Model of ASM’s

Free and bound variables

Definition. An occurrence of a variable z is free in a transition
rule, if it is not in the scope of a let z, forall z or choose z.

letz=tinP

scope of =

forall z with ¢ do P
~—

scope of =

choose z with ¢ do P
—

scope of =

Copyright © 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

95

Abstract State Machines: ASM- Specification’s method
000000000O0OOOOO0OO0OOO00000000000000000O000000000000e000000000000000000
Basic-ASM: Main Model of ASM’s

Rule declarations

Definition. A rule declaration for a rule
name 7 of arity n is an expression

|7‘(.T1,...7:l:n)=P|

where
m P is a transition rule and

m the free variables of P are contained in the
list 71, ..., Zn.

Remark: Recursive rule declarations are allowed.

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 2

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 96

Abstract State Machines: ASM- Specification’s method

000000000O00OOOOO0OO0OOO000000000000000000O0000000000000e00000000000000000
Basic-ASM: Main Model of ASM’s

Abstract State Machines

Definition. An abstract state machine M consists of
m a signature Y/,

ma set of initial states for X,

ma set of rule declarations,

m a distinguished rule name of arity zero called the
main rule name of the machine.

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 30

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 97

Abstract State Machines: ASM- Specification’s method

000000O000O0OOOOO0OOOOO000000000000000000O00000000000000e0000000000000000

Basic-ASM: Main Model of ASM’s
.S S

Semantics of transition rules

The semantics of transition rules is defined in a calculus by rules:

Premise; --- Premisey,
Condition

Conclusion

The predicate

| yields(P, 21, ¢, U) |

means:
The transition rule P yields the update set U in
state 2 under the variable assignment (.
Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 31

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 98

Abstract State Machines: ASM- Specification’s method

000000000O00OOOOO0OO0OOO000000000000000000O000000000000000e000000000000000

Basic-ASM: Main Model of ASM’s
.S S

Semantics of transition rules (continued) |

yields(skip, 2, ¢, 0)
where I = (f, ([l .- ., [s]3))
yields(f(s1, ..., 8,) ==, %, ¢, {(1,v)}) and v = |[t]]?
yields(P, A, ¢, U) yields(Q, A, ¢, V)
yields(P par Q,2,¢, UU V)

yields(P, 2, ¢, U
yields(if ¢ then P else Q,2,¢, U)

(f
(
(
(
(
yields(Q, 2, ¢, V)
(
(
(
(
(

if [p]2 = true

T
yields(if > then P else Q,2,¢, V) if [oI¢ = false

yields(P, 2, ¢[z +— al, U)
yields(let z = ¢ in P,2,(, U)

where a = [t]2

yields(P, 2, ([z — a], U,) foreach a € I
yields(forall = with ¢ do P, 2, ¢, ,c; Ua)

where I = range(z, ¢, 2, ¢)

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 32

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 99

Abstract State Machines: ASM- Specification’s method

000000000O0OOOOO0OO0OOO000000000000000000O0000000000000000e00000000000000

Basic-ASM: Main Model of ASM’s
.S S

Semantics of transition rules (continued) |

yields(P, 2, ([z — a], U)
yields(choose z with ¢ do P, 2, ¢, U)

if a € range(z, ¢, A, ()

Jelds(choose s with g do P, ¢,y | Tonse(s o0 =0

yields(P, 2, ¢, U) yields(Q, A+ U,¢, V)
yields(P seq Q,2,¢, U @ V)

(

E if U is consistent
yields(P, A, ¢, U)

(

(P

(r

if U is inconsistent

yields(P seq Q,2,¢, U)

yields tl tﬂ 2,6 U) where r(z,...,2,) = Pis a
yields (tl, e t),A,C, U) rule declaration of M

range(z, ¢, %,) = {a € [U] : [¢]{],,) = true}

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 33

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 100

Abstract State Machines: ASM- Specification’s method
0000000000000 000O0O0000O0V0O0000O0O000000@0000000000000

Basic-ASM: Main Model of ASM’s

Coincidence, Substitution, Isomorphisms

Lemma (Coincidence). If {(z) = n(z) for all free variables z of
a transition rule P and P yields U in 2 under (, then P yields U
in 2 under 7.

Lemma (Substitution). Let ¢ be a static term and a = ﬂtﬂ%

Then the rule P% yields the update set U in state 2 under (iff
P yields U in 2 under {[z — a].

Lemma (Isomorphism). If o is an isomorphism from 2 to B
and P yields U in 2 under ¢, then P yields a(U) in B under
ao(.

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Abstract State Machines: ASM- Specification’s method
0000000000000 0O00O0O00000V0O00O0O0O0000000e000000000000

Basic-ASM: Main Model of ASM’s

Move of an ASM

Definition. A macjfvlline M can make a move from state 2
to B (written 2 = B), if the main rule of M yields a
consistent update set U in state 2l and B = A+ U.

m The updates in U are called internal updates.
u ‘B is called the next internal state.

If o is an isomorphism from 2l to ', the following diagram commutes:

o 2 g

a | | «

o 2 g

Copyright © 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland 35

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Abstract State Machines: ASM- Specification’s method
0000000000000 000O0O0000V00000O0O00000000e00000000000

Basic-ASM: Main Model of ASM’s

Run of an ASM

Let M be an ASM with signature Y.

A run of M is a finite or infinite sequence 2y, Ay, ... of states
for X such that
=2 is an initial state of M
ufor each n,
—either M can make a move from 2, into the next internal
state A/, and the environment produces a consistent set of
external or shared updates U such that 2,1 =2/, + U,

—or M cannot make a move in state 2(,, and %A, is the last state
in the run.

mIn internal runs, the environment makes no moves.
mIn interactive runs, the environment produces updates.

Copyright © 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland 36

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

103

Abstract State Machines: ASM- Specification’s method

000000000O00OOOOO0OO0OOO000000000000000000O00000000000O000000000e0000000000
Basic-ASM: Main Model of ASM’s

Example

Example 3.19. Minimal spanning tree:: Prim’s algorithm

Two separated phases: initial, run

Signature: Weighted graph (connected, without loops) given by sets
NODE, EDGE, ... functions

weight : EDGE — REAL, frontier : EDGE — Bool, tree : EDGE — Bool

if mode = initial then
choose p: NODE
Selected(p) := true
forall e : EDGE : p € endpoints(e)
frontier(e) := true
mode := run

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Abstract State Machines: ASM- Specification’s method

00000000000 OO0O0000O00OO00000000000000000000000000000000000000e000000000
Basic-ASM: Main Model of ASM'’s
O
_ .
Example: Prim's algorithm (Cont.)
if 'mode = run then
choose e : EDGE : frontier(e)A

tree(e) := true

choose p:

((Vf € EDGE) : frontier(f) = weight(f) > weight(e))

Selected(p) := true

NODE : p € endpoints(e) N\ —Selected (p)

forall f : EDGE : p € endpoints(f)
frontier(f) := —frontier(f)
ifnone mode := done

algorithm.

Exercise 3.20. Construct an ASM-Machine that implements Kruskal's
[m] = =)
e
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

105

How can we prove the correctness, termination?

Abstract State Machines: ASM- Specification’s method

000000000000 OOOO0OO0OOO000000000000000000000000000000000000000e00000000

Basic-ASM: Main Model of ASM’s
.S S

Part 4

The reserve of ASMs

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 37

) Qv
.S S

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 106

Abstract State Machines: ASM- Specification’s method
000000000000 OOOO0OO0OOO000000000000000000O00000000000O000000000000e0000000

Basic-ASM: Main Model of ASM’s

Importing new elements from the reserve

Meaning: Choose an element z from the reserve, delete it from the
reserve and execute P.

import = do
let z = new(X) in P | abbreviates | X () := true
P

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 38

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 107

Abstract State Machines: ASM- Specification’s method

0000000000000 0O00O0O0000V000O0O0O0O00000000000e000000
Basic-ASM: Main Model of ASM’s

The reserve of a state

= New dynamic relation Reserve.
m Reserve is updated by the system, not by rules.
= Res(A) = {a € |A| : Reserve®(a) = true}

m The reserve elements of a state are not allowed to be in the domain
and range of any basic function of the state.

Definition. A state 2 satisfies the reserve condition with respect

to an environment ¢, if the following two conditions hold for each

element a € Res(2A) \ ran(¢):

m The element a is not the content of a location of 2.

ulf a is an element of a location [of 2 which is not a location for
Reserve, then the content of [in 2 is undef.

Copyright © 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

108

Abstract State Machines: ASM- Specification’s method

000000O000O00OOOOO0OO0OOO000000000000000000O00000000000O00000000000000e00000

Basic-ASM: Main Model of ASM’s
.S S

Semantics of ASMs with a reserve

yields(P, 2, ¢[z — a], U) if a € Res(A) \ ran(¢) and
yields(import z do P, 2,(, V) V = U U {((Reserve, a), false)}

(
(
yields(P,2(, ¢, U) yields(Q,2,¢, V)
(
(
(

yields(P par Q,2,C, U U V) if Res(2) N EW(U)N ELV) C ran(¢)

yields(P, 2, ([z — a], U,) foreach a € I if I = range(z,p,A,¢) and for a # b
yields(forall z with ¢ do P,20,¢, J U,) Res() N EIW(U,) N EI(U;) C ran(C)
ael

m EI(U) is the set of elements that occur in the updates of U.

m The elements of an update (I, v) are the value v and the elements of
the location /.

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Zirich, Switzerland. 40

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 109

Abstract State Machines: ASM- Specification’s method
0000000000000 000O0O0O000O00000O0O00O000000000O0000e0000

Basic-ASM: Main Model of ASM’s

Problem

Problem 1: New elements that are imported in parallel must be different.

import z do parent(z) = root
import y do parent(y) = root
Problem 2: Hiding of bound variables.

import z do
flz)=0
letz=1in
import y do f(y) =z
Syntactic constraint. In the scope of a bound variable the same

variable should not be used again as a bound variable (let, forall,
choose, import).

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland. 4

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 110

Abstract State Machines: ASM- Specification’s method
000000000O00OOOOO0OO0OOO000000000000000000O00000000000O0000000000000000e000
Basic-ASM: Main Model of ASM’s

Preservation of the reserve condition

Lemma (Preservation of the reserve condition).

If a state 2 satisfies the reserve condition wrt. ¢ and P yields a
consistent update set U in 2 under (, then

mthe sequel 2 + U satisfies the reserve condition wrt. (,

m Res(A + U) \ ran(C) is contained in Res() \ El(U).

Copyright (© 2002 Robert F. Stirk, Computer Science Department, ETH Zirich, Switzerland. 42

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 111

Abstract State Machines: ASM- Specification’s method
0000000000000 000O0O00O000V0O00O0O0O0000000000000000e00

Basic-ASM: Main Model of ASM’s

Permutation of the reserve

Lemma (Permutation of the reserve). Let 2 be a state that
satisfies the reserve condition wrt. {. If « is a function from ||
to || that permutes the elements in Res(2) \ ran({) and is the
identity on non-reserve elements of 2 and on elements in the range
of ¢, then « is an isomorphism from 2 to 2.

Copyright © 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

43

Abstract State Machines: ASM- Specification’s method
0000000000000 000O0O00O000O000O0O0O00O000000000O0000000e0
Basic-ASM: Main Model of ASM’s

Independence of the choice of reserve elements

Lemma (Independence).

Let P be a rule of an ASM without choose. If

m 2 satisfies the reserve condition wrt. ,

m the bound variables of P are not in the domain of ¢,
m P yields U in A under ¢,

= P yields U’ in 2 under ¢,

then there exists a permutation « of Res(2) \ ran(¢) such that
a(U)=U".

Copyright © 2002 Robert F. Stirk, Computer Science Department, ETH Ziirich, Switzerland

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

a4

113

Abstract State Machines: ASM- Specification’s method

000000000O000OOOO0OOOOO00000000000000000O000000000000000000000000000000e
Basic-ASM: Main Model of ASM’s

Example: Abstract Data Types (ADT)

Example 3.21. Double-linked lists
See ASM-Buch.

Exercise 3.22. Give an ASM-Specification for the data structure
bounded stack.

=] T = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

114

Distributed ASM: Concurrency, reactivity, time Refinement
®000000000000O0OO0OOOOOOOOOOOOO00OO00OOOO0O000O [¢]
Fundamentals: Orders, CPO's, proof techniques

Distributed ASM: Concurrency, reactivity, time

Distributed ASM (DASM)

» Computation model:

> Asynchronous computations
» Autonomous operating agents

> A finite set of autonomous ASM-agents, each with a program of his
own.

» Agents interact through reading and writing common locations of
global machine states.

» Potential conflicts are solved through the underlying semantic
model, according to the definition of (partial-ordered) runs.

[m] = = <
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

115

Distributed ASM: Concurrency, reactivity, time Refinement
0000000000000 0O0000OO000OOO000O0O00O0O00000000]
Fundamentals: Orders, CPO's, proof techniques

Foundations: Orders, CPQO'’s, Proof techniques

Properties of binary relations

> X set

> p C X x X binary relation

» Properties
(P1) xpx (reflexive)
(P2) (xpyAypx)—x=y (antisymmetric)
(P3) (xpyAypz)—xpz (transitive)
(P4) (xpyVypx) (linear)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Distributed ASM: Concurrency, reactivity, time
00@00000000000O000O0OO000O0OO0000O0O00O0O00000000
Fundamentals: Orders, CPO's, proof techniques

Quasi-Orders

Refinement
[¢]

» Kernel:

> <C X x X Quasi-order iff < reflexive and transitive.

» Strict part: <

~ —
~ =

sng
S\=
> Y C X left-closed (in respect of <) iff

VyeY:(VxeX:xSy—-xeY))
» Notation: Quasi-order (X, <)

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

117

Distributed ASM: Concurrency, reactivity, time
000@0000000000O000O0OO0000O0000O0O00O0O0000000
Fundamentals: Orders, CPO's, proof techniques

Partial-Orders

Refinement
[¢]

» <C X x X partial-order iff < reflexive, antisymmetric and transitive
» Kernel: Following holds

» Strict part: <

idxy =<n<!
= <\idx

» Often: < Partial-order iff < irreflexive, transitive.
» Notation: Partial-order (X, <)

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

118

Distributed ASM: Concurrency, reactivity, time

0000@000000000O000O0OO000O0OO00000O00O0O0000000
Fundamentals: Orders, CPO's, proof techniques

Well-founded Orderings

Refinement
[¢]

» Partial-order <C X x X well-founded iff
(VY CX:Y#0— (Jy €Y :yminimalin Y in respect of <))
» Quasi-order < well-founded iff strict part of < is well-founded.
» [nitial segment: Y C X, left-closed

» Initial section of x: sec(x) ={y:y < x}

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

119

Distributed ASM: Concurrency, reactivity, time

Refinement
0000080000000 O0OO0OOOOO0OOOOOOOO0OO0OOOO0O000O [¢]
Fundamentals: Orders, CPO's, proof techniques
.S S
Supremum
» Let (X, <) be a partial-order and Y C X

» S C X is a chain iff elements of S are linearly ordered through <
> y is an upper bound of Y iff

VW evY:y <y
» Supremum: y is a supremum of Y iff y is an upper bound of Y and

Vy" € X : ((y' upper bound of Y) — y <y’)
» Analog: lower bound, Infimum inf(Y)

o = S = = 9Hal
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Distributed ASM: Concurrency, reactivity, time

CPO

000000800000 00O0000OO0000O00000000O0O00000000
Fundamentals: Orders, CPO's, proof techniques

Refinement
[¢]

» Each chain S has a supremum sup(S).

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

» A Partial-order (D, C) is a complete partial ordering (CPO) iff
> 3 the smallest element L of D (with respect of C)

Distributed ASM: Concurrency, reactivity, time

Refinement
0000000@000000O000O0OO000O0OO0000O0O00O0O00000000]
Fundamentals: Orders, CPO's, proof techniques
.S S
Example 4.1.

> (P(X),Q) is CPO.
» (D,C) is CPO with

cod(f) C Y.

» D= X -» Y: set of all the partial functions f with dom(f) C X and
> Lletf,ge X »Y.

f C g iff dom(f) C dom(g) A (Vx € dom(f) : f(x) = g(x))

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Distributed ASM: Concurrency, reactivity, time

000000000000 O00O0OOOOOOO0OOOOOOOOOO0OO0OO0O
Fundamentals: Orders, CPO's, proof techniques

Monotonous, continuous

Refinement

» (D,C), (E,C') CPOs

» f: D — E monotonous iff

(Vd,d" e D:dC d — f(d)C' f(d'))
» f: D — E continuous iff f monotonous and

(VS C D: S chain — f(sup(S)) = sup(f(S)))
X C D is admissible iff

(VS C X : S chain — sup(S) € X)
=) = = = = Al
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Distributed ASM: Concurrency, reactivity, time

Refinement
0000000000000 00000OO00000O0000000000O00000000]
Fundamentals: Orders, CPO's, proof techniques
.S S
Fixpoint
» (D,C)CPO,f:D—D

» d € D fixpoint of f iff

f(d) =

=d
» d € D smallest fixpoint of f iff d fixpoint of f and

(Vd" € D : d' fixpoint — d C d’)

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

124

Distributed ASM: Concurrency, reactivity, time Refinement
000000000 0@00O00O00OOOOOO0OOO0OO0OOOO0OO0OO0O [¢]
Fundamentals: Orders, CPO's, proof techniques

Fixpoint-Theorem

Theorem 4.2 (Fixpoint-Theorem:). (D,C) CPO, f : D — D continuous,
then f has a smallest fixpoint uf and

puf =sup{fi(L):ieN}
Proof: (Sketch)
» sup{fi(L):i € N} fixpoint:
f(sup{fi(L):i€N}) = sup{fitl(L):jeN}
(continuous)

= sup{sup{f"*!(L):ieN}, L}
= sup{f'(1):ieN}

=] T =) Q>
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Distributed ASM: Concurrency, reactivity, time
0000000000000 00O00O0OOOO0OO0OOOOOOOO0OO0OO0O

Refinement
[¢]

Fundamentals: Orders, CPO's, proof techniques

Fixpoint-Theorem (Cont.)

Fixpoint-Theorem: (D,C) CPO, f : D — D continuous, then f has a
smallest fixpoint pf and

puf =sup{fi(L):ieN}

Proof: (Continuation)
» sup{f(L): i € N} smallest fixpoint:

1.

o krwDdD

d’ fixpoint of f

1Cd

f monotonous, d’ FP: f(L) E f(d") =d’
Induction: Vi € N: f((L) C fi(d') = d’
sup{fi(L):ieN}C d’

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 126

Distributed ASM: Concurrency, reactivity, time Refinement
00000000000 0e0000000000000000000000000000000 [¢]
Induction

Induction over N

Induction's principle:

(VXCN:((0eXA(VxeX:xeX —=x+1eX))—=X=N)

Correctness:
1. Let's assume no, so IX C N: N\ X #£ 0
Let y be minimum in N\ X (with respect to <).
y#0
y—-1leXAnyégX
Contradiction

A

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Distributed ASM: Concurrency, reactivity, time Refinement
0000000000000 @000000000000000000000000000000 [¢]
Induction

Induction over N (Alternative)

Induction's principle:

(VXCN:(VxeN:sec(x) C X —xeX)—=X=N)
Correctness:

1. Let's assume no, so IX CN: N\ X #£ 0

Let y be minimum in N\ X (with respect to <).
sec(y) S X,y ¢ X
Contradiction

Ll

=] T =) Q>
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Distributed ASM: Concurrency, reactivity, time Refinement
0000000000000 0e00000000000000000000000000000 [¢]
Induction

Well-founded induction

Induction’s principle: Let (Z, <) be a well-founded partial order.

(VX CZ:(VxeZ:sec(x) C X —xeX)—=X=2)
Correctness:
1. Let's assume no, so Z\ X #)

Let z be a minimum in Z\ X (in respect of <).
sec(z) C X,z¢ X
Contradiction

Ll

=] T =) Q>
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Distributed ASM: Concurrency, reactivity, time
0000000000000 00@0000000000000000000000000000

Refinement
[¢]

Induction

FP-Induction: Proving properties of fixpoints

Induction’s principle: Let (D,C) CPO, f : D — D continuous.

(VX C D admissible : (Le X A (Vy:y e X — f(y) € X)) — uf € X)

Correctness: Let X C D admissible.

uf e X &
<~
~=

=

sup{fi(L):ie N} e X (FP-theorem)
VieN:fi(L)e X (X admissible)
le XA (VneN:f"(L)e X — f(f"(L)) € X)

(Induction N)
le XA (Vy e X —f(y) € X) (Ass.)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Distributed ASM: Concurrency, reactivity, time

000000000000 0000e000000000000000000000000000
Induction

Refinement

Problem

Exercise 4.3. Let (D,C) CPO with
» X=Y=N

» D= X -» Y:set all partial functions f with dom(f) C X and
cod(f) C Y.

> Letf,geX» Y.

f L g iff dom(f) C dom(g) A (¥x € dom(f) : f(x)
Consider

F:

=g(x))

D — 'P(NXN)

. {{(o,n} g=10
{(x,x-g(x—1)):x—1€dom(g)}U{(0,1)} otherwise

o = A
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Induction

0000000000000 0000@00000000000000000000000000 zeﬁnemem
e
Problem
Prove:
1.VgeD:F(g)eD,ie. F:D—D

2. F: D — D continuous

Distributed ASM: Concurrency, reactivity, time

3. VneN: uF(n)=n!
Note:

» 1 F can be understood as the semantics of a function's definition

function Fac(n: N) : N| =gef
if n=0 then 1

else n- Fac(n—1)
» Keyword: 'derived functions” in ASM

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

132

Induction

Refinement
000000000000 000000@0000000000000000000000000 [¢]
.S S

Exercise 4.4. Prove: Let G = (V, E) be an infinite directed graph with
» G has finitely many roots (nodes without incoming edges).
» Fach node has finite out-degree.

Distributed ASM: Concurrency, reactivity, time

» FEach node is reachable from a root.

There exists an infinite path that begins on a root.

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

133

Refinement

Distributed ASM: Concurrency, reactivity, time
000000000000 OO0OO00OOeO00000000000V00OOOO0O000O [¢]

DASM

Distributed ASM

Definition 4.5. A DASM A over a signature (vocabulary) ¥ is given
through:
» A distributed programm Il over X.

> A non-empty set |5 of initial states
An initial state defines a possible interpretation of X. over a potential

infinite base set X.
A contains in the signature a dynamic relation’s symbol AGENT, that is
interpreted as a finite set of autonomous operating agents.

» The behaviour of an agent a in state S of A is defined through

programs(a).
> An agent can be ended through the definition of
programs(a) := undef (representation of an invalid programm).

.S S
134

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Distributed ASM: Concurrency, reactivity, time
O@0000000000

DASM

Partially ordered runs

A run of a distributed ASM A is given through a triple p — (M. \, o)
with the following properties:

1. M is a partial ordered set of “moves”, in which each move has only
a finite number of predecessors.

2. Ais a function on M, that assigns an agent to each move, so that
the moves of a particular agent are always linearly ordered.

3. o asociates a state of A with each finite initial segment Y of M.
Intended meaning:: o(Y) is the “result of the execution of all moves
in Y". o(Y) is an initial state when Y is empty.

4. The coherence condition is satisfied:

If max is a set of maximal elements in a finite initial segment X of
M and Y = X'\ max, then for x € max:: A(x) is an agent in o(Y)
and we get o(X) from o(Y) by firing {\(x) : x € max} (their
programs) in o(Y).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 135

Distributed ASM: Concurrency, reactivity, time

Refinement
0000000000000 O0000OO00eO0O000000000000000000000 [¢]
DASM

O
Comment, example

The agents of A modell the concurrent control-threads in the execution
of HA.

A run can be seen as the common part of the history of the same
computation from the point of view of multiple observers.

The role of \:

® o @ @ @

m4 m6 >

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

) Q>

136

Distributed ASM: Concurrency, reactivity, time Refinement

000000000000 OOOO0O0O000e00000000V000OOOO0O000O [¢]

DASM
.S S

Comment, example (cont.)

The role of o: Snap-shots of the computation are the initial segments of
the partial ordered set M. To each initial segment a state of A is assigned
(interpretation of X), that reflects the execution of the programs of the
agents that appear in the segment.

~>"Result of the execution of all the moves” in the segment.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 137

Distributed ASM: Concurrency, reactivity, time
DASM

0000000000000 O000000O0000e000000000000000O0O00 ';ef'"eme”t
O
Coherence condition, example
If max is a set of maximal elements in a finite initial segment X of M and

Y = X \ max, then for x € max:: A\(x) is an agent in o(Y) and we get
o(X) from o(Y) by firing {\(x) : x € max} (their programs) in o(Y).

Initialer Zustand

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Distributed ASM: Concurrency, reactivity, time
DASM

Refinement
O
Consequences of the coherence condition

Lemma 4.6. All the linearizations of an initial segment (i.e. respecting
the partial ordering) of a run o lead to the same “final” state.

Lemma 4.7. A property P is valid in all the reachable states of a run p,
iff it is valid in each of the reachable states of the linearizations of o.

o = = = = 9Hal
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Distributed ASM: Concurrency, reactivity, time Refinement
000000000000 OOOO0OO000000e00000V00OOOO0O000O [¢]
DASM

Simple example

Example 4.8. Let {door, window} be propositional-logic constants in
the signature with natural meaning:

door = true means " door open " and analog for window.

The program has two agents, a door-manager d and a window-manager
w with the following programs:

programy = door := true // move x
program,, = window := true // move y

In the initial state Sy let the door and window be closed, let d and w be
in the agent set.

Which are the possible runs?

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Distributed ASM: Concurrency, reactivity, time
DASM

Refinement
0000000000000 0O00000000000@000000000O0000000]
s
Simple example (Cont.)
Let o1 = (({X,y},X < y)v idva)? 02 = (({Xa}/}vy < X)7 id, 0'),

03 = (({x,y},<>),id, o) (coarsest partial order)

l

LD

()

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

) Q>

141

Distributed ASM: Concurrency, reactivity, time

Refinement
000000000000 OOOO0OO0O0000000e000V00OOOO0O000O [¢]
DASM

Variants of simple example

The program consists of two agents, a door-Manager d and a
window-manager w with the following programs:

programy = if ~window then door := true ~ // move x
program,, = if ~door then window := true // move y

In the initial state Sy let the door and window be closed, let d and w be
in the agent set. How do the runs look like? Same ¢'s as before.

\
5

Not a run, since

l

coherence violated
not equal

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Distributed ASM: Concurrency, reactivity, time

Refinement
000000000000 OOOO0OO0O00000000e0000000O00O0000 [¢]
DASM

More variations

Exercise 4.9. Consider the following pair of agents
x,y € N (x =2,y =1 in the initial state)

l.a=x=x+landb=x:=x+1
2. a=x=x+landb=x:=x-1
3.a=x:=yandb=y:=x

Which runs are possible with partial-ordered sets containing two
elements?

Try to characterize all the runs.

=] T = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Distributed ASM: Concurrency, reactivity, time

000000000000 OOOO0OO0000000000e0V000OO00O0000
DASM

Refinement
More variations

1. Programg =

Consider the following agents with the conventional interpretation:
if ~window then door :

2. Program,, if —~door then window :

= true //move x

//move y
if —light A (—door V ~window) then //move z
light := true

door = false
window := false

true
3. Program; =

Which end states are possible, when in the initial state the three
constants are false?

o = = DAl
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Distributed ASM: Concurrency, reactivity, time Refinement

000000000000 OOOO0OO00000000000eV0O00O0O0000000 [¢]

DASM
.S S

Further exercises

Consumer-producer problem: Assume a single producer agent and two or
more consumer agents operating concurrently on a global shared
structure. This data structure is linearly organized and the producer adds
items at the one end side while the consumers can remove items at the
opposite end of the data structure. For manipulating the data structure,
assume operations insert and remove as introduced below.

insert : Item x [temList — [temList
remove : ItemList — (Iltem x [ltemList)

(1) Which kind of potential conflicts do you see?
(2) How does the semantic model of partially ordered runs resolve such
conflicts?

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 145

Distributed ASM: Concurrency, reactivity, time
@000000000000

Reactive and time-depending systems

Environment

Reactive systems are characterized by their interaction with the
environment. This can be modeled with the help of an
environment-agent. The runs can then contain this agent (with A), A
must define in this case the update-set of the environment in the
corresponding move.

The coherence condition must also be valid for such runs.

For externally controlled functions this surely doesn’t lead to
inconsistencies in the update-set, the behaviour of the internal agents can
of course be influenced. Inconsistent update-sets can arise in shared
functions when there's a simultaneous execution of moves by an internal
agent and the environment agent.

Often certain assumptions or restrictions (suppositions) concerning the
environment are done.

In this aspect there are a lot of possibilities: the environment will be only
observed or the environment meets stipulated integrity conditions.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 146

Distributed ASM: Concurrency, reactivity, time Refinement
000000000000 OOOO0OO0O0OOOOOOO000e00000000000 [¢]

Reactive and time-depending systems

Time
The description of real-time behaviour must consider explicitly time

aspects. This can be done successfully with help of timers (see SDL),
global system time or local system time.

» The reactions can be instantaneous (the firing of the rules by the
agents don't need time)

» Actions need time
Concerning the global time consideration, we assume, that there is on

hand a linear ordered domain TIME, for instance with the following
declarations:

domain (TIME,<), (TIME,<) C (R,<)

In these cases the time will be measured with a discrete system watch:
e.g.

monitored now :— TIME

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 147

Distributed ASM: Concurrency, reactivity, time Refinement
000000000000 OOOO0OO0OOOOOOOOO0000e0000000000 [¢]

Reactive and time-depending systems

ATM (Automatic Teller Machine)

Exercise 4.10. Abstract modeling of a cash terminal:
Three agents are in the model: ct-manager, authentication-manager,
account-manager. To withdraw an amount from an account, the
following logical operations must be executed:
1. Input the card (number) and the PIN.
2. Check the validity of the card and the PIN (AU-manager).
3. Input the amount.
4. Check if the amount can be withdrawn from the account
(ACC-manager).
5. If OK, update the account’s stand and give out the amount.
6. If it is not OK, show the corresponding message.

Implement an asynchronous communication model in which timeouts can
cancel transactions .

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 148

Distributed ASM: Concurrency, reactivity, time Refinement
000000000000 OOOO0OO0O00OOOOOO00000e000000000 [¢]

Reactive and time-depending systems

Distributed Termination Detection

Example 4.11. Implement the following termination detection protocol:

e Active / Passive

O

Machine n-2

A passive machine
becomes active, iff it
receives a message from
another machine.

Message

Only active machines can
send messages.

Edsger W. Dijkstra, W. H. J. Feijen, and A.J.M. van Gasteren. Derivation
of a Termination Detection Algorithm for Distributed Computations. IPL
16 (1983).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 149

Distributed ASM: Concurrency, reactivity, time Refinement
000000000000 OOOO0OO0OOOOOOOOO000000eO00000000 [¢]

Reactive and time-depending systems

Assumptions for distributed termination detection

Rules for a probe

Rule 0 When active, Machine;1 keeps the token; when passive, it hands
over the token to Machine;.

Rule 1 A machine sending a message makes itself red.

Rule 2 When Machine;;1 propagates the probe, it hands over a red token
to Machine; when it is red itself, whereas while being white it leaves
the color of the token unchanged.

Rule 3 After the completion of an unsuccessful probe, Machine initiates a
next probe.

Rule 4 Machine o initiates a probe by making itself white and sending to
Machine,_1 a white token.

Rule 5 Upon transmission of the token to Machine;, Machine;;1becomes
white. (Notice that the original color of Machine;;1 may have
affected the color of the token).

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 150

Distributed ASM: Concurrency, reactivity, time Refinement
000000000000 OOOO0OO0OOOOOOOOOO0O000000e0000000 [¢]

Reactive and time-depending systems

Distributed Termination Detection: Procedure

Signature:

static

COLOR = {red,white} TOKEN = {redToken, white Token}
MACHINE = {0,1,2,...,n—1}

next : MACHINE — MACHINE

e.g. with next(0) = n—1,next(n—1)=n—2,...,next(1) =0

controlled
color : MACHINE — COLOR token : MACHINE — TOKEN
RedTokenEvent, White TokenEvent : MACHINE — BOOL

monitored Active : MACHINE — BOOL
SendMessageEvent : MACHINE — BOOL

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 151

Distributed ASM: Concurrency, reactivity, time Refinement
000000000000 OOOO0OO0OO0OOOOOOO00000000e000000 [¢]

Reactive and time-depending systems

Distributed Termination Detection: Procedure

Macros: (Rule definitions)

» ReactOnEvents(m : MACHINE) =

if RedTokenEvent(m) then
token(m) := red Token
RedTokenEvent(m) := undef

if WhiteTokenEvent(m) then
token(m) := white Token
WhiteTokenEvent(m) := undef

if SendMessageEvent(m) then color(m):=red Rulel

> Forward(m : MACHINE,t : TOKEN) =
if t = whiteToken then
WhiteTokenEvent(next(m)) := true
else
RedTokenEvent(next(m)) := true

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 152

Distributed ASM: Concurrency, reactivity, time

000000000000 OOOO0OO0OOOOOOOOO000000000e00000
Reactive and time-depending systems

Refinement
[¢]

Distributed Termination Detection: Procedure
Programs

> RegularMachineProgram =

ReactOnEvents(me)

if = Active(me) A token(me) # undef then
InitializeMachine(me)

Rule 5

if color(me) = red then
Forward(me, red Token)
else

Rule 0

Rule 2
Forward(me, token(me))
» With InitializeMachine(m : MACHINE) =

Rule 2
token(m) := undef

color(m) := white
=] = = = = Al
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Distributed ASM: Concurrency, reactivity, time

000000000000 OOOO0OO0OOOOOOOOO0000000000e0000
Reactive and time-depending systems

Programs

Refinement
[¢]

Distributed Termination Detection: Procedure

» SupervisorMachineProgram =

ReactOnEvents(me)

if = Active(me) A token(me) # undef then

if color(me) = white A token(me) = whiteToken then
ReportGlobal Termination
else Rule 3

InitializeMachine(me)

Rule 4

Rule 4
o = = = = Dol
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Forward(me, white Token)

Distributed ASM: Concurrency, reactivity, time Refinement
000000000000 OOOO0OO0OOOOO0OOOO00000000000e000 [¢]

Reactive and time-depending systems

Distributed Termination Detection
Initial states

Img € MACHINE
(program(mg) = SupervisorMachineProgram A
token(mg) = redToken A
(Vm € MACHINE)(m # mg =
(program(m) = RegularMachineProgram A token(m) = undef)))

Environment constraints For all the executions and all linearizations
holds:

G (Ym € MACHINE)
(SendMessageEvent(m) = true = (P(Active(m)) A Active(m)))
A ((Active(m) = true N\ P(—Active(m)) =
(3m" € MACHINE) (m' # m A SendMessageEvent(m'))))

Nextconstraints

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 155

Distributed ASM: Concurrency, reactivity, time Refinement
000000000000 OOOO0OO0OOOOOOOOOO000000000000e00 [¢]

Reactive and time-depending systems

Distributed Termination Detection

Correctness of the abstract version: Dijkstra

Suppositions: The machines constitute a closed system, i.e. messages can
only be dispatched among each other (no outside messages). The system
in the initial state can have any color and several machines can be active.
The token is located in the 0'th. machine. The given rules describe the
transfer of the token and the coloration of the machines upon certain
activities.

The task is to determine a state in which all the machines are passive
(not active). This is a stable state of the system, because only active
machines can dispatch messages and passive machines can only become
active by receiving a message.

The invariant: Let t be the position on which the token is, then following
invariant holds

(Vi:t <i<n Machine; is passive) V (3j: 0 < j <t Machine; is red)V
(Token is red)

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 156

Distributed ASM: Concurrency, reactivity, time Refinement
000000000000 OOOO0OO0OOOOOOOOO0000000000000e0 [¢]

Reactive and time-depending systems

Distributed Termination Detection

(Vi:t <i<n Machine; is passive) V (3j: 0 < j <t Machine; is red)V
(Token is red)

Correctness argument

When the token reaches Machine,, t = 0 and the invariant holds.
If

(Machine, is passive) A (Machine, is white) A (Token is white)
then

(Vi:0< i< n Machine; is passive) must hold, i.e. termination.

Proof of the invariant Induction over t:
The case t = n - 1 is easy.
Assume the invariant is valid for 0 < t < n, prove it is valid for t — 1.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 157

Refinement
)OO000000000000e C

Reactive and time-depending systems

Distributed Termination Detection

Is the invariant valid in all the states of all the linearizations of the runs
of the DASM ? No

» Problem 1 The red coloration of an active machine (that forwards a
message) occurs in a later state. It should occur in the same state in
which the message-receiving machine turns active. (Instantaneous
message passing)

color is a shared function. Instead of using
SendMessageEvent(m) to set the color, it will be set by the
environment: color(m) = red.

» Problem 2 There are states in which none of the machines has the
token:: The machine that has the token, initializes itself and sets an
event, that leads to a state in which none of the machines has the
token.

Instead of using FarbTokenEvent to reset, it is directly
properly set: token(next(m)).

» Result More abstract machine. The environment controls the
activity of the machines, message passing and coloration.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 158

Distributed ASM: Concurrency, reactivity, time Refinement
0000000000000 0000000000000000000000000000000 o

Lecture Bérger's ASM-Buch

Refinement's concepts for ASM's

Question: Is in the termination detection example the given DASM a
refinement of the abstracter DASM? ~~

General refinement concepts for ASM’s
> Refinements are normally defined for BASM, i.e. the executions are
linear ordered runs, this makes the definition of refinements easier.
» Refinements allow abstractions, realization of data and procedures.

» ASM refinements are usually problem-oriented: Depending on the
application a flexible notion of refinement should be used.

» Proof tasks become structured and easier with help of correct and
complete refinements.

See ASM-Buch.
Example Shortest Path

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 159

Algebraic Specification - Equational Calculus
@000
Fundamentals

Algebraic Specification - Equational Logic

Specification techniques’ requirements:

» Abstraction (refinement)

» Structuring mechanisms

Partition-aggregation, combination, extension-instantiation
Clear (explicit and plausible) semantics

Support of the ,verify while develop“-principle

Expressiveness (all the partial recursive functions representable)
Readability (adequacy) (suitability)

vV V. v v

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus
Introduction

O@00

Algebraic Specification - Algebras

Specification of data types
Syntax
{ signature

Equations
axiom } {

ti =t
if pthent; = t,

Programs

data operations
directed application
Algebras
heterogeneous

(Many-Sorted)

order-sorted homogeneous
(Many-Sorted) (Single-Sorted)
= = = = = Dal
O
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus
O0@000
Algebrae

Single-Sorted Algebras

Example 6.1. a) Groups

SORT: g
SIG:: -:g,8— & l:—g l.g—g
EQN:: x-1=x x-x1=1

(x-y)-z=x-(y-2)
All-quantified equations

Models are groups

Question: Which equations are valid in all groups,
ie. EQN =t =t

l-x=x xtox=1 (xHt=x
o S =, = ©ac
.S S

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus
0008000000000 000000000000000000000000000000000
Algebrae

Single-Sorted Algebras

Equational Logic: Replace ,equals” with ,equals”
Problem: cycles, non-termination
Solution: Directed equations ~» Term rewriting systems

Find R ,convergent* with = = <=
EQN R
x-1—x 1-x—x
x-x 151 x1.x 1
171 —1 x H1 - x
x)t =ytxTt (xey)z—x-(y-2)
X_l'(X-y)—>y X-(X_l‘y)—>y

o = = = = Dol
o
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 163

Algebraic Specification - Equational Calculus
000080000000 0000000000000000000000000000000000
Algebrae

Many-Sorted Algebras

b) Lists over nat-numbers

SIG: BOOL, NAT, LIST Sorts
true, false: — BOOL
0 — NAT
suc: NAT — NAT
+: NAT, NAT — NAT
eq: NAT, NAT — BOOL
nil: — LIST
. NAT, LIST — LIST
app: LIST, LIST — LIST
rev: LIST — LIST

=] T = = = HA

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 164

Algebraic Specification - Equational Calculus
000000000000 0000000000000000000000000000000000
Algebrae

Many-Sorted Algebras

Axioms are all-quantified equations, i.e.
VXla vy Xny Y1y ooy Ym t tl(Xl» "'vXn) = t2(.y15 "'aym) where

t1 (X1, ey Xn), t2(¥1, ..., Ym) Terms of the same sort over the signature.
EQN: n+0=n n+suc(m)=suc(n+ m)
eq(0,0) = true eq(0,suc(n)) = false
eq(suc(n),0) = false
eq(suc(n), suc(m)) = eq(n, m)

app(nil,/) =1 app(n.h, h) = n.app(h, h)

rev(nil) = nil rev(n./) = app(rev(/), n.nil)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus

000000@000000000000000000000000000000000000000
Algebrae

Many-Sorted Algebras
Terms of type BOOL, NAT, LIST as identifiers for elements.
(standard definition!)

Which algebra is specified? How can we compute in this algebra?
Direct the equations ~» term-rewriting system R. Evidently e.g.:

s'(0) + 5/(0) % s"(0)

app(3.1.nil, app(5.nil, 1.2.3.nil)) % 3.1.5.1.2.3.nil

rev(3.1.nil) — app(rev(L.nil), 3.nil)

— app(app(rev(nil), L.nil), 3.nil)
— app(app(nil, 1.nil), 3.nil)

— app(L.nil, 3.nil) = 1.3.nil

'O'U

Question: Is app(x.y.nil, z.nil) =g app(x.nil, y.z.nil) true?

o> I =, = 9DaCl
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus
Algebrae

0000000800000 000000000000000000000000000000000

Many-Sorted Algebras

e.g.

Some equations are not valid in all the models of EQN= E.

X+y#Ey+x
app(x,app(y, z)) #e app(app(x, y), 2)
rev(rev(x)) #g x
The pairs of terms cannot be joined via rewriting.
Distinction:

- Equations that are valid in all the models of E.
- Equations that are valid in data models of E.

Xx+y=y+x:50+50=50+s0allij
rev(rev(x)) = x for x = s10.s20....s"0.nil
=] = = = = Al
m

Algebraic Specification - Equational Calculus
00000000@0000000000000000000000000000000000000
Algebraic Fundamentals

Thesis: Data types are Algebras

ADT: Abstract data types. Independent of the data representation.
Specification of abstract data types:

Concepts from Logic/universal Algebra
Objective: common language for specification and implementation.

Methods for proving correctness:
Syntax, L formulae (P-Logic,Hoare,. . .)
CI: Consequence closure (e.g. =, Th(A),...)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus
000000000 @000000000000000000000000000000000000
Algebraic Fundamentals

Consequence closure

Cl:P(L) — P(L) (subsets of L) with

a)AC L~ AcC Cl(A)
b) A,BC L,AC B~ CI(A) C CI(B) (Monotonicity)
c) CI(A) = CI(CI(A)) (Maximality)

Important concepts:

Consistency: A C L A is consistent if C/(A) C L

Implementation: A (over L") implements B (over L) (Refinement)
Lcl',CI(B) C ClI(A)

Related to implication.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus

000000000000 000000000000000000000000000000000
Signature - Terms

Signature - Terms

Definition 6.2. a) Signature is a triple sig = (S. F, 1) (abbreviated: ¥)
» S finite set of sorts

» F set of operators (function symbols)
» 7:F — ST arity function, i.e.

7(f)=s1---s, 5, n >0, s; argument’s sorts, s target sort.

Write: f :s1,...,8, — s

(Notice that n = 0) is possible, constants of sort S.

=] T = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

170

Algebraic Specification - Equational Calculus
Signature - Terms

00000000000 ®0000000000000000000000000000000000

Signature - Terms

b) Term(F): Set of ground terms over sig and their tree presentation

Term(F) := U Termg(F)
ses
recursive definition:
» f:— s, s0f € Term(F)
> f s,

f(tl,.

representation: -f
,Sn — S, t; € Termg,(F) with rep. T; so
,tn) € Terms(F) with rep.

Consider the representation by ordered trees

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

) Q>

171

Algebraic Specification - Equational Calculus
000000000000 e000000000000000000000000000000000
Signature - Terms

Signature - Terms

o V= U V, system of variables VN F = @.
seS

Each x € V; has arity x :— s

Set: Term(F, V) := Term(FU V).

Quotation: terms over sig in the variables V.
(F and 7 extended with the set of variables and their sorts).

Intention: for variables it is allowed to use any object of the same sort,
i.e. terms of this sort. “Placeholder” for an arbitrary object of this sort.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus
0000000000000 e00000000000000000000000000000000
Strictness - Positions- Subterms

Strictness - Positions- Subterms

Definition 6.3. a) s € S strict, if Terms(F) # @

If for each sort s € S there is a constant of sort S or a function
f:s,...,8, — s, so that the s; are strict. If all the sorts of the signature
are strict.~~ strict signatures (general assumption)

b) Subterms (t) = {t, | p location (position) in p, t, subterm in p}
The positions are represented by sequences over N
(elements of N*, e the empty sequence).
O(t) Set of positions in t,
For p € O(t) t, (or t|p) subterm of t in position p
> t constant or variable: O(t) = {e} te=1t
> t=1f(t1,...,t,) SO

O(t)={ip|1<i<npeO(t)}U{e}
tip = tilp and te =t.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 173

Algebraic Specification - Equational Calculus
000000000000 00e0000000000000000000000000000000
Strictness - Positions- Subterms

Term replacement

c) Term replacement: t, r € Term(F, V)
p € O(t) : with r, t, € Terms(F, V) for a sort s.
Then

t[r]p, tlp < r| respectively t/ is the term, that is obtained from t by
replacing subterm t, by r.

So t[p « r]g =tq for q | p and

tlp—rlp=r
t tlp<-r
a AP q 0

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus

000000000000 000@000000000000000000000000000000

Strictness - Positions- Subterms
.S S

Signatures - terms

Example 6.4. S = (BOOL,NAT,LIST), F = {true, false, ...},
7:F — S§* :: true:— BOOL, eq : NAT,NAT — BOOL,...

V= Vool U VNaT U Viist

{b;j : i € N} {x; : i € N} {li : i € N}

Ground terms:
true, false, eq(0, suc(0)) € TermgooL(S)
0,suc(0),suc(0) + (suc(suc(0)) + 0) € Termyat(S)
app(nil,;suc(0).(suc(suc(0)).nil) € TermpsT(S)
0.suc(0), eq(true, false), rev(0) no terms.
General terms:
eq(x1, x2) € TermpooLe(F, V), suc(x1) + (x2 + suc(0)) € Termyar(F, V)
app(/l,Xl /0) S Term|_|s-|-(F, V)
rev(xi.l) € Termyst(F, V)
app(xi, h) no term.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 175

Algebraic Specification - Equational Calculus

Strictness - Positions- Subterms

0000000000000 000@00000000000000000000000000000

Signatures
Representation of signatures (graphical or standardized)
/u'ue suc
0
Chool = false 0Nt)
-{u\e empty \ml 5 1
false pop top
Notations:
sorts ...
ops ...

op: W—S
opy, ..

,opi: W —S
=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

176

Algebraic Specification - Equational Calculus
Interpretations: sig-algebras

000000000000 00000@0000000000000000000000000000

Interpretations: sig-Algebras

Definition 6.5. sig = (S, F,7) signature. A sig-Algebra 21 is composed of
1) Set of support A = |Jses As, As # D set of support of sort s.
2) Function system Fy = {fy : f € F} with

fa 1 As, X -+ x Ag, — As function and 7(f) = s,
Notice: The fy are total functions.

<.+ 5,S.
The precondition As # & is not mandatory.

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus
Interpretations: sig-algebras

000000000000 000000@000000000000000000000000000

Interpretations: sig-Algebras

Example 6.6. a) sig = BOOL, true, false :— BOOL
A4 {0,1} trueg, =0 falseg, =1
Ay {0,1} trueg, =0
s N truey, = 4
Ay {true, false}

falsey, =0
falsey, =5

trueg, = true
b) sig = NAT, 0, suc
AiNAT

bool-Alg.
falsey, = false
N Z N {true, false}
Og, 0 0 1 true
sucg, sucy pred; idy

{0, suc’(0)}
suc(true) = false

0
suc(0) = suc(0)
suc(false) = true suc(suc’(0)) = suc*1(0)
=] &5 = = = Da
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus
000000000000 0000000e00000000000000000000000000

Interpretations: sig-algebras

Free sig-algebra generated by V

Definition 6.7. » A = (A, Fy) with: A= J,c5As Ac = Termo(F, V),
i.e. A= Term(F,V)
Fof:isy,...,sn—s, fy(tr, ... tn) = Ff(t1,...,tn)
A is sig-Algebra:: T, (V)
the free termalgebra in the variables \/ generated by V

> V = o: Ay = Terms(F) set of ground terms
(As # @, because sig is strict).

A ground termalgebra:: Tgg

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 179

Algebraic Specification - Equational Calculus
000000000000 00000000e0000000000000000000000000
Interpretations: sig-algebras

O
Homomorphisms

Definition 6.8 (sig-homomorphism). 21,2’ sig-algebras
h: 20 — A" family of functions

h={hs: As — A. :s € S} is sig-homomorphism
when

hs(fm(al, ey an)) = fg/(hsl(al), e hsn(an))

As always: injective, surjective, bijective, isomorphism

fs
L Algebra
h h
f‘Q[’

M+ Algebra?’

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus

000000000000 000000000e000000000000000000000000
Canonical homomorphisms
.S S
Canonical homomorphisms

Lemma 6.9. 2 sig-Algebra, T, ground term algebra

a) The family of canonical interpretation functions
hs : Terms(F) — A, defined through

hS(f(tl’ SRR tn)) = fﬂ(hsl(tl)a SR hSn(tn))
with hs(c) = cy is a sig-homomorphism.

Proof: Just try!!

Uniqueness!
=] = = = = Al
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

b) There is no other sig-homomorphism from Ty to 2.

Algebraic Specification - Equational Calculus
000000000000 0000000000e00000000000000000000000
Canonical homomorphisms

O
Initial algebras

Definition 6.10 (Initial algebras). A sig-Algebra 2 is called
initial in a class C of sig-algebras, if for each sig-Algebra 2! € C exists
exactly one sig-homomorphism h : A — 2.

Notice: T is initial in the class of all sig-algebras (Lemma 6.9).
Fact: Initial algebras are isomorphic.

Isomorphism class for thg
Init —Algebrae

The final algebras can be defined analogously.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus
0000000000000 0000000000e0000000000000000000000
Canonical homomorphisms

Canonical homomorphisms

2 sig-Algebra, h: Tgg — 2 interpretation homomorphism.
2 sig-generated (term-generated) iff
Vse€S hs:Termg(F) — As surjective

The ground termalgebra is sig-generated.

ADT requirements:

» Independent of the representation (isomorphism class)
» Generated by the operations (sig-generated)
Often: constructor subset

Thesis: An ADT is the isomorphism class of an initial algebra.
Ground termalgebras as initial algebras are ADT.

Notice by the properties of free termalgebras : functions from V in 2 can
be extended to unique homomorphisms from T, (V) in .
=} = = = = Al

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 183

Algebraic Specification - Equational Calculus

0000000000000 O000000000Oe00000000000000O0O0O00
Equational specifications
O
Equational specifications
For Specification’s formalisms:

Classes of algebras that have initial algebras.

sigINT

~» Horn-Logic (See bibliography)
sortsint
ops 0:—int
suc : int — int

pred : int — int

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

184

Algebraic Specification - Equational Calculus

000000000000 O00OO0O0OO0OOOe000000000000OO0O0000
Equational specifications

O
Equational specifications

Definition 6.11. sig = (S, F,) signature, V' system of variables.
a) Equation: (u,v) € Terms(F, V) x Terms(F, V)
Write: u=v

Equational system E over sig, V/: Set of equations E
b) (Equational)-specification: spec = (sig, E)

where E is an equational system over F U V.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus
000000000000 OO0OO00OO0OO0OO00@00000000000OO0O0000
Equational specifications

Notation

Keyword eqns

spec INT
sorts int implicit
ops 0:— int All-Quantification
T suc, pred: int — int often also a declaration
eqns suc(pred(x)) = x of the sorts
pred(suc(x)) = x of the variables
Semantics::

» |oose all models (PL1)
» tight (special model initial, final)

» operational (equational calculus + induction principle)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus

0000000000000 O0000O00000O000e0000000000O0000000
Equational specifications

Models of spec = (sig, E)

Definition 6.12. 2 sig-Algebra, V(S)- system of variables

a) Assignment function ¢ for A: s : Vs — As induces a

valuation ¢ : Term(F,V) — 2 through

o(f) = fy, f constant, p(x) := ps(x), x € Vs
(p(f(tla BERE) t,,)) = fg[((p(t]_), ceey @(tﬂ))

2 = A
Termg(F, V) 25 A
Term(F,V) %« homomorphism

(Proof!)

=] T = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus
000000000000 O0OOO0OO0OO0OO0000e000000000OO0O0000
Equational specifications

Models of spec = (sig, E)

b) s =t equation over sig,V
A |= s = t: A satisfies s = t with assignment ¢ iff ¢(s) = ¢(t),

%)
equality in A.

c) A satisfies s =t or s =t holds in 2

2l = s = t: for each assigment ¢
AEs=t
©

d) 2 is model of spec = (sig, E)

iff 2 satisfies each equation of E
AEE ALG(spec) class of the models of spec.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 188

Algebraic Specification - Equational Calculus

0000000000000 O0000O0000O0O00000e00000000O0000000

Equational specifications
.S S

Examples

Example 6.13. 1)

spec NAT
sorts nat
ops 0:— nat
s :nat — nat
_ +_ :nat,nat — nat
egns x+0=x
x+s(y) =s(x+y)

=] T = = = HA

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 189

Algebraic Specification - Equational Calculus
0000000000000 O0000O0000O0O000000e0000000O0000000
Equational specifications

Examples

sig-algebras

1 i
= ({true, false}, 0,
= false §(true) = false

i+j=1iVj

>

(false) = true

[m] = =

) Q>
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

190

Algebraic Specification - Equational Calculus

0000000000000 O0000O0000O0O0000000e000000O0000000
Equational specifications
.S S
) 9y

2A, 9B, ¢ are models of spec NAT
eg. B:

p(x)=a go(Ayzzb a,beZ
p(x+0)=a+0=a-1=a=

o(x)
(x+s(y)) =ats(b)=a-(b-5)
(3 b) -5 = 3(a+

15)
p(s(x+y))

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus
0000000000000 O0000O0000O0O00000000e00000O0000000
Equational specifications

Examples

2)
spec LIST(NAT)
use NAT
sorts nat, list
ops nil :— list
. :nat,list — list
app : list, list — list
eqns app(nil, g2) = g2
app(x.q1, q2) = x.app(q1, G2)

=] T = = = HA

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 192

Algebraic Specification - Equational Calculus

0000000000000 O0000O0000O0O000000000e000000000000
Equational specifications

Examples

spec-Algebra

A N, N*

0=0 F=+ 3=+1

nil=e (emptyword)

T (ihyz)=iz

app(z1, z2) = z12» (concatenation)

=} = = = = Al
.S S

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 193

Algebraic Specification - Equational Calculus

000000000000 O0O0OO0OO0OO0OO0000000000e000OO000000
Equational specifications
.S S
Examples
3) specINT suc(pred(x)) = x
1
Aint

pred(suc(x)) = x
2 3
Z N {true, false}
Og, 0 0 true
true — false
sucy; | sucz SucN false — true
n+1—n true — false
predy, | predy 050
+ —

false — true }
=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

194

Algebraic Specification - Equational Calculus

0000000000000 O0000O0000O0O00000000000e00O0000000
Equational specifications
.S S
Examples
4 5
Ane | {a,b}*UZ | {1}TU{0}T U{z}
Ogy, 0

|
z !
1" — 1n+1)
z—1 .
sucyy, sucy, ort s on id
| 00—z
1n+1 .
1—2z
predg, predy

id
z—0
0" — 0n+1
\
[=] =3 =) Qv
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

195

Algebraic Specification - Equational Calculus
0000000000000 00000000000000000000000e000000000
Substitution

Substitution

Definition 6.14 (sig, Term(F, V)). o 0s: Vo — Termg(F. V),
os(x) € Termg(F, V), x € Vs
o(x) = x for almost every x € V

D(o)={x | o(x) # x} finite:: domain of o

Write 0 = {x1 « t1,....x, < 1}

Extension to homomorphism o : Term(F, V) — Term(F, V)

o(f(ty,... . ty) =f(o(ty),...,o(tn))

Ground substitution: t; € Terms(F) x; € D(o)s

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus
000000000000 0000000000000000000000000e00000000
Loose semantics

Lose semantics

Definition 6.15. spec = (sig, E)
ALG(spec) = {2 | sig-Algebra, A |= E} sometimes alternatively
ALGrg(spec) = {2 | term-generated sig-Algebra, A |= E}

Find: Characterizations of equations that are valid in ALG(spec) or
ALG(; (spec).

a) Semantical equality: E =s =t
b) Operational equality: t; l;! to iff

There is p € 0(t1),s = t € E, substitution o with

tilp = 0(s), 2 = ti[o(t)]p(ta[p — o(t)])
or t1]p, = o(t), l‘z*E ti{o(s)]p

=gt iff t 'E' tr

Formalization of replace equals < equals

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus

0000000000000 0000000000000000000000000e0000000
Loose semantics
.S S
Equality calculus
c) Equality calculus: Inference rules (deductive)
Reflexivity

t=t
Transitivity t =tt/’=t/t,/= o
Replacement =t

[t']p = s[t"],

(frequently also with substitution o)

p € 0(s)
=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

198

Algebraic Specification - Equational Calculus

0000000000000 00000000000000000000000000e000000
Loose semantics

Equality calculus

E = s = t iff there is a proof P for s =t out of E, i.e.
P=

t; =

sequence of equations that ends with s = t, such that for
t € P.

= t, € o(E) for a Substitution o

i) t1
II) ti =1t...

out of precedent equations in P by application
of one of the inference rules.

=] T = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

199

Algebraic Specification - Equational Calculus
000000000000 00000000O00000000000000000000e00000
Loose semantics

Properties and examples

Consequence 6.16 (Properties and Examples). a) Ifeither E = s =t
ors =g torEt s=1t holds, then

i) If o is a substitution, then also
Efo(s)=o(t) / o(s) =e o(t) | E = o(s) = a(t)

i.e. the induced equivalence relations on Term(F, V) are
stable w.r. to substitutions

i) reTerm(F,V), pe0(r), rlp, s,t € Termy (F, V) then

EErlslp=rltlp / rls]p =€ r[t]p / E - rs]p = r[t],
replacement property (monotonicity)

~ Congruence on Term(F, V') which is stable.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 200

Algebraic Specification - Equational Calculus
000000000000 00000000O000000000000000000000e0000
Loose semantics

Congruences / Quotient algebras

b) 2 = (A, Fy) sig-Algebra. ~ bin. relation on A is congruence relation
over A, iff

i) a~ b~ 3Is€S:a,be A (sort compatible)
ii) ~ is equivalence relation

i) ai~bj (i=1,...,n), fy(ai,...,an) defined
~ fy(ar,...,an) ~ fu(by,..., by) (monotonic)

20/ ~ quotient algebra:

Al ~= Uses(As/ ~)s with (As/ ~)s = {[a]~ : a € As} and fQ(/N
with oy (o). []) = [Fa(a1s . 20)]

well defined, i.e. 2/ ~ is sig-Algebra. Abbreviated (.

v : A — A with ps(a) = [a]~ is a surjective homomorphism, the
canonical homomorphism.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus
0000000000000 00000000000000000000000000000e000
Connection between |=, =g, -

Connections between =, =g, ¢

c) A, A sig-algebras ¢ : A — A" surjective homomorphism.
Then

AEs=t~A' Es=t
d) spec = (sig, E):
s=gt iff EFs=1t

e) A sig-Algebra, R a sort compatible bin. relation over 2L.

Then there is a smallest congruence =g over 2 that contains R, i.e.
R QER

=g the congruence generated by R

Proofs: Don't give up...

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus
00000000000 000000000O00000000000000000000000e00
Connection between |=, =g, Fg

Connections between =, =g, ¢

f) 2 sig-Algebra, E equational system over (sig, V).
E induces a relation L A where

a_y a’ (a,a € A,) iff thereis t =t € E and an assignment
S

w: V= Awith p(t) =a, p(t') =4
This relation is sort compatible.
Fact: Let = be a congruence over 2 that contains ENQx' then A/ = is
a spec = (sig, E)-Algebra, i.e. model of E.

g) Existence: A = T, the (ground) term algebra, then =g is on T
the smallest congruence that contains ~ .

)

In particular T,/ =¢ is a term-generated model of E.

=] = = =

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

203

Algebraic Specification - Equational Calculus
000000000000 00000000O000000000000000000000000e0
Connection between |=, =g, Fg

example

spec :: INT with pred(suc(x)) = x, suc(pred(x)) = x

(Tint/ =€)t = {[0] = {0, pred(suc(0)), suc(pred(0)), . ..
[suc(0)] = {suc(0), pred(suc(suc(O))),...
[suc(suc(0))] = {--
Jred(0)] = {pred(0), suc(pred(pred(0))) .

sucry/=¢ ([pred(suc(0))]) = [suc(pred(suc(0)))]
= [suc(0)]

= SUCTinr/=¢ (10

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Algebraic Specification - Equational Calculus
000000000000 00000000O0000000000000000000000000e
Birkhoff’s Theorem

Birkhoff's Theorem

Theorem 6.17 (Birkhoff). For each specification spec = (sig, E) the
following holds

EEs=t iff EFs=t (i.e.s=ft)

Definition 6.18. /nitial semantics

Let spec = (sig, E), sig strict.

The algebra T.,,/ =¢ (Quotient term algebra)

(=€ the smallest congruence relation on T, generated by E)
is defined as initial algebra semantics of spec = (sig, E).

It is term-generated and initial in ALG(spec)!

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics

Basic properties

©000

Initial Algebra semantics

Initial Algebra semantics assigns to each equational specification spec the
isomorphism class of the (initial) quotient term algebra 7.,/ =¢.
Write: Tepec or /(E)

ALG(spec)

sig=X, spec = (%, E)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

) Q>

206

Initial semantics

Basic properties

000000000000 000000000000000000000000000O000000000000000

Quotient term algebras

Quotient term algebras are ADT.

int

Example 7.1. (Continuation)
Al Z
O

spec = INT
{true, false} {1}T U{0}* U {z}
0 true
sucai sucy, not

pred, predy

V4
not
Tint/ =E

[0] — true [suc®'(0)] — true

[suc®"t1(0)] — false [pred®™™(0)] — false
[pred®”(0)] > true

o = S = = 9Hal
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics

000000000000 000000000000000000000000000O000000000000000
Basic properties

O
Initial algebra

spec = (sig, E) Initial algebra Tgpee (/(E))
Questions:

> Is Tpec computable?

> s the word problem (T, =) solvable?

> Is there an “operationalization” of Tgpec?

» Which (PL1-) properties are valid in Tgpec 7

» How can we prove these properties? Are there general methods?

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics

0008000000000 000
Basic properties

Equational theory / Inductive (equational-) theory

Definition 7.2. Properties of equations

a) TH(E)={s=t:E s =t} Equational theory
Equations that are valid in all spec-algebras.

b) ITH(E)={s =t: Tspec = s =t} inductive (=)-theory
Equations that are valid in all term generated spec-algebras.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics
000080000000 000000000000000000000000000O000000000000000
Basic properties

Equational theory / Inductive (equational-) theory

Consequence 7.3. Basic properties

a) TH(E) C ITH(E), since Tpec is @ model of E.
b) Generally TH(E) C ITH(E)
= Hence E is w-complete
~» proofs by consistency inductionless induction
E recursively enumerable (r.e.), so TH(E) r.e., but ITH(E)
generally not r.e.

c) Tspec = s =1t iff o(s) =g o(t) for each ground substitution of the
Var. in s, t. ~ inductive proof methods, coverset induction

d) E:x4+0=x x+s(y) =s(x+y)
~ x+y=y+x€ITH(E) — TH(E)
(x+y)+z=x+(y+2z) Proof!

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 210

Initial semantics

00000800
Basic properties

Examples

Example 7.4. Basic examples

a) spec BOOL
sorts bool
ops true, false :— bool
not : bool — bool
and, or,impl, eqv : bool, bool — bool
if _then__else__ : bool, bool, bool — bool

=} = = = = Al
.S S

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 211

Initial semantics

000000@00000000000000000000000000000000O000000000000000

Basic properties
.S S

Example (Cont.)

eqns not(true) = false
not(false) = true
and(true, b) =
and(false, b) = false
or(b, b") = not(and(not(b), not(b)))
impl(b, b") = or(not(b), b’)
eqv(b, b’) = and(impl(b, b'),impl(b’, b))
if true b’ else b’ = b’
if false b’ else b” = b”

(TsooL)bool = {]true], [false]} (Proof!)

~~ Defined- and constructor-functions.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 212

Initial semantics
0000000@00
Basic properties

Example (Cont.)

b) spec SET-OF-CHARACTERS

sorts char, set
ops a,b,c,---:— char
o :— set
insert : char, set — set
eqns insert(x, insert(x, s)) = insert(x, s)

insert(x, insert(y,s)) = insert(y, insert(x, s))

(Tsoc)char - {3, b, Cy.en }
(Tsoc)set - {[@], [insert(a7 @)], R

[13 [13

{@}{insert(a, insert(a, ..., insert(a, @) }

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics
000000008 000

Basic properties

Example (Cont.)

<)
spec NAT
sorts nat
ops 0:— nat
suc : nat — nat
+,__*_ :nat,nat — nat
eans x40 =x
X + sucy = suc(x + y)
x*0=0
x #suc(y) = (x*y)—i—x
(TNAT)nat:{ [0 0+0,0%0,.
[sucO, 0+suc0
[

suc(suc(0)), -

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 214

Initial semantics
000000000800 00

Basic properties
.S S

Example (Cont.)

d) Binary tree

spec BIN-TREE

sorts nat, tree

ops 0:— nat
suc : nat — nat
max : nat, nat — nat
leaf :— tree
left : tree — tree
right : tree — tree
both : tree, tree — tree
height : tree — nat
dleft : tree — tree
dright : tree — tree

=} = = = = Al
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 215

Initial semantics
000000000080 000000000000000000000000000O000000000000000
Basic properties

example

Continuation of d) binary tree.

eqns max(0,n) =n
~ max(n,0)=n
max(suc(m), suc(n)) = suc(max(m, n))
height(leaf) =0
height(both(t, t")) = suc(max(height(t), height(t')))
height(left(t)) = suc(height(t))
height(right(t)) = suc(height(t))

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics

00000000000 @000000000000000000000000000O00000000000000
Correctness and implementation

Correctness

Definition 7.5. A specification spec = (sig, E) is
sig-correct for a sig-Algebra 21 iff Tepec = 2
(i.e. the unique homomorphism is a bijection).

Example 7.6. Application:
INT correct for 7., BOOL correct for B

Note: The concept is restricted to initial semantics!

=} = = = = Al
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 217

Initial semantics

000000000000 ®000
Correctness and implementation
O
Restrictions/Forgetful functors
Definition 7.7. Restrictions/Forget-images
a) sig=
ie.

(S,F,7), sig = (S',F', ') signatures with sig C sig’,
(SQS’,FQF’ TCT)
For each sig'-algebra U let the sig-part 2., of A be the sig-Algebra
with
i) (Alsig)s =As fors e S
ii) fg”sig =fy forf € F

Note: Alsig is sig - algebra. The restriction of 2 to the signature sig

Alsig is also called forget-image of 2 (with respect to sig).
D) (=, () E DAl
O
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics

000000000000 0@00
Correctness and implementation
O
Restrictions/Forgetful functors
Al forget-image of 2 (w.r. to sig). The forget image induces
consequently a mapping (functor) between classes of algebras in the
following way:

sig

2N

sig/

ALG(sig)

sig
W

ALG(sig")

w
Alsig A
forgetfulfunctor
= F = = = Al
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics

000000000000 00e000000000000000000000000O000000000000000
Correctness and implementation

Restrictions/Forgetful functor

b) A specification spec = (sig’, E) with sig C sig’ is
correct for a sig-algebra 21 iff

(TspeC)|sig =2

c) A specification spec’ = (sig’, E’) implements a specification
spec = (sig, E) iff

Sig c Sigl and (Tspec’)lsig = 7—spec
Note:

» A consistency-concept is not necessary for =-specification. ((initial)
models always exist !).

» The general implementation concept (Cl(spec) C Cl(spec’)) reduces
here to = of the valid equations in the smaller language.
,complete” theories.

o & = = va e
.S S

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

220

Initial semantics
000000000000 000@00000000000000000000000O000000000000000
Correctness and implementation

Problems

Verification of s =t € Th(E) or € ITH(E).

For Th(E) find =g an equivalent, convergent term rewriting system (see
group example).

For ITH(E) induction’s methods:

s, t induce functions to Tepec. If X1,..., X, are the variables in s and t,
types si,...,S,.
S: (Tspec)51 X X (Tspec)s,, - (Tspec)s
s =t € ITh(E) iff s and t induce the same functions ~~ prove this by
induction on the construction of the ground terms.
NAT O,suc,+ x+y=y+x €ITH

0+x=x

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics
0000000000000 00080000000000000000000000000000000000000
Correctness and implementation

Problems

»0+0=0 Ass.:0+a=a

0+ Sa=g S(0+a) =, S(a)
» x+0=0+x Ass.:x+a=a+x

.

x+Sa=g S(x+a)=,S5(a+x)=ga+ Sx=S5a+x
» x+Sy=5+y

x4+ S0=F S(x+0) =g Sx =g Sx+0

x + SSa =g S(x+ Sa) =; S(S5x + a) =g Sx + Sa

spec(sig, E) Pspec(sig, E, Prop)
Equations only often Properties that should hold!
do not suffice ~~ Verification tasks

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 222

Initial semantics

000000000000 00000e000000000000000000000O000000000000000
Structuring mechanisms

O
Structuring mechanisms

Horizontal: - Decomposition, - Combination,
- Extension, - Instantiation
Vertical: - Realisation, - Information hiding,
- Vertical composition
Here:

Combination, Enrichment, Extension, Modularisation, Parametrisation
~~ Reusability.

=] T = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

223

Initial semantics
0000000000000 00000e00000000000000000000000000000000000
Structuring mechanisms

Structuring mechanisms

BIN-TREE
1) spec NAT 2) spec NAT1
sorts nat use NAT
ops 0:— nat ops max : nat,nat — nat

suc : nat — nat eqns max(0,n) =n
max(n,0) = n
max(s(m),s(n)) = s(max(m, n))

=] T = = = HA

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 224

Initial semantics

000000000000 0000000e0000000000000000000000000000000000
Structuring mechanisms

Structuring mechanisms

BIN-TREE (Cont.)

3) spec BINTREEL 4)
sorts bintree
ops leaf :— bintree

spec BINTREE2
use NAT1,BINTREE1
ops height : bintree — nat
left, right : bintree
— bintree
both : bintree, bintree
— bintree

eqns :

o = S = = 9Hal
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics
000000000000 00000000e000000000000000000000000000000000
Structuring mechanisms

Combination

Definition 7.8 (Combination). Let spec; = (sigy, E1), with

sigy = (51, F1,71) be a signature and sig, = [S2, F2, 72 a triple, E; set of
equations.

comb = spec; + (sig,, E») is called combination
iff
spec = ((51 U S), (FLUF), (11 Um)), Ey U E) is a specification.

In particular (51U Sy), (F1 U F), (11 UT)) is a signature and E,
contains ,,syntactically correct” equations.

The semantics of comb: Tcomb = Tspec

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics
0000000000000 00000000e00000000000000000000000000000000
Structuring mechanisms

The semantics of comb

Teomb = spec
Typical cases:
S, = &, F new function symbols with arities 7, (in old sorts).

S> new sorts, F> new function symbols.
T, arities in new + old sorts.

E; only ,new" equations.

Notations: use, include (protected)

= = = HA

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 227

Initial semantics

000000000000 0000000000e0000000000000000O000000000000000

Structuring mechanisms

Example

Example 7.9.

spec
sorts
ops

spec
use
ops
eqns

INT1

int

0:—int

suc : int — int

N

INT2
INT1
pred : int — int
pred(suc(x)) =
suc(pred(x)) =

a) Step-by-step design of integer numbers

semantics

Tint1 = (N, 0, sucy)

TinT2 = (Z, 0, sucy, predy)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 228

Initial semantics

000000000000 00000000000@000000000000000000000000000000
Structuring mechanisms
O
Example (Cont.)
Question: Is the INT1-part of T\n12 equal to TinT17?
Does INT2 implement INT17?

(Tint2)|inT1 = TinT1
(Za 07 sucz, predZ) ||NT1
0
(Z,0,sucyz)

% (N’ 07 SUCN)

Caution: Not always the proper data is specified!
Here new data objects of sort int were introduced.

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

229

Initial semantics

0000000000000 00000000000e00000000000000000000000000000
Structuring mechanisms
.S S
Example (Cont.)
b) spec

NAT?2
use NAT
eqns

suc(suc(x)) = x

(Tnar2)|naT = (N mod 2)[yar = Nmod 2 % N = Tyar

Problem: Adding new or identifying old elements.

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

230

Initial semantics

0000000000000 000000000000e0000000000000000000000000000
Structuring mechanisms
.S S
Problems with the combination
Let

comb = spec; + (sig, E)
(Tcomb)|spec1 is specy Algebra

. . -y . ~
Tspec, is initial spec; algebra }

3! homomorphism h: Tgpec, — (Teomb)|spec,

Properties of

h: not injective / not surjective / bijective.
e.g. (TeiNTReE2)|NAT = TnaT-

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

231

Initial semantics

0000000000000 0000000000000e000000000000000000000000000
Structuring mechanisms
.S S
Extension and enrichment
Definition 7.10.

extension iff

a) A combination comb = spec; + (sig, E) is an

(Tcomb)‘spec1 = spec;

b) An extension is called enrichment when sig does not include
new sorts, i.e. sig = [&, F,)]

» Find sufficient conditions (syntactical or semantical) that guarantee
that a combination is an extension

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

232

Initial semantics

000000000000 000000000000000e00000000000000000000000000

Structuring mechanisms
.S S

Parameterisation

Definition 7.11 (Parameterised Specifications). A
parameterised specification Parameter=(Formal, Body) consist of two
specifications: formal and body with formal C body.

i.e. Formal=(sigg, EF), Body=(sigg, Eg), where

sige C sigg EF C Ep.

Notation: Body[Formal]

Syntactically: Body = Formal +(sig’, E') is a combination.

Note: In general it is not required that Formal or Body[Formal] have an
initial semantics.

It is not necessary that there exist ground terms for all the sorts in Formal.
Only until a concrete specification is “substituted”, this requirement will
be fulfilled.

[m] = = v v
S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 233

Initial semantics
000000000000 0000000000000000e0000000000000000000000000
Structuring mechanisms

Example
Example 7.12. spec ELEM (Tspec)elem = &
sorts elem
ops next:elem — elem
spec STRING[ELEM] (Tspec)string = {[empty]}
use ELEM

sorts string

ops empty :— string
unit : elem — string
concat : string, string — string
ladd : elem, string — string
radd : string, elem — string

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics

000000000000 00000000000000000e000000000000000000000000
Structuring mechanisms

Example (Cont.)

eqns concat(s,empty) = s
concat(empty, s) = s
concat(concat(sy, sp), s3) = concat(sy, concat(sy, s3))
ladd(e, s) = concat(unit(e), s)
radd(s, e) = concat(s, unit(e))

Parameter passing: ELEM — NAT

STRING[ELEM] — STRING|NAT]

Assignment: formal parameter — current parameter

SF — SA
Op — Opa

Mapping of the sorts and functions, semantics?

=] T = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics

000000000000 000000000000000000e00000000000000000000000

Signature morphisms - Parameter passing
.S S
Signature morphisms - Parameter passing

Definition 7.13. a) Let sig; =

of functions o = (g, h) withg : S1 — Sy, h: F1 — Fris a

(Si, Fi,7i) i = 1,2 be signatures. A pair
signature morphism, in case that for every f € F

Tz(hf) — g(Tlf)
(g extended to g : S — S3).
In the example g :: elem — nat h :: next — suc
Also o : SigBOOL — SigNAT with

g bool — nat
h: true—0

false — 0

is a signature morphism.

not — suc and — plus
or — times
=] = = = = Al
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics

000000000000 0000000000000000000e0000000000000000000000

Signature morphisms - Parameter passing
.S S

Signature morphisms - Parameter passing

b) spec = Body[Formal] parameterised specification and Actual a
standard specification (i.e. with an initial semantics).
A parameter passing is a signature morphism
o : sig(Formal) — sig(Actual) in which Actual is called the current
parameter specification.

(Actual, o) defines a specification VALUE through the following
syntactical changes to Body:

1) Replace Formal with Actual: Body[Actual].

2) Replace in the arities of op : s1...s, — so € Body, which are not in
Formal, s; € Formal with o(s;).

3) Replace in each not-formal equation L = R of Body each
op € Formal with o(op).

4) Interprete each variable of a type s with s € Formal as variable of
type o(s).

5) Avoid name conflicts between actual and Body/Formal by renaming
properly.

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 237

Initial semantics

000000000000 00000000O000000000000e000000000000000000000
Signature morphisms - Parameter passing

O
Parameter passing

Notation:
Value = Body[Actual, o]

Consequently for o : sig(Formal) — sig(Actual) we get a a signature
morphism

o' : sig(Body[Formal]) — sig(Body[Actual, o] with
Formal —— Body

o (x) = o(x) x € Formal

1
1
| I
o o X x ¢ Formal
1

v
Actual ——— Value

Where x’ is a renaming, if there are naming conflicts.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics
000000000000 00000000O0000000000000e00000000000000000000
Signature morphisms - Parameter passing

Signature morphisms (Cont.)

Definition 7.14. Let o : sig’ — sig be a signature morphism.

Then for each sig-Algebra 2 define 21|, a sig'-Algebra, in which for
sig = (S',F', 7))

(qu)s - An(s) se S’ and fg[‘ﬂ = J(f)gl feF.
A|, is called forget-image of 2 along o
Hence |, is a “mapping” from sig-Algebras into sig’ -Algebras.

(Special case: sig’ C sig:—) |sig

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics
000000000000 0000000000000000000000e0000000000000000000

Signature morphisms - Parameter passing
.S S

Example

Example 7.15. 2 = Tyar (with 0, suc, plus, times)
sig’ = sig(BOOL) sig = sig(NAT)
o : sig — sig the one considered previously.

((TnAT)|o)bool = (TNAT)(bool) = (TNAT)nat
= {[0], [suc(0)],... }

true(ry), = o(true)ry, = [0]
false(ryun)l, = o(false) 1y = [0]
NOt(Tyr)|, = a(nOt) Tnar — SUCTyAr
and(TNAT)lc = o(and) Taar = p.lusTNAT
OF(Tuat)|o = o(oNTye = timesty.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 240

Initial semantics
000000000000 00000000000000000000000e000000000000000000
Signature morphisms - Parameter passing

Forget images of homomorphisms

Definition 7.16. Let o : sig’ — sig a signature morphism, A,B
sig-algebras and h : A — B a sig-homomorphism, then

hlo =={hys) | s €S’} (withsig = (S',F',7')) is a sig/-homomorphism
from |, — B|, by setting

(hlo)s = hos) 1 Asisy — Bos)
Il Il
™As)s — (Blo)s

h|s is called the forget image of h along o

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics

000000000000 00000000O0000000000000000e00000000000000000
Signature morphisms - Parameter passing
.S S
Forgetful functors
h|a = {hg(s) | s e 5/}, Sig/ = (5’, F’,T’), with

Let o : sig’ — sig, A, B, sig-algebras, h: A — B, sig-homomorphism

hle : Ale — B|, forget image of h along o.

A, g
hl,

«~— B
=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

242

Initial semantics

0000000000000 000000000000000000000000e0000000000000000
Signature morphisms - Parameter passing
.S S
Forgetful functors
Properties of h|, (forget image of h along o)

!
sig/ g sig 7 sig’’
ALG(sig') o ALG(sig) Jo ALG(sig")
W W W

W
h|o
a1, M

B|,

h
A— B
Compatible with identity, composition and homomorphisms.
=) = = = = Al
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

243

Initial semantics

0000000000000 0000000000000000000000000e000000000000000
Signature morphisms - Parameter passing
.S S
Forgetful functors

. 4
sig

e sig T,
Alg(sig’) lo

sig”
o

Alg(sig) <L‘—'Alg(sig")

|(a’oa)

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics

Signature morphisms - Parameter passing

0000000000000 00000000000000000000000000@00000000000000

Parameter Specification Body|[Formal|

ALG(Formal)

in ALG(Body)
Formal ——— Body

incl
o

|a’
Actual &—— Value
in
ALG(Actual) <

|inc|’

ALG(Value)
=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics

Semantics parameter passing
O
Semantics of parameter passing (only signature)
Definition 7.17. Let Body[Formal] be a parameterized specification
o : Formal — Actual signature morphism.

Semantics of the the “instantiation” i.e. parameter passing [Actual, o).

o : Formal — Actual
!
initial semantics of value. i. e
TBody[ActuaI,o]
Can be seen as a mapping : S ::(Tactual; @) = TBody[Actual,o]
This mapping between initial algebras can be interpreted as

correspondence between formal algebras — body-algebras.

(TActua|)|cr = (TBody[Actual,a])|a’
o &5 = o
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

246

Initial semantics
0000000000000 0000000000000000000000000000e000000000000
Semantics parameter passing
Semantics parameter passing

(Tactat)|o = (TBody[Actual,o])|o”

Actual =——— Body[Actual, o]
init-Sem.

init-Sem.

TBody[ActuaI,a]

forget-image

(TBody [Actual, o]) lincl

I
hinit © Tactual —> (TBody[ActuaI,o])lActua|
=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

247

Initial semantics

Semantics parameter passing

0000000000000 00000000000000000000000000000800000000000

Mapping between initial algebras

((TValue)Ia/)lFormaI

|inc|
lo

N (Tactual)],
(hinit) |

incl’

(TVaIue)|a/
? € Alg(Formal) o
Formal —— Body
inc
o o o’
Actual ——— Value
;1/ TActuaI

(TValue) |acum

incl’
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

7—Value

) Q>

248

Initial semantics
000000000000 00000O000O00000000000000000000000e0000000000
Semantics parameter passing

Properties of the signature morphism

Formal AN Actual

sorts elem elem — nat | sorts nat

ops a,b:— elem a—0 ops 0,1:— nat
eqns a=>b b—1 eqns

2 = Tactal Anat = {0, 1}
A|, € Alg(sig Formal) (Als)elem = {0,1}
ala, =0#1=bly
Equation from Formal is not fulfilled! i.e. |, ¢ Alg(Formal).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Initial semantics

Semantics parameter passing

000000000000 00000000000000000000000000000000e000000000

Parameter passing (Actual, o)
Body[Formal]

o : sig(Formal) — sig(Actual)
signature morphism

Formal ——— Body
incl

o’(with renaming)
incl

Actual —— Value = Body/[Actual, o]

Precondition: sig(Actual) and sig(Value) strict.
o < : =, = ©ac
e
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

250

Initial semantics

Semantics parameter passing

Q0000000000000 0000000000000000000000000000000800000000

Parameter passing (Actual, o)

Forgetful functor: |, : Alg(sig) — Alg(sig’)

2|, for o : sig/ — sig
h: A — B sig-homomorphism

sig’-homomorphism

hly: Ale — Bls

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

251

Initial semantics

Semantics parameter passing

Q0000000000000 00000000000000000000000000000000e0000000

Parameter passing (Actual, o)

((TValue)I,,/)‘Formal

o

AN
(hinit) |

|inc| (

TVaIue)|g,
(Tactual)|, € Alg(Formal)

|0’
lo

/ 7—Actual
(TValue) | Actual

init

Problems: 1) (Tactual)|o € Alg(Formal),

| TVaIue
incl’

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

=]

2) hinit is not a bijection.

5

) Q>

252

Initial semantics

000000000000 00000O000O0000000000000000000O00000000e000000

Specification morphisms
.S S

Specification morphisms

Definition 7.18. Let spec’ = (sig’, E'), spec = (sig, E) (general)
specifications.

A signature morphism o : sig’ — sig is called a specification morphism, if
o(s) =o(t) € Th(E) for every s =t ¢ E' holds.

Write: o : spec — spec

Fact: If A € Alg(spec) then 2|, € Alg(spec)
i.e. |0 : Alg(spec) — Alg(spec’)!

Often ,,only“the weaker condition o(s) = o(t) € ITh(E) is demanded in
above definition. More spec morphisms!

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 253

Initial semantics
000000000000 00000000O0000000000000000000O000000000e00000
Specification morphisms

Semantically correct parameter passing

Definition 7.19. A parameter passing for Body[Formal] is a pair
(Actual, o) Actual an equational specification and o : Formal — Actual a
specification morphism.

Hence:: (Tactual)|o € Alg(Formal)

- Demand also hi,;: bijection. Proof tasks become easier.
There are syntactical restrictions that guarantee this.

Algebraic Specification languages

CLEAR, Act-one, -Cip-C, Affirm, ASL, Aspik, OBJ, ASF, «: newer

languages: - Spectrum, - Troll.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 254

Initial semantics
0000000000000 000000000000000000000000000000000000e0000
Specification morphisms

Example

Example 7.20.

(spec ELEMENT
use BOOL
sorts elem
Formal:: ¢ ops .<.:elem, elem — bool
eqns x < x = true
imp(x <y andy < z,x < z) = true
x<yory<Xx=true

= = = HA

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 255

Initial semantics
0000000000000 0000000000000000000000000000000000000e000
Specification morphisms

Example (Cont.)

spec LIST[ELEMENT]

use ELEMENT

sorts list

ops nil :— list
. : elem, list — list
insert : elem, list — list
insertsort : list — list
case : bool, list, list — list
sorted : list — bool

=] T = = = HA

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 256

Initial semantics
000000000000 00000000O0000000000000000000O000000000000e00
Specification morphisms

Example (Cont.)

eqns case(true, i, h) = h
case(false, h, h) = h

insert(x, nil) = x.nil
insert(x, y.l) = case(x <y, x.y.l,y.insert(x,/))

insertsort(nil) = nil
insertsort(x./) = insert(x, insertsort(/))

sorted(nil) = true
sorted(x.nil) = true

sorted(x.y./) = if x < y thensorted(y./) else false

Property: sorted(insertsort(/)) = true

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 257

Initial semantics

0000000000000 000000000000000000000000000000000000000e0
Specification morphisms
.S S
Example (Cont.)
ACTUAL = BOOL

g

elem — bool, bool — bool
. <. — impl

The equations of ELEMENT are in Th(BOOL)
~~» Specification morphism

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

258

Initial semantics
0000000000000 00e
Specification morphisms

Example (Cont.)

ACTUAL = NAT
o: bool — nat elem — nat

true — suc(0) not allowed
false — 0

not — suc

or — plus

and — times

<
is not a specification morphism
not(false) = true
not(true) = false does not hold!.

=] T = = = HA

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 259

Reduction Systems Term Rewriting Systems
®00000000000000000000000000000 0000000000000 00000000000000000000
Abstract Reduction Systems

Abstract Reduction Systems: Fundamental notions and
notations

Definition 8.1. (U,—) U # &, — binary relation is called a
reduction system.

» Notions:

> x € U reducible iff Jy : x — y
irreducible if not reducible.

* . .. + i
» x — y reflexive, transitive closure, x — y transitive closure,
* . . e
x «—— y reflexive, symmetrical, transitive closure.

v

x 5 y i € N defined as usual. Notice x — y = Uien X KR y.

v

X —— y, y irreducible, then y is a normal form for x. Abb:: NF

A(x) ={y | x — y}, the set of direct successors of x.

v

v

AT (x) proper successors, A*(x) successors.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 260

Reduction Systems
0@0000000000000000000000000000
Abstract Reduction Systems

Term Rewriting Systems
0000000000000 00000000000000000000

Notions and notations

> A(x) =max{i|Jy:x 4 y} derivational complexity. A : U — N
» — noetherian (terminating, satisfies the chain condition), in case
there is no infinite chain x; — x» — x3 — - - -
» — bounded, in case that A: U — N.
» — cycle free :: =3x € U:x 5 x
/
» — locally finite x — 3, i.e. A(x) finite for every x.

N

) Q>

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 261

Reduction Systems
00@000000000000000000000000000
Abstract Reduction Systems

e
Notions and notations

Term Rewriting Systems
0000000000000 00000000000000000000

Simple properties:
» — cycle free, then — partial ordering.
» — noetherian, then — cycle free.
» — bounded, so — noetherian.

but not the other way around!

» 5 C = and = noetherian, then — noetherian.

=} = = =) Qv
.S S

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 262

Reduction Systems

Term Rewriting Systems .
0008000000000 00000000000000000 0000000000000 00000000000000000000
Principle of the Noetherian Induction
.S S
Principle of the Noetherian Induction

Definition 8.2. — binary relation on U, P predicate on U.
P is —-complete, when

Fact:

x[(Vy € AT(x) : P(y)) D P(x)]

x € U.

PNI: If — is noetherian and P is —-complete, then P(x) holds for all

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction Systems Term Rewriting Systems
0000800000000 00000000000000000 0000000000000 00000000000000000000
Principle of the Noetherian Induction

Applications

Lemma 8.3. — noetherian, then each x € U has at least one normal
form.

More applications to come.... See e.g. Kénig's lemma.

Definition 8.4. Main properties for (U, —)
> — confluent iff «— o2 C 250

» — Church-Rosser iff < C —5 o0
» — locally-confluent iff «— o — C —5 o

. <1
» — strong-confluent iff «— o — C —5 o0&

Abbreviation: joinable | :
=0

=] T = = = HA

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 264

Reduction Systems Term Rewriting Systems
00000@000000000000000000000000 0000000000000 00000000000000000000
Important relations

O
Important relations

Lemma 8.5. — confluent iff — Church-Rosser.

Theorem 8.6. (Newmann Lemma) Let — be noetherian, then

— confluent iff — locally confluent.

Consequence 8.7. a) Let — confluent and x < y.

i) Ify is irreducible, then x — y. In particular, when x,y irreducible,
then x = y.

i) x <y iff A*(x)NA*(y) # @.
iii) If x has a NF, then it is unique.

iv) If — is noetherian, then each x € U has exactly one NF: notation x |

b) Ifin (U,—) each x € U has exactly one NF, then — is confluent (in
general not noetherian).

o & v v
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

265

Reduction Systems

Term Rewriting Systems .
000000@00000000000000000000000 0000000000000 00000000000000000000
Important relations
.S S
Convergent Reduction Systems
Important since:

Definition 8.8. (U, —) convergent iff — noetherian and confluent.

X ——yiff x|=y]|

Hence if — effective ~~ decision procedure for Word Problem (WP):
For programming: x — x |, f(ty,

,tn) — value”
As usual these properties are in general undecidable properties.
properties.

Task: Find sufficient computable conditions which guarantee these

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

266

Reduction Systems
000000080000 000000000000000000
Important relations

Term Rewriting Systems
0000000000000 00000000000000000000

Termination and Confluence

Sufficient conditions/techniques
Lemma 8.9. (U,—), (M,>), = well founded (WF) partial ordering.
If there is ¢ : U — M with o(x) = ¢(y) for x — y, then — is noetherian.

Example 8.10. Often (N, >), (X", >) can be used.
For w € ¥* let |w| length, |w|, a-length a € X.

WF-partial orderings on ¥*
> x>y iff |x| > |y
> x>y iff x|, > |yla
> x>y iff [x| >y

x| =yl A X =lex y

1

Notice that pure lex-ordering on ¥* is not noetherian.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction Systems

Term Rewriting Systems .
00000000@000000000000000000000 0000000000000 000O00000000000O000000
Sufficient conditions for confluence
e
Sufficient conditions for confluence
Termination: Confluence iff local confluence
Without termination this doesn’t hold!

B
® ®
or

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

) Q>

268

Reduction Systems

Term Rewriting Systems .
000000000 @00000000000000000000 0000000000000 00000000000000000000
Sufficient conditions for confluence
.S S
Confluence without termination
Theorem 8.11. — is confluent iff for every u € U holds:

> one-sided localization of confluence <

from u — x and u = y it follows x | y.

Theorem 8.12. If — is strong confluent, then — is confluent.
Not a necessary condition:

T

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

) Q>

269

Reduction Systems

Term Rewriting Systems .
000000000080 000000000000000000 0000000000000 00000000000000000000
Sufficient conditions for confluence
.S S
Combination of Relations
Definition 8.13. Two relations —1, —» on U commute, iff
*

1< O —»

C D018
They commute locally iff 1— o0 —, C 550 16—

[] X [] [] []
2 ! 2 !

¥ X |

1 1y

® =0

1 1 ‘V
® =0
commutating locally commutating
=] = = = = Al
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

270

Reduction Systems Term Rewriting Systems
00000000000 e000000000000000000 0000000000000 00000000000000000000
Sufficient conditions for confluence

Combination of Relations

Lemma 8.14. Let - = —1 U —»

(1) If =1 and —, commute locally and — is noetherian, then —1 and
—9 commute.

(2) If =1 and —, are confluent and commute, then — is also confluent.

Problem: Non-Orientability:

Q) x+0=x, x+s(y)=s(x+y)
B)x+y=y+x (x+y)+z=x+(y+2)

> Problem: permutative rules like (b) <

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 271

Reduction Systems
00000000000 0e00000000000000000
Sufficient conditions for confluence

Term Rewriting Systems
0000000000000 00000000000000000000

Non-Orientability

Definition 8.15. Let (U,—,H) with — a binary relation, H a
symmetrical relation.

Let H = «<uH, ~ = Iii ~ = H,
. = ~oO—o0~, .= BSo~od,

If x |~y holds, then x,y € U are called joinable modulo ~.

— is called Church-Rosser modulo ~ iff =~ C |

— is called locally confluent modulo ~ iff «— o — C |

— is called locally coherent modulo ~ iff «— otH C |

=] T = = = HA

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 272

Reduction Systems

000000000000 0e0000000000000000
Sufficient conditions for confluence

Term Rewriting Systems

Non-Orientability - Reduction Modulo H

0000000000000 00000000000000000000

Theorem 8.16. Let — ., be terminating. Then — is Church-Rosser

modulo ~ iff ~ is local confluent modulo ~ and local coherent modulo ~

Most frequent application: Modulo AC (Associativity + Commutativity)

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

273

Reduction Systems
000000000000 00e000000000000000

Equivalence relations and reduction relations

Term Rewriting Systems
0000000000000 00000000000000000000

Representation of equivalence relations by convergent
reduction relations

Situation: Given: (U,H) and a noetherian PO > on U, find: (U, —)
with

(i) = <€ >, — convergent on U and

(i) & = ~with~ = H

Idea: Approximation of — by stepwise transformations

(H,0) = (Ho, —0) F (H1, —1) F (Ha, —2) - ...

Invariant in i-th. step:

(i)~ = (H;U«<;)* and
(ii) —; C >

Goal: H;= 0 for an i and —; convergent.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction Systems Term Rewriting Systems

0000000000000 00e00000000000000 0000000000000 00000000000000000000

Equivalence relations and reduction relations
.S S

Representation of equivalence relations by convergent
reduction relations

Allowed operations in i-th. step:

(1) Orient:: u —jy1 v, ifu>vand utH; v
(2) New equivalences:: uHjp1 v, if u j—w —; v
(3) Simplify:: utH; v to uHig w, if v —; w

Goal: Limit system

= = =0 = (J{—ilieN}with He =0

Hence:
- — 5 C >, i.e. noetherian
- (L) = ~

- — o convergent !

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 275

Reduction Systems

0000000000000 00080000000000000
Equivalence relations and reduction relations

Term Rewriting Systems

Grafical representation of an equivalence relation

ANVAN

] N
] ‘
/

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

276

Reduction Systems Term Rewriting Systems
0000000000000 0000e000000000000 0000000000000 00000000000000000000
Equivalence relations and reduction relations

Transformation of an equivalence relation

oo
oo
o~ ---0<---0

o~ -0

AN

(a) (b) (©

[=] 5) Qv
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction Systems

000000000000 000000e00000000000 —;eérgg;vgiotiggozy;t;gsooOOOOOOOOOOOOOOOOOO)
Equivalence relations and reduction relations
.S S
Inference system for the transformation of an equivalence
relation

Definition 8.17. Let > be a noetherian PO on U. The inference system
P on objects (H,—) contains the following rules:
(1) Orient

HUW{uH v}, —)

(H,— U{u— v})

ifu>v
(2) Introduce new consequence

(H,—)

(HUW{uH v}, —)
(3) Simplify

ifu—o—v

(HWuH v}, —)

HUW{uHw}, —)

ifv—w
o = = = = 9Hal
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction Systems
000000000000 0000000eO000000000
Equivalence relations and reduction relations

Inference system (Cont.)

Term Rewriting Systems
0000000000000 00000000000000000000

(4) Eliminate identities
HWuHu},—)
(H, =)

(H,—) Fp (H, ") if
(H, —) can be transformed in one step with a rule P into (H', —').

% transformation relation in finite number of steps with P.

A sequence ((H;, —))ien is called P-derivation, if

(Hi,—i) Fp (Hiz1, —iy1) for every i € N

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction Systems Term Rewriting Systems
000000000000 00000000e000000000 0000000000000 00000000000000000000

Transformation with the inference system

Transformation with the inference system

° ° ° °
/ \ FooA / \ / \
° ° P ° ° ° ° °

| N N
oo ° ° ° ° ° °
IR S R A
° ° ° ° ° ° ° °
y / \ /
° ° ° °

(a) (b) (c) (d)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 280

Reduction Systems Term Rewriting Systems

000000000000 000000000e00000000 0000000000000 00000000000000000000

Transformation with the inference system
.S S

Properties of the inference system

Lemma 8.18. Let (H,—) Fp (H', =)
(a) If— C >, then—' C >
(b) (HUe) = (Hu)

Problem:
When does P deliver a convergent reduction relation — ?
How to measure progress of the transformation?

Idea: Define an ordering >p on equivalence-proofs, and prove that the
inference system P decreases proofs with respect to >p!

In the proof ordering — o «~— proofs should be minimal.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 281

Reduction Systems Term Rewriting Systems

000000000000 0000000000e0000000 0000000000000 00000000000000000000

Transformation with the inference system
.S S

Equivalence Proofs

Definition 8.19. Let (H,—) be given and > a noetherian PO on U.
Furthermore let (HU <)* = ~.

A proof for u ~ v is a sequence ug *1 Uy *p - - - %, Uy With x; € {H, —, —},
ui € U, up=u, u, = v and for every i u; *;11 Ujy1 holds.

P(u) = u is proof for u ~ u.

A proof of the form u = z & v is called \/-proof.

-

Proofs for a ~ e:
Pi(a,e) = aHb—cHd —e Py(a,e) = aHb—c«—e

a
® —

C0e~—0 o
0e-—O0 O

[m] = =

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 282

Reduction Systems Term Rewriting Systems
000000000000 00000000000e000000 0000000000000 00000000000000000000
Transformation with the inference system

Proof orderings
Two proofs in (H, —) are called equivalent, if they prove the equivalence
of the same pair (u, v). Hence e.g. P1(a,e) and P,(a, e) are equivalent.
Notice: If Py(u,v), P2(v,w) and Ps(w, z) are proofs, then

P(u,z) = Py(u,v)Pa(v,w)Ps(w, z) is also a proof.

Definition 8.20. A proof ordering >p is a PO on the set of proofs that
is monotonic, i.e.. P >g Q for each subproof, and if P >g Q then
P1PP2 >B P]_QP2.

Lemma 8.21. Let > be noetherian PO on U and (H, —), then there
exist noetherian proof orderings on the set of equivalence proofs.

Proof: Using multiset orderings.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 283

Reduction Systems
000000000000 000000000000e00000
Transformation with the inference system

Term Rewriting Systems
0000000000000 00000000000000000000

Multisets and the multiset ordering

Instruments: Multiset ordering

Objects: U, Mult(U) Multisets over U

A€ Mult(U) iff A: U — N with {u| A(u) > 0} finite.
Operations: U, N, —

(AUB)(u) :== A(u) + B(u)
(AN B)(u) := min{A(u), B(u)}
(A= B)(u) := max{0,A(u) — B(u)}

Explicit notation:
U={a,b,c} eg. A={{a,a8,a,b,c,c}},B={{c,c,c}}

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction Systems Term Rewriting Systems
000000000000 0000000000000e0000 0000000000000 00000000000000000000
Transformation with the inference system

Multiset ordering

Definition 8.22. Extension of (U, >) to (Mult(U),>>)

A > B iff there are X, Y € Mult(U) with) # X C A and
B=(A-X)UY,sothatVy € Y IxeX x>y

Properties:

(1) > PO ~ > PO

(2) {m]_} > {m2} iff my > mo
(3) > total ~» > total

4 A>B~AUC>BUC
(5YBCA ~ A>B

(6) > noetherian iff >> noetherian
Example: a < b < cthen B> A

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 285

Reduction Systems

Term Rewriting Systems .
000000000000 00000000000000e000 0000000000000 0O0000000000000000000
Construction of the proof ordering
O
Construction of the proof ordering
Let (H, —) be given and > a noetherian PO on U with —C>
Assign to each ,,atomic” proof a complexity
{u} i
cluxv) =

ifu—v
{v} if ue—v

Hu,v}} ifuHyv

Extend this complexity to ,,composed” proofs through

c(P(u)) =0

c(P(u,v)) =

Notice: ¢(P(

{{c(ui *iy1 uip1) | i=0
u,v

.n—1}}
)) € Mult(Mult(U))
Define ordering on proofs through

P>p Q iff c(P) > c(Q)
o = = = = Dol
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction Systems Term Rewriting Systems

000000000000 000000000000000e00 0000000000000 00000000000000000000

Construction of the proof ordering
.S S

Construction of the proof ordering

Fact : >p is notherian proof ordering!

Which proof steps are large and which small?
Consider:
(@ Pi=x—u—y Pb=xHy

c(P) = {{{u},{u}}} >> {{x,y}} = c(P2) sinceu>xand u >y
~ P1 >p P2

analogously for

(b) Pu=xHy, Po=x—y
(c)Pr=uHv, Phb=uHw v
(d)Pr=vHv, Ph=u—w—v

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 287

Reduction Systems Term Rewriting Systems
0000000000000V 000000O00000000e0 0000000000000 00000000000000000000

Construction of the proof ordering

Fair Deductions in P

Definition 8.23 (Fair deduction). Let (H;, —/)ien be a P-deduction. Let

He= UiZO i>i H,’ and —>°= Ui20 —>j.

The P-Deduction is called fair, in case

(1) H>*=0 and

(2) If x ©— u —>y, then there exists k € N with x Hy y.
Lemma 8.24. Let (H;, —)ien be a fair P-deduction

(a) For each proof P in (H;, —;) there is an equivalent proof P’ in
(Hi+1,—>,'+1) with P >p P

(b) Let i € N and P proof in (H;, —;) which is not a V-proof. Then there
exists a j > i and an equivalent proof P’ in (H;, —;) with P >p P’.

=] [y = = aq >
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 288

Reduction Systems Term Rewriting Systems
000000000000 00000000000000000e 0000000000000 00000000000000000000
Construction of the proof ordering

Main result

Theorem 8.25. Let (H;, —;)ien a fair P-Deduction and — = —.
Then

(a) If u ~ v, then there exists an i € N with u =; o ;<

(b) — is convergent and <& = ~ o
[[[[[[
NG T IN
[[[[[

o ,
\/ NA

»
[] []

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction Systems Term Rewriting Systems
000000000000 00000000O0000000000 9000000000000 00000000000000000000

Principles

Term Rewriting Systems

Goal: Operationalization of specifications and implementation of
functional programming languages

Given spec = (sig, E) when is Tspec @ computable algebra?
(Tspec)s = {[t]=, : t € Term(sig)s}
Tspec is a computable Algebra if there is a computable function

rep : Term(sig) — Term(sig), with rep(t) € [t]—, the “unique
representative” in its equivalence class.

Paradigm: Choose as representative the minimal object in the equivalence
class with respect to an ordering.

f(x1, s Xn) © ((Tspec)sy X - -(Tspec)sy) = (Tspec)s
f([rl]a) [rn]) = [rep(f(rep(rl)a) (rep(r,,))]

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 290

Reduction Systems Term Rewriting Systems
000000000000 00000000O0000000000 0@0000000000000000000000000000000
Principles

Term Rewriting Systems

Definition 9.1. Rules, rule sets, reduction relation

» Sets of variables in terms: For t € Terms(F, V) let V(t) be the set
of the variables in t (Recursive definition! always finite)
Notice: V(t) = 0 iff t is ground term.
> A rule is a pair
(I,r),l,r € Terms(F, V) (s € S) with Var(r) C Var(l)
Write: I — r
> A rule system R is a set of rules.
R defines a reduction relation —g over Term(F, V) by:
ty wgrtp iff 31— re R, pe O(t1),o substitution :
t1|p = O’(/) Nt = tl[a(r)]p
» Let (Term(F,V),—g) be the reduction system defined by R
(term rewriting system).
> A rule system R defines a congruence =z on Term(F, V) just by
considering the rules as equations.

o &5 = v)
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 291

Reduction Systems Term Rewriting Systems

000000000000 00000000O0000000000 0000000000000 00000000000000000000
Principles

Term Rewriting Systems

Goal: Transform E in R, so that =g=«"—x holds and —& has
“sufficiently”good termination and confluence properties.

For instance convergent or confluent. Often it is enough when these
properties hold “only” on the set of ground terms.

Notice:

» The condition V(r) C V/(/) in the rule | — r is necessary for the
termination.
If neither V(r) C V(I) nor V(I) C V(r) in an equation / = r of a
specification, we have used superfluous variables in some function’s
definition.

» —p is compatible with substitutions and term replacement. i.e.
From s —g t also o(s) —g o(t) and u[s], —r ut],

. *
» In particular: —R=+—R

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 292

Reduction Systems
000000000000 00000000O0000000000
Principles

Term Rewriting Systems
0000000000000 00000000000000000000

Matching substitution

Definition 9.2. Let I, t € Terms(F, V). A substitution o is called a
match (matching substitution) of | on t, if o(l) = t.
Consequence 9.3. Properties:

> V o substitution O() C O(c(l)).

» Jdo :o(l) = t iff for o defined through

Yu O :ll,=x€V~ueOt)ANa(x) =t],
o is a substitution N\ o(l) = t.

If there is such a substitution, then it is unique on V(). The
existence and if possible calculation are effective.

» [t is decidable whether t is reducible with rule | — r.

> If R is finite, then A(s) = {t : s —g t} is finite and computable.

[m] = =)
S

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 293

Reduction Systems Term Rewriting Systems

000000000000 00000000O0000000000 0000800000000 00000000000000000000

Principles
.S S

Examples
Example 9.4. Integer numbers

sig: 0 :— int

S,p:int — int 2 ﬁc(s((x)z :)X_
ifQ : int, int, int — int lfO((2).%y) = y

F :int,int — int

Interpretation: (N, ...,) spec- Algebra with functions
Oy=0,sy=An.n+1,

pn=An.if n=0 then 0 else n—1 fi

ifOy = Ai,j, k. if i=0 then jelse k fi
Fy=2Am,n. 0

Orient the equations from left to right ~~ rules R (variable condition is
fulfilled).

Is R terminating? Not with a syntactical ordering, since the left side is
contained in the right side.

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 294

Reduction Systems

Principles

Term Rewriting Systems .
000000000000 000000000000000000 0000000000000 00000000000000000000
O
Example (Cont.)
Reduction sequence:

F(S(O),O) -5 ifO(S(O),O, F(p(s(O)), F(S(O),O)))

] F(07 F(S(8)7 0))
———
—_———

o5 iF0(0,0. F(p(0), F(0, F(5(0),0)))) —3 0
~~

———
N———’
3
o & = = =) Qq
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction Systems Term Rewriting Systems
000000000000 00000000O0000000000 0000008000000 00000000000000000000

Principles

Equivalence

Definition 9.5. Let spec = (sig, E), spec’ = (sig, E') be specifications.
They are equivalent in case =g = =g/, i.e.. Topec = Tspec’-
A rule system R over sig is equivalent to E, in case =g = <«—Rg.

Notice: If R is finite, convergent, equivalent to E, then =g is decidable
s=gt iff s|=1t] ie.. identical NF

For functional programs and computations in Tspec ground convergence is
suficient, i.e.. convergence on ground terms.
Problems: Decide whether

» R noetherian (ground noetherian)
» R confluent (ground confluent)

» How can we transform E in an equivalent R with these properties?

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 296

Reduction Systems

Principles

Term Rewriting Systems .
000000000000 000000000000000000 0000000800000 00000000000000000000
O
Decidability questions
For finite ground term-rewriting-systems the problems are decidable.
For terminating systems deciding local confluence is sufficient, i.e.. out of
ty « t — tp prove t; | t, ~» confluent.
t t
ulv u<v
u
s W) A
joinable

~ Critical pairs

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

) Q>

297

Reduction Systems

Term Rewriting Systems .
000000000000 00000000O0000000000 0O0000000@000000000000000000000000
Critical pairs, unification
.S S
Critical pairs
Consider the group axioms:
! ! —
x'y) z=x"(y-2z) and x-x
——
h

11,

h

“Overlappings” (Superpositions)
(x-x71) .z

(x-y) (x-y)™
/b N\ /b Nk
1.2 x-(x1-z) 1 x-(y-(x-y))
» /1|1 is “unifiable” with kL with substitution
o {x —x,y —x"Lx—x}~o(hl1) =o(h)
» /1 “unifiable” with h with substitution

. / / —1 —
ou{x —xy =y, z—(x-y) T x = x-y}t~o(h) =o(h)
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

5

Reduction Systems Term Rewriting Systems

000000000000 00000000O0000000000 0000000008000 00000000000000000000

Critical pairs, unification
.S S

Subsumption, unification

Definition 9.6. Subsumption ordering on terms:

s = t iff Jo substitution : o(s) subterm of t

sxtiff (sXtAt=5s)

s=tiff (t=sA-(s=1))

> is noetherian partial ordering over Term(F, V) Proof!.

Notice:
O(o(t)) = O(t) UUweo(t):t)=xeviwv : v € O(o(x))}

Compatibility properties:

tly =t~ o(t)], =o(t)

tly=x €V~ oa(t)|uw =0(x)|y (veO(s(x)))
o(t)[o(t)), = o(t[t'],) for u € O(t)

Definition 9.7. s, t € Term(F, V) are unifiable iff there is a substitution
o with o(s) = o(t). o is called a unifier of s and t.

o = = = = o>

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 299

Reduction Systems
000000000000 00000000O0000000000
Critical pairs, unification

Term Rewriting Systems
0O000000000@0000000000000000000000

Unification, Most General Unifier

Definition 9.8. Let V' C V, 0,7 be substitutions.

> o <7 (V') iff 3p substitution : poo|y: = T|y
Quote: o is more general than T over V'

»ox=T1 (V)iff o7 (V)AT =20 (V)
> o <7 (V)iff o <7 (V)A=(T =0 (V)

» Notice: < is noetherian partial ordering on the substitutions.

Question: Let s, t be unifiable. Is there a most general unifier mgu(s, t)
over V = Var(s) U Var(t)?

i.e.. for any unifier o of s, t always mgu(s,t) < o (V) holds.

Is mgu(s, t) unique? (up to variable renaming).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction Systems Term Rewriting Systems

000000000000 00000000O0000000000 00000000000 e000000000000000000000

Critical pairs, unification
.S S

Unification’s problem and its solution

Definition 9.9. » A unification’s problem is given by a set
E={s Z ti:i=1,...,n} of equations.
> o is called a solution (or a unifier) in case that o(s;) = o(t;) for
i=1,..,n.
» If 7 = o (Var(E)) holds for each solution T of E, then mgu(E):= o
most general solution or most general unifier.

» Let Sol(E) be the set of the solutions of E.
E and E’ are equivalent, if Sol(E) = Sol(E’).

» E’ is in solved form, in case that
? L .
B =y Ltyix g (i), x ¢ Var(t) (1<i<j < m)}

» E' is a solved form for E, iff E' is in solved form and equivalent to E
with Var(E') C Var(E).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 301

Reduction Systems Term Rewriting Systems

000000000000 00000000O0000000000 0000000000008 00000000000000000000

Critical pairs, unification
.S S

Examples

Example 9.10. Consider

> s=f(x.g(xa) = flgly,y),z)=t

? 7 .
~x=gl(y,y) g(x,a) =z split
?
~x=g(y,y) g(8(y,y),a) = merge
woixoglyy) oz gE.y),) Yy
? ,
> f(x,a) =g(a,z) unsolvable (not unifiable).
> x=f (x,y) unsolvable, since f(x,y) not x free.
> x = f(a,y) ~ solution o :: x < f(a,y) is the most general solution.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 302

Reduction Systems

Term Rewriting Systems .
000000000000 00000000O0000000000 0000000000000 e0000000000000000000
Critical pairs, unification
.S S
Inference system for the unification
Definition 9.11. Calculus UNIFY. Let 0 = be the binding set.
(1) Erase

(EU{s =s},0)

(E,0)

4 (unsolvable)

(EUL{F(s1, s 5m) = F(t1, s tm)},)
(EU{si=t:i=1,...m}o)
(3) Merge (Solve)

(2) Split (Decompose) (EU{f(s1, ... 5m) = glty, .. tn)},0) jrg £g

(Eu{x<t}o)

(r(E),cUT)
“occur check”

if x ¢ Var(t),7 = {x < t}
?
(EU{x=1}0) jrye Var(t) Ax # t
4 (unsolvable)
=] = = = = Al
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction Systems Term Rewriting Systems
000000000000 00000000O0000000000 0000000000000 0@000000000000000000

Critical pairs, unification

Unification algorithms

Unification algorithms based on UNIFY start always with (Eg, Sp) :=
(E, () and return a sequence (Eg, So) Funiry --- Funiey (En, Sn)

They are successful in case they end with E, = (), unsuccessful in case
they end with S, = 4. S, defines a substitution o which represents
Sol(S,) and consequently also Sol(E).

Lemma 9.12. Correctness.
Each sequence (Eg, So) Funiey .. Funiry (En, Sn) terminates: either with
4 (unsolvable, not unifiable) or with (9, S) and S is a solved form for E.

Notice: Representations in solved form can be quite different
(Complexity!!)
? ?
s =1F(X1y .00y Xn) t=1(g(x0,%0); -, &(Xn—1, Xn—1))
? .
S={xi=g(xi—1,%x—1) : i=1,...,n} and
? .
S5 = {X,'+1 =ti:thp= g(X(J,X())7 tiy1 = g(t,', t,') i=0,..,n— 1}
are both in solved form. The size of t; grows exponentialy with i.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 304

Reduction Systems Term Rewriting Systems
000000000000 00000000O0000000000 0000000000000 00@00000000000000000

Critical pairs, unification

Example

Example 9.13. Execution:

?
f(x,g(a, b)) = f(g(y, b),x)

Ei Si rule
f(x,g(a, b)) = f(g(y,b),x) 0

?
Xig(}@b)ﬁ(:g(aab) 0 split
gly, b) = g(a, b) x = g(a, b) solve
y=ab=b x = g(a, b) split

? ? ?
b=b x=g(a,b),y=a solve

? ?
x =g(a,b),y =a delete
Solution: mgu = o = {x « g(a, b),y < a}

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 305

Reduction Systems Term Rewriting Systems
000000000000 00000000O0000000000 0000000000000 000e0000000000000000

Local confluence

Critical pairs - Local confluence

Definition 9.14. Let R be a rule system and | — r1,l, — r» € R with
V(h) N V (k) =0 (renaming of variables if necessary,
h~bkresp. h — r~h—r are allowed).

Let u € O(h) with h|, ¢ V s.t. 0 = mgu(h|y, k) exists.

o(h) is called then a overlap (superposition) of b — rp in lh — r and
(o(r),o(h[r].)) is the associated critical pair to the overlap
h — r,h — rn,u€ O(h), provided that o(r1) # o(h[r]u)-

Let CP(R) be the set of all the critical pairs that can be constructed with
rules of R.

Notice: The overlaps and consequently the set of critical pairs is unique
up to renaming of the variables.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 306

Reduction Systems
000000000000 00000000O0000000000
Local confluence

Examples

Term Rewriting Systems

Example 9.15. Consider

0000000000000 0000e000000000000000

> f(f(x,y),2) = f(x,f(y,2))

unifiable with x « f(x',y'),y « 2’

7

t = f(f(x',y"),f(Z,z))
> t=f(x,g(x,a)) = h(x)

F(f(x'y"),2) — F(X' Fy',2))
FF(F(X,y"),2'), 2)
N

no critical pairs. Consider variable overlaps:

f(f(x',f(y',2')),z) =t
h(x") — g(x',x"), thh = t|n = x
f(h(z),g(h(z),a)))
/
h(h(z))

h(g(z,2))

flg(z,2),8
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction Systems

Term Rewriting Systems .
000000000000 00000000O0000000000 0000000000000 00000e00000000000000
Local confluence
.S S
Properties
o(x) —g 7(x). Then for each term t holds:

> Let o, 7 be substitutions, x € V, o(y) = 7(y) for y # x and

o(t) >r 7(t)
> Let h — r,h — rberules, u€ O(h),h|,=x € V. Let
o(x)|w = o(h), i.e.. o(k) is introduced by o(x).
Then t1 |r to holds for

= b

from t; «—r t —Rg tp either t; [gr tr or ty < CP(R) t> hold.
=) F - = = HAl
O
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

ty:=0(n) —o(h) — o(h)[o(rn)]uw
Lemma 9.16. Critical-Pair Lemma of Knuth/Bendix
Let R be a rule system. Then the following holds:

Reduction Systems Term Rewriting Systems
000000000000 00000000O0000000000 0000000000000 000000e0000000000000

Local confluence

Proofs

s(x) t(x) s(t) t(t)
2
l->r
AN

of appearances of x in t

Hju=x st

u

s(r1) / A \ (1)

sy S A
A/u\

s(12) * s(r2)

* (right side x's) left side x’s
right side x’s;
Al = x \ " (1)

t(r1)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 309

Reduction Systems Term Rewriting Systems
000000000000 00000000O0000000000 0000000000000 0000000e000000000000
Local confluence

e
Confluence test

Theorem 9.17. Main result: Let R be a rule system.

> R is locally confluent iff all the pairs (t1,t2) € CP(R) are joinable.
» If R is terminating, then:
R confluent iff (t1,t;) € CP(R) ~~ t1 | t.

> Let R be linear (i.e.. for I,r € | — r € R variables appear at most
once). If CP(R) =0, then R is confluent.

Example 9.18. » Let R ={f(x,x) — a,f(x,s(x)) — b,a — s(a)}.
R is locally confluent,but not confluent:

a« f(a,a) — f(a,s(a)) — b

but not a | b. R is neither terminating nor left-linear.

o & = va e
.S S

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 310

Reduction Systems Term Rewriting Systems

000000000000 00000000O0000000000 0000000000000 00000000e00000000000
Local confluence

Example (Cont.)

» R={f(f(x)) — g(x)}
t1 = g(f(x)) < f(f(f(x) — fg(x)) = t
It doesn't hold t; |g t» ~ R not confluent.

Add rule t; — t, to R. Ry is equivalent to R, terminating and
confluent.

» R={x+0—x,x+s(y) = s(x+y)} linear without critical pairs
~ confluent.

> R={f(x) — a f(x) — g(f(x)),g(f(x)) — f(h(x)),g(f(x)) — b}
is locally confluent but not confluent.

u]
b}
I
i
tht
)

)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 311

Reduction Systems

Term Rewriting Systems
000000000000 00000000O0000000000

0000000000000 000000000e0000000000

Confluence without Termination

Confluence without Termination

Definition 9.19. ¢ — ¢ - Properties. Let = = Suld

> R is called ¢ — ¢ closed , in case that for each critical pair
(t1,t2) € CP(R) there exists a t with t; % t % t

» Riscalled ¢ — ¢ confluent iff—o— C So&
R R R R

Consequence 9.20. » — ¢ — e confluent ~ — strong-confluent.
» R e¢—ecclosed # R e¢— € confluent
R ={f(x,x) — a,f(x,g(x)) — b,c — g(c)}. CP(R) =0, i.e.
R e —¢€ closed but a«— f(c,c) — f(c,g(c)) — b, i.e.. R not
confluent 4.
» If R is linear and € — € closed , then R is strong-confluent, thus
confluent (prove that R is € — e confluent).
These conditions are unfortunately too restricting for programming.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction Systems

Term Rewriting Systems .
000000000000 00000000O0000000000 0000000000000 0000000000e000000000
Confluence without Termination
.S S

Example 9.21. R left linear € — € closed is not sufficient:

R = {f(av a) - g(ba b)a a— 3/7 f(alax) - f(XaX)a f(X)a/) - f(X7X)'
g(b,b) — f(a,a),b — b',g(b',x) — g(x,x),&(x,b") — g(x,x)}

It holds f(a',a") ‘T’ g(b',b') but not f(a',a') |r g(b',b).

R left linear ¢ — € closed :

g(b, b) f(a',a) f(a,a’)
1
N ! NS
f(a,a) f(a',a)
f(a’l, a')

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction Systems Term Rewriting Systems

000000000000 00000000O0000000000 0000000000000 00000000000e00000000

Confluence without Termination
.S S

Parallel reduction
Notice: Let —,= with > = = (Often: » C = C 5).
Then — is confluent iff = confluent.

Definition 9.22. Let R be a rule system.

» The parallel reduction, g, is defined through t —g t' iff
U C O(l’) ZVU,’,UJ'(LI,' 7é uj ~ U,'lu_,') dli — r; € R, 0; with tlui =
O','(/,') nt = t[O‘,'(I’,')]u,.(U,' c U) (t[ul — al(rl)]...t[u,, “— ol(rn)]).

» A critical pair of R : (o(r1),o(l[r]4) is parallel O-joinable in case
that o(h[r],) —r o(r).

> R is parallel O-closed in case that each critical pair of R is parallel
0-joinable.

Properties: +—g is stable and monotone. It holds »—>*R = —>*R and
consequently, if —g is confluent then —¢ too.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 314

Reduction Systems Term Rewriting Systems
000000000000 00000000O0000000000 0000000000000 0000O00000000e0000000

Confluence without Termination

Parallel reduction

Theorem 9.23. If R is left-linear and parallel O-closed, then +g is
strong-confluent, thus confluent, and consequently R is also confluent.

Consequence 9.24. » O’Donnel’s conditions: R left-linear,
CP(R) =0, R left-sequential
(i.e. Redexes are unambiguous when reading the terms from left to
right: f(g(x,a),y) — 0,g(b,c) — 1 has not this property.
By regrouping of the arguments, the property can frequently be
achieved, for instance f(g(a,x),y) — 0,g(b,c) — 1)
If R fulfills the O’Donnel condition, then R is confluent.

» Orthogonal systems:: R left-linear and CP(R) = 0, so R confluent.
(In the literature denominated also as regular systems).

» Variations: R is strongly-closed, in case that for each critical pair

. * <1 <1 *
(s, t) there are terms u,v withs — u+— t and s = v « t.
R linear and strongly-closed, so R strong-confluent.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 315

Reduction Systems Term Rewriting Systems
000000000000 00000000O0000000000 0000000000000 0000O000000000e000000

Confluence without Termination

Consequences

» Does confluence follow from CP(R) =0? No.
R={f(x,x) — a,g(x) — f(x,g(x)), b — g(b)}.
Consider g(b) — f(b,g(b)) — f(g(b),g(b)) — a
“Outermost” reduction.

g(b) — g(g(b)) = g(a) — f(a, g(a)) not joinable.
» Regular systems can be non terminating:
{f(x,b) — d,a — b,c — c}. Evidently CP = 0.
f(c,a) — f(c,b) — d
e
f(c,a) — f(c, b). Notice that f(c, a) has a normal form. ~~
Reduction strategies that are normalizing or that deliver
shortest reduction sequences.

> A context is a term with “holes” OJ, e.g. f(g(d,s(0)),0, h(O)) as
“tree pattern” (pattern) for rule f(g(x,s(0)),y, h(z)) — x. The
holes can be filled freely. Sequentiality is defined using this notion.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 316

Reduction Systems Term Rewriting Systems
000000000000 00000000O0000000000 0000000000000 0000O0000000000e00000

Confluence without Termination

Termination-Criteria

Theorem 9.25. R is terminating iff there is a noetherian partial ordering
>~ over the ground terms Term(F), that is monotone, so that o(l) > o(r)
holds for each rule | — r € R and ground substitution o.

Proof:~ Define s = t iff s 5 t (s,t € Term(F))

A Asume that —g not terminating, to — t1 — ...(V(t;) C V(to)).
Let o be a ground substitution with V(ty) C D(c), then

o(ty) = o(ty) > ...4.

Problem: infinite test.

Definition 9.26. A reduction ordering is partial ordering = over
Term(F, V) with
(i) = is noetherian (ii) - is stable and (iii) > is monotone.

Theorem 9.27. R is noetherian iff there exists a reduction ordering >
with | > r for every | - r € R

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 317

Reduction Systems Term Rewriting Systems
000000000000 00000000O0000000000 0000000000000 0000O00000000000e0000

Confluence without Termination

Termination’s criteria

Notice: There are no total reduction orderings for terms with variables..
X = y? ~ o(x) = o(y)

f(x,y) = f(y,x) ? commutativity cannot be oriented.

Examples for reduction orderings:

Knuth-Bendix ordering: Weight for each function symbol and precedence
over F.

Recursive path ordering (RPO): precedence over F is recursively
extended to paths (words) in the terms that are to be compared.
Lexicographic path ordering(LPO), polynomial interpretations, etc.

f(flg(x)) = f(h(x)) f(f(x)) = glh(g(x)) f(h(x)) = hg(x
KB — I(f)=3 Il(g)=2 — I(h) = 1 —
RPO — g>h > f — —

Confluence modulo equivalence relation (e.g. AC):
R:f(x,x)—g(x) G:{(a,b)} g(a)— f(a,a) ~ f(a,b) but not
g(a) L~ f(a b).

o & = = Da

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 318

Reduction Systems Term Rewriting Systems
000000000000 00000000O0000000000 0000000000000 0000O000000000000e000

Knuth-Bendix Completion

Knuth-Bendix Completion method

Input: E set of equations, = reduction ordering, R =).

Repeat while E not empty
(1) Remove t = s of E with t > 5, R:= RU {t — s} else abort
(2) Bring the right side of the rules to normal form with R
(3) Extend E with every normalized critical pair generated by t — s with
R
(4) Remove all the rules from R, whose left side is properly larger than t
w.r. to the subsumption ordering.
(5) Use R to normalize both sides of equations of E.
Remove identities.

Output: 1) Termination with R convergent, equivalent to E. 2) Abortion

3) not termination (it runs infinitely).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 319

Reduction Systems Term Rewriting Systems
000000000000 00000000O0000000000 0000000000000 0000O0000000000000e00

Knuth-Bendix Completion

Examples for Knuth-Bendix-Procedure

Example 9.28. » SRS:: ¥ ={a,b,c},E={a*=\b*> =

A, ab=c}
u<vifflul <|v| or|ul =

[v] and u <jex v With a <jex b <jex €
={a?=\b>=)Nab=c},Ry =

1:{b =\Nab=c},R = {a° —>)\},CP1:@

Ey={ab=c},Ry={a®> = \,b> = \},CP, =)

Ry = {a®> — A\, b> — \,ab — c}, NCP; = {(b, ac), (a, cb)}
Es ={b=ac,a=cb}

Ry = {a® — A\, b> — X\,ab — c,ac — b}, NCP, = (), E, = {a = cb}
={a® - \,b> = \;ab— c,ac — b,cb — a}, NCPs = (), E5 = ()

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction Systems Term Rewriting Systems
000000000000 00000000O0000000000 0000000000000 000000000000000000e0

Knuth-Bendix Completion
.S S

Examples for Knuth-Bendix-Completion

> E {gfg(x) = h(x), ff(x) = x, fh(x) = g(x)} >: KBO(3,2,1)
Ec=E
Rl ={ffg(x) = h(x)}, KPy = 0.E; = {ff(x) = x, fh(x) = g(x)}
Ro = {ffg(x) — h(x), ff(x) — x}, NKP> = {(g(x), h(x))},
Ez = {fh(x) = g(x),8(x) = h(x)}, Ro = {ff(x) — x}
= {ff(x) — x, fh(x) — g(x)}, NKP; = {(h(x), fg(x))}, E3 =
{g() = h(x), h(x) = fg(x)}
Ry = {ff(x) — x, fh(x) — h(x),g(x) — h(x)}, NKP; =0, Ey =
» E={fgf(x)=gfg(x)} >:LL:f>g
Ry=10,E = E

Ry = {fgf (x) — gfg(x)}, NKP, = {(gfggf (x), fgefg(x))}, E1 =
{afeef (x) = fegfg(x)}

Ry = {fgf(x) — gfg(x), fgefg(x) — gfggf(x)}, NKP, =
{(gfgefeafs(x), feggfeefg(x), ..} ...

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 321

Reduction Systems Term Rewriting Systems
000000000000 00000000O0000000000 0000000000000 0000000000000000000e
Knuth-Bendix Completion

Refined Inference system for Completion

Definition 9.29. Let > be a noetherian PO over Term(F, V). The
inference system Prrs is composed by the following rules:

(1) Orientate ((ll_r__:_ L/J?{Us{:s t_}; f})) in case that s >t

(2) Generate EC ({E’—R)t} R) in case that s «—g o —gt
L (Eu{s=t},R) .

(3) Simplify EQ EU{u=tLR) in case that s —g u

ER Ly e
(E,RU{s — t})
(EU{u=1t},R)

(4) Simplify RS

(5) Simplify LS in case that s —g u with | — r and

s> | (SubSumOrd.)
(6) Delete identities

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 322

Equational calculus and Computability
®00000000000O0OOOOOOOOO0OOO

Implementations

Equational implementations
Programming = Description of algorithms in a formal system

Definition 10.1. Let f : My X ... X M, ~~ M,1 be a (partial) function.
éet T;,1=1..n+ 1 be decidable sets of ground terms over %,
f n-ary function symbol, E set of equations.

A data interpretation J is a function 3 : T; — M;.

f implements f under the interpretation J in E iff
DITH)=M; (i=1l.n+1) .
2) fF(3(t1), ..., I(tn)) = I(tny1) iff F(t1, ..., tn) =€ tap1 (Vt; € T)

Tix.oxTy -~ T
Jl Jl Jl

f'
My x ...ox M, — My

Abbreviation: (f,E,J) implements f.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Equational calculus and Computabll\ty

0O@0000000000OC)OO00000C

Implementations

Equational implementations

Theorem 10.2. Let E be set of equations or rules (same notations).

For every i=1,...,n+ 1 assume

1) 3(Ty) = M .

2a) f(3(t1),...,3(tn)) = I(tny1) ~ (b1, .oy tn) =F tap1 (Vi € T))

f implements the total function f under 3 in E when one of the following
conditions holds:

a) Vi, t' € Tppr i t =gt/ ~TJ(t) =T3(t)
b) E confluent and V't € T,y1:t —gt' ~t' € T AJ(t) = 3(¢)
¢) E confluent and T,y contains only E-irreducible terms.

Application: Assume (1?, E,7J) implements the total function f. If E is
extended by Ep under retention of J, then 1 and 2a still hold. If one of
the criteria a, b, c are fullfiled for E U Eg, then ()A”, E U Ey,J) implements
also the function f. This holds specially when E U Eq is confluent and
Th+1 contains only E U Eg irreducible terms.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 324

Equational calculus and Computability

00@00000000OOOOOOOOOOOOOOOO

Implementations
.S S

Equational implementations

Theorem 10.3. Let (f, E,J) implement the (partial) function f. Then

a)Vt,t' € Tpp1 = 3(t) =T(t') ANT(t) € Image(f) ~ t =g
b) Let E be confluent and T,1 contains only normal forms of E. Then J
is injective on {t € Tpy1 : J(t) € Image(f)}.

Theorem 10.4. Criterion for the implementation of total functions.
Assume

DITH=M, (i=1,...,n+1)
)Vt ' € Toyr = 3(t) =3(t) ifft =g
3) vlSiSH teT; Eltn-i-l S Tn+1 I
I?(t]_, ey tn) =F tht1 N\ f(j(tl), j(tn)) = j(tn+1)
Then f implements the function f under J in E and f is total.

Notice: If Tp41 contains only normal forms and E is confluent, so 2) is
fulfilled, in case J is injective on Tpy1.

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 325

Equational calculus and Computability
O00@00000000OOOOOOOOOOO0OOO

Implementations

Equational implementations

Theorem 10.5. Let (?, E.J) implement f : My x ... x My — M,11. Let
Si={teTi=3nneTi:t#t,3(t) =T(to) t—r to} be recursive
sets.

Then f implements also f with term sets T; = T;\S; under 3|7/ in E.

So we can delete terms of T; that are reducible to other terms of T; with
the same J-value. Consequently the restriction to E-normal forms is
allowed.

Consequence 10.6. » Implementations can be composed.

» If we extend E by E- consequences then the implementation
property is preserved.
This is important for the KB-Completion since only E-consequences
are added.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 326

Equational calculus and Computability
000080000000 O0OOOOOOOOO00OO

Implementations

Examples: Propositional logic, natural numbers

Example 10.7. Convention: Equations define the signature. Occasionally
variadic functions and overloading. Single sorted.

Boolean algebra: Let M = {true, false} with A,V,—, D,

Constants tt, ff. Term set Bool := {tt, ff}, J(tt) = true, J(ff) = false.
Strategy: Avoid rules with tt or ff as left side. According to theorem 10.2
¢) we can add equations with these restrictions without influencing the
implementation property, as long as confluence is achieved.

Consider the following rules:

(1) cond(tt,x,y) — x (2) cond(ff,x,y) — y. (help function).
(3) x vel y — cond(x, tt,y)
E ={(1),(2),(3)} is confluent. Hence: tt vel y =g cond(tt,tt,y) = tt
holds, i.e.

(x1) tt vel y=tt and (x3) x vel tt = cond(x, tt, tt)

x vel tt = tt cannot be deduced out of E.
However vel implements the function V/ with E.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 327

Equational calculus and Computability

000008000000 00OOOOOOO0O000O

Implementations
.S S

Examples: Propositional logic

According to theorem 10.4, we must prove the conditions (1), (2), (3):
Vt,t' € Bool 3t € Bool :: J(t)VI(t') =T(t) ANt vel t' =gt

For t = tt (%1) and t = ff (2) since ff vel t' —g cond(ff,tt,t') —g t’
Thus x vel tt #g tt but tt vel tt =g tt, ff vel tt =g tt.

MC Carthy's rules for cond:
(1) cond(tt,x,y) = x (2) cond(ff,x,y) =y (*) cond(x, tt, tt)= tt

Notice Not identical with cond in Lisp. Difference: Evaluation strategy.
Consider
(**) cond(x, cond(x,y,z),u) — cond(x,y, u)
~ E"={(1),(2),(3), (*), (**)} is terminating and confluent.
Conventions: Sets of equations contain always (1), (2), (3) and
x et y — cond(x,y, ff) .
Notation: cond(x,y,z) :: [x — y,z] or
[X = Y1, X2 = Y2, ..., Xn — Yn, Z] for [x — [...]..., 2]

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 328

Equational calculus and Computability
O00000@0000000OOOOOOOOO00OO

Implementations

O
Examples: Semantical arguments

Properties of the implementing functions:
(vel, E,J) implements V of BOOL.

Statement: vel is associative on Bool.

Prove: Vty, tr, t3 € Bool : t; vel (t2 vel t3) =F (fl vel f.'2) vel t3
There exist t, t/, T, T’ € Bool with

J(t2) VI(tz) = J(t) and T(t1) V I(t2) = T(t') as well as

J(ty) VI(t)=3(T) and 3(t') vV I(t3) =I(T)

Because of the semantical valid associativity of V
J(T)=73(t1) VI(t2) VI(tz) = T(T’) holds.

Since vel implements V it follows:
t; vel (tz vel l’3) =ctyvelt=pg T =g T' =g t' vel t3 =F (tl vel tg) vel t3

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 329

Equational calculus and Computability
0000000000000 0O00OOOO0O000O

Implementations

Examples: Natural numbers

Function symbols: 0, § Ground terms: {3"(0) (n

J Interpretation J(0) = 0,7(5) = Ax.x + 1, i.e. 3(3"(0)) = n (n > 0).
Abbreviation: n4 1 := §(A) (n > 0)

Number terms. NAT = {f: n > 0} normal forms (Theorem 10.2 ¢
holds).

Important help functions over NAT:

Let E = {is_null(0) — tt,is_null(3(x)) — fF}.
is_null implements the predicate Is_Null : N — {true, false} Zero-test.
Extend E with (non terminating rules)

g(x) — lis_null(x) — 0,g(x)], f(x) — lis_null(x) — &(x),0]
Statement:It holds under the standard interpretation J

f implements the null function f(x) =0 (x € N) and

& implements the function g(0) = 0 else undefined.

Because of £(0) — [is_null(0) — &(0),0] = &(0) — [...] =0 and
F(5(x)) — lis_null(5(x)) — &(5(x)),0] = 0 (follows from theorem 10.4).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 330

Equational calculus and Computability
0O0000000@O0O00OO0OOOO0O0O0O
Implementations

Examples: Natural numbers
Extension of E to E’ with rule:
f(x,y) = lis_null(x) — y,0] (f overloaded).
F implements the function F : N x N — N

y x=0 £(0,y
FOo) =10 x40 Eg

Nevertheless it holds:

F(x,8(x)) =g lis_null(x) — &(x),0]) =g f(x)

But f(n) = F(n,g(n)) for n > 0 is not true.

If one wants to implement all the computable functions, then the recursion
equations of Kleene cannot be directly used, since the composition
of partial functions would be needed for it.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 331

Equational calculus and Computability

000000000 @00000000000000000

Primitive Recursive Functions
.S S

Representation of primitive recursive functions

The class P contains the functions
s=Axx+ 1,7 = Axq, ..., Xp.X;, as well as ¢ = Ax.0 on N and
is closed w.r. to composition and primitive recursion, i.e.

f(Xla "'7Xn) = g(hl(Xla "'7Xn)> ey hr(Xla "'aXn)) resp.

F(X1y ey Xy 0) = g(X1, ooy Xn)
F(X1y ey Xny Y + 1) = h(x1, oo Xn, ¥, F (X1, o0y X, V)

Statement: f € P is implementable by (¥, E;,J)
Idea: Show for suitable E; :
?(kAl, s kA,,) —TE? f(kl,f.., kn) with E; confluent and terminating.

Assumption: FUNKT (signature) contains for every n € N a countable
number of function symbols of arity n.

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 332

Equational calculus and Computability
000000000080 000000000000000

Primitive Recursive Functions
.S S

Implementation of primitive recursive functions

Theorem 10.8. For each finite set AC FUNKT \ {0,8} the
gxception set, and each function f : N — N, f € B there exist
f € FUNKT and E; finite, confluent and terminating such that

(f‘ , E;,J) implements f and none of the equations in E; contains function
symbols from A.
Proof: Induction over construction of §: 0,5 ¢ A. Set A’ = AU {0, §}

» & implements s with E; = ()

> A€ FUNKT"\ A" implem. 7! with Eir = {AM(X1y ooy Xn) — Xi }

» ¢ € FUNKT!\ A implements ¢ with E: = {&(x) — 0}

» Composition: [g, Ez, Ao), [h, Ej,, Ail with

Ai=Ai_1U{f € FUNKT : f € E,_}\{0,8}. Let f € FUNKT \ A,

and E; = E; UL E;, U{F(xa, oy %) = &(A1(o), s Ar(0)}
> Primitive recursion: Analogously with the defining equations.

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 333

Equational calculus and Computability

00000000000 e000000000000000

Primitive Recursive Functions
.S S

Implementation of primitive recursive functions

All the rules are left-linear without overlappings ~~ confluence.
Termination criteria: Let J: FUNKT — (N* — N), i.e

J(F): Nst(f) — N, strictly monotonous in all the arguments. If £ is a rule
system, | — r € E,b: VAR — N (assignment), if J[b](/) > J[b](r) holds,
then E terminates.

Idea: Use the Ackermann function as bound:

A0,y) =y+1AKx+1,0)=A(x,1),Ax+1,y+1) = A(x,A(x+1,y))
A is strictly monotonic,

Al x) =x+2,A(x,y +1) < A(x+1,y),A(2,x) = 2x + 3

For each n € N there is a 3, with ST AKX, x) < A(Bn(X1, -os Xn)s X)

Define J through J(7)(ky, ..., kn) = A(p;, > ki) with suitable p; € N.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 334

Equational calculus and Computability
000000000000 e00000000000000

Primitive Recursive Functions

Implementation of primitive recursive functions

» Composition: f(xi,...,xn) = g(M(...), ..., he(..)).
Set ¢* = ﬁ,(p;u, ey p;,r) and p; := pz + c* + 2. Check that
FIB)(F(X15 ooy X)) > JBJ(E(AL(X1, ooy Xn)s ooy e (X5 oy Xn)))
» Primitive recursion:
Set m= max(pg,p) and p; := m+ 3. Check that
3[b](f(x1,.. Xn,)) > J[b]((x1, ..., Xn)) and
I[b(F(x1, - xn, 5(y))) > J[bI(&(-..))-
Apply A(m+ 3,k +3) > A(p;,, k + A(p;, k))
» By induction show that
f(kla"'akn) f(kla 7k)
» From the theorem 10.4 the statement follows.

[m] = =

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 335

Equational calculus and Computability
000000000000 0e0000000000000

Recursive and partially recursive functions

Representation of recursive functions

Minimization:: p-Operator py[g(x1, ..., Xn, y) = 0] = z iff
i) g(x1,..., Xn, [) defined # 0 for 0 < i<z ii) g(x1,...,Xn,2) =0

Regular minimization: p is applied to total functions for which
VX1, ooy Xp 3y : g(X1, ey Xnyy) =0

fR is closed w.r. to composition, primitive recursion and regular
minimization.

Show that: regular minimization is implementable Wlth exception set A.
Assume g, Eg implement g where g(kl, k,,+1) —>E g(kl, vy Knt1)

Let f,f*, * be new and E; := EgU{f(xl,..., Xn) — F*(X1, .., Xn, 0),
o (X150 Xn y) — FH(g(x, ey Xy Y)5 XLy ooy Xy ¥),

f+(O7X17 "'7Xn7y> - Y, f+(() X1, "'7Xn7y) - f*(Xl’ ""Xn’g(y))}

Claim: (F, E;) implements the minimization of g.

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 336

Equational calculus and Computability
000000000000 00e000000000000

Recursive and partially recursive functions

Implementation of recursive functions
Assumption: For each ki, ..., k, € N there is a smallest kK € N with
glky,....;kn, k) =0

Claim: For every i € N,i < k " (ki.....k,.(k —i)) —£ k holds
Proof: induction over i:

b= 0 (s oK) — FH (@t oK), Kty o e) =,
f ((kla"'aknak)ai(h 7/}n)/\)—>i(
> :>o - f (iq,. ,/?n,k—(+1)) —
i+1

. A
(() k1, . kn, k — (/ + 1)) = (ki .o kny (k= (i +1))) =

Fx (kl, ek k= i) _>Eg k
For appropiate x and Induction hypothesis.

» E; is confluent and according to Theorem 10.4, (?, E;) implements
the total function f.

> E; is not terminating.g(k, m) = 0y m ~~ F*(k, k + 1) leads to
NT-chain. Termination is achievable!.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 337

Equational calculus and Computability
000000000000 000@00000000000

Recursive and partially recursive functions

O
Representation of partial recursive functions

Problem: Recursion equations (Kleene's normal form) cannot be directly
used. Arguments must have “number” as value. (See example). Some
arguments can be saved:

Example 10.9.
f(va) = g(hl(xa)/)a h2(Xa.y)7 h3(X7.y))' Let 8, h17 h2a h3 be
implementable by sets of equations as partial functions.

Claim: f is implementable. Let f, f, b be new and set:

f1(X17X27X370 0, 0) (X1,X2,X3) f2(0) 6 2(5(x)) = f2(x)
(f, Eg, Eiu’ Eiu, Ei13 U REST) implements f.
Theorem 10.4 cannot be applied!!.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 338

Equational calculus and Computability
000000000000 0000e0000000000

Recursive and partially recursive functions

(f, Eg, Ej ., Ej,, Ej, U REST) implements f.
Apply definition 10.1:
~ For number-terms let f(J(t1),I(t2)) = I(t). There are number-terms
T; (i=1,2,3) with
g(3(T1),3(T2),3(T3)) = 3(t) and h;(3(t1),3(t2))
Assumption: g(Ty, Tz, T3) =g, t and hi(t1, t2) =,
T; are number-terms:: ?2(7',) =E, 0 ie. ?g(ivi(tl, t)) =E, 0 (i=1,2,3).
Hence . o .
f(t1, t2) =E, fi_(T]_, T>, T3,0,0,0) ~ f(t1, 1) =E t(ZE? &(T1, T2, T3))
A For number-terms tq, to, t let f‘(th t) =E, t, 50
?1(?71(1’1, tz), ilg(tl, tz), i13(f1, tz), ?2(/31(1'1, tg),) =E, t. If for an
i=1,2,3 f(hi(t, t2)) would not be E; equal to 0, then the E;
equivalence class contains only fi terms. So there are number-terms
Ty, Ty, T3 with B;(tl, t>) =g=T, (i=1,2,3) (Otherwise only %, terms
equivalent to % (h;(t1, &)). From Assumption:
~ hi(3(T1),3(T2)) =3(T3), g(3(T1),3(T2),3(T3)) = 3(t)
O

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 339

Equational calculus and Computability
000000000000 O00OO0Oe000000000

Partial recursive functions and register machines

R, and normalized register machines

Definition 10.10. Program terms for RM: P, (n€N) Let0<i<n
Function symbols: a;,s; constants ,o binary , W' unary

Intended interpretation:

a;j :: Increase in one the value of the contents on register i.

si :: Decrease in one the value of the contents on register i.(—1)

o(My, My) :: Concatenation My M, (First My, then M)

Wi(M) :: While contents of register i not 0, execute M Abbr.: (M),

Note: P, C P, forn < m
Semantics through partial functions: M, : P, x N — N”
> Me(aj, (x1,.y Xn)) = (coxiz1, X + 1, Xig1..0) (5730 x—1)
> Mo(MyMy, (x1, ..., Xn)) = Me(Ma, Me(My, (x1, ..., X))
(X1y eeey Xn) x; =0

> Mo(M)i, (x1, ...y Xn)) = {Me((/\/l)i, Me(M, (x1,...,xn))) otherwise

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 340

Equational calculus and Computability
000000000000 O00OO0O0eO00000000

Partial recursive functions and register machines

Implementation of normalized register machines
Lemma 10.11. M, can be implemented by a system of equations.

Proof: Let tup, be n-ary function symbol. For t; € N (0 < i < n) let
(t1,..., t,) be the interpretation for tup,(t1, ..., t,). Program terms are
interpreted by themselves (since they are terms). For m > n ::

P, tupm(ti,...,tm) syntactical level

Jl Jl

P, (t1, .oy tm) Interpretation
Let eval be a binary function symbol for the implementation of M, and
i < n. Define E, := {
eval(aj, tup,,(xl,...,x,,)) — tupp(xy, ..., Xi—1, $(X;), x,+1,...,x,,)
eval(s;, tupn(...; Xi—1,0,Xi41...)) — tups(..., xi— 1,0 Xig1---)
eval(s;, tupp(..., Xi—1,5(x), Xix1--)) = tupp(eey Xi—1, X, Xig1.--)
eval(xix, t) — eval(xz, eval(xi,t)) .
eva/((),, tup,,(X,'_1,0,X,'+1...)) — tup,,(...,x,-_l,O,x,-+1...)
eval((x)i, tupn(...,xi—1,5(¥), Xit1...) —

eval((x);, eval(x, tupp(...,xi—1,5(¥), Xi+1.--))}

O

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 341

Equational calculus and Computability
000000000000 O00OOO00eO0000000

Partial recursive functions and register machines

(eval, E,,J) implements M,

Consider program terms that contain at most registers with 1 < < n,

» E, is confluent (left-linear, without critical pairs).

» Theorem 10.4 not applicable, since M, is not total.
Prove conditions of the Definition 10.1.

(1) 3(T;) = M; according to the definition.
(2) Me(p»<k17"'7kn>2 = <n11a"'amn> iff

eval(p, tupn(ki,...,kn)) =g, tup,(Ms, ..., M)
~ out of the def. of M, res. E,. induction on construction of p.
~ Structural induction on p
1. pP = a,-(s,-) Iil}j = I’/hJ(J 7é I),g(i(,) = ﬁ'1,' res. /;,' = ﬁ'l,‘ :6

(/A(,' = §(ﬁ7,)) for Si

2.Let p = p1p> and

eval(py, eval(py, tupy(ky, ..., kn))) SE, tup,(An, ..., i)
Because of the rules in E, it holds:

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 342

Equational calculus and Computability
000000000000 O00OOO000e000000

Partial recursive functions and register machines

(eval, E,,J) implements M,
There are iy, ..., i, € N with eval(p, tup,,(/Aq, ey IA<,,)) e tupn(it, ..., in)
hence
4 e} * A A
eval(pa, tupp(i, .oy in)) —E, tups(My, ..., My)
According to the induction hypothesis (2-times) the statement holds.
3. Let p = (p1);. Then:
eval((p1)i, tupn(ky, ..., kn)) —E, tupn(fn, ..., M,)
There exists a finite sequence (tj)1<j<; with
t1 = eval((py)i, tupn(ku, ..., kn)), t; = tiy1, t = tupy(n, ..., My)
There exists subsequence (Tj)1<j<m of form eval((p1)i, tupn(i1j, .-, Inj))
For Tm I',"m =0 hO|dS, i.e. Ill’m =my,..., I.,"m =0= mj, ..., in,m = Mmpy.
For j < m always i;; # 0 holds and
eval(p1, tupn(in js oesing) —€, tuPn(itjt1s s injs1)-
The induction hypothesis gives:
Me(pl; <I'17j7 ceay in,j>) = <i1,j+17 eeey in7j+1> fOI’j = 17 e, m.
But then Me((p1)i, (i1 jy oy inj)) = (M1, ...,my) (1 <j < m)

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 343

Equational calculus and Computability
000000000000 O00OOO0000e00000

Partial recursive functions and register machines

Implementation of R,

For f € 9‘{,’;’1 there are r € N, program term p with at most r-registers
(n+1 < r), so that for every ki, ..., ks, k € N holds:
f(ki,....kn) = k iff VYm >0

~

eval(p, tup,+m(k1,...,k ,0,0,...,0, 1s s Xm)) =E,pm

~ A ~ ~ A A ~

eval(p, tup,(kl,...,kn,ﬁ,ﬁ, .,0)) =g, tup,(ki, ..., kn, k,0, ..., 0)

Note: E, © Eyym via tup,(...) » tupyim(...,0, ..., 0).

Let 7, R be new function symbols, p program for f. Extend E, by
f(yl,- .+¥n) — R(eval(p, tup,(y1, ..., yn), 0, ..., 0)) and
R(tupr(yla'"»yr)) Ynt1 to Eext(f)-

Theorem 10.12. f € 9‘{,’;71 is implemented by (?7 Eext(£),J)-

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 344

Equational calculus and Computability
000000000000 O0OOO00000e0000

Partial recursive functions and register machines

Non computable functions

Let E be recursive, T; recursive. Then the predicate
P(t1, oo tny tagpr) iff F(t1, 0 tn) =E oy

is a r.a. predicate on Ty X ... X T, X Tp41

If the function # implements f, then P represents the graph of the
function f ~ f € R,.

Kleene's normal form theorem:

f(X], ...,X,,) = U(M[TH(P,Xl, ...,x,,,y) = O])

Let h be the totalynon recursive function, defined by:
u[Ti(x,x,y) =0] in case that Jy : T1(x,x,y) =0
X) =<KV
) 0 otherwise
h is uniquely defined through the following predicate:
(1) (Talx,x,y) =0AVz(z <y ~ Ti(x,x,2) #0)) ~ h(x) =y
(2) (Vz(z <y A Ti(x,x,2) #0)) ~ (h(x) =0V h(x) > y)
If h(x) is replaced by u, then these are prim. rec. predicates in x, y, u.
O

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 345

Equational calculus and Computability
000000000000 O00OOO000000e000

Partial recursive functions and register machines

O
Non computable functions
There are primitive recursive functions Py, P, in x, y, u, so that
(19 Py(x,y,h(x)) =0 and (2') Pa(x,y,h(x)) =0

represent (1) and (2).
Hence there are an equational system E and function symbols 151, P,,
that implement Py, P> under the standard interpretation.
(As prim. rec. functions in the Var. x,y, u)
Let h be fresh. Add to E the equations

Pi(x,y,h(x)) =0 and P(x,y, h(x)) = 0.
The equational system is consistent (there are models) and his
interpreted by the function h on the natural numbers.~~
It is possible to specify non recursive functions implicitly with a finite set
of equations, in case arbitrary models are accepted as interpretations.
Through non recursive sets of equations any function can be
implemented by a confluent, terminating ground system :
E ={h(t) =1 :t,t' €N, h(t) = t'} (Rule application is not effective).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 346

Equational calculus and Computability
0000000000000V 0000000000e00

Computable algebrae

Computable algebras

Definition 10.13. » A sig-Algebra 2 is recursive (effective,
computable), if the base sets are recursive and all operations are
recursive functions.

> A specification spec = (sig, E) is recursive, if Tspec is recursive.

Example 10.14. Let sig = ({nat, even}, odd :— even, 0 :— nat,

s : nat — nat, red : nat — even).

As sig-Algebra 2 choose: Aeven = {2n: n € N} U {1}, Apar = N with

odd as 1, red as Ax.if x even then x else 1, S successor

Claim: There is no finite (init-Algebra) specification for 2

» No equations of the sort nat.

> odd, red(s"(0)), red(s"(x)) (n > 0) terms of sort even. No equations
of the form red(s"(x)) = red(s™(x) (n# m) are possible.
> Infinite number of ground equations are needed.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 347

Equational calculus and Computability

000000000000 0000000000000e0

Computable algebrae
.S S

Computable algebras

Solution: Enrichment of the signature with:
even: nat — nat and cond : nat even even — even with
interpretation

Ax. if x even then 0 else 1, Ax,y,z. if x =0 then y else z

Equations:

e\jen(O) =0, even(s(0)) =s(0), even(s(s(x)) = even(x)
cond(0,y,z) =y, cond(s(x),y,z)=z

red(x) = cond(even(x), red(x), odd)

Alternative: Conditional equations:
red(s(0)) = odd, red(s(s(x)) = odd if red(x) = odd

Conditional equational systems (term replacement systems) are more
“expressive” as pure equational systems. They also define reduction
relations. Confluence and termination criteria can be derived. Negated
equations in the conditions lead to problems with the initial semantics

(non Horn-clause specifications).
B O S . S O FE
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 348

Equational calculus and Computability

0000000000000V 000000000000e

Computable algebrae
.S S

Computable algebras: Results

Theorem 10.15. Let A be a recursive term generated sig- Algebra.
Then there is a finite enrichment sig’ of sig and a finite specification
spec’ = (sig’, E) with Tepecr|sig = AU.

Theorem 10.16. Let 2 be a term generated sig- Algebra. Then there
are equivalent:

» A is recursive.

> There is a finite enrichment (without new sorts) sig’ of sig and a
finite convergent rule system R, so that
A= Topecr|sig for spec’ = (sig’, R)

See Bergstra, Tucker: Characterization of Computable Data Types
(Math. Center Amsterdam 79).

Attention: Does not hold for signatures with only unary function symbols.

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 349

Reduction strategies
®00000000000C

Generalities

Reduction strategies for replacement systems

Main implementation problems for functional programming languages.
Which reduction strategies guarantee the calculation of normal forms, in
case these exist. Let R be TES, t € term(X).

Assuming that there is t irreducible with t —g t.

» Which choice of the redexes guarantees a “computation” of t?

» Which choice of the redexes delivers the “shortest” derivation
sequence?

» Let R be terminating. Is there a reduction strategy that delivers
always the shortest derivation sequence? How much does it cost?

For SKI—calculus and A—calculus the Left-Most-Outermost strategy
(normal strategy) is normalizing, i.e. calculates a normal form of a term if

it exists. It doesn’t deliver the shortest derivation sequences. Though it
k - . . <ok

holds: If t — t is a shortest derivation sequence, then t —[pom t. By

using structure-sharing-methods, the bounds for LMOM can be lowered.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

350

Reduction strategies .
0@0000000000OOOO0OOOOOOOOOOOOO0O0O00OOO0O

Generalities

Functional computability models

Partial recursive functions (Basic functions + Operators)

>
» Term rewriting systems (Algebraic Specification)
» A-Calculus and Combinator Calculus

>

Graph replacement Systems (Implementation + efficiency)

Central Notion: Application:

Expressions represent (denote) functions.
Application of functions on functions ~~ Self application problem

See e.g. Barendregt: Functional Programming and A-Calculus Handbook
of Theoretical Computer Science.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 351

Reduction strategies .

00@000000000OOOO0OOOOOOOOOOOOO0OO0OOO0O

Generalities
.S S

M-Calculus und Combinator Calculus: Informal

Basic operations:
» Application:: For “expressions” F,A:: F.A or (FA)
F as program term is “applied” on A as argument term.

» Abstraction:: For an “expression” M, Variable x :: Ax.M
Denotes a function which maps x into M, M can “depend”on x .

» Example: (Ax.2 % x + 1).3 should give as result 2« 3+ 1, hence 7.
» (-Equation:: (Ax.M[x])N = M[x := N)|
“Free” occurrences of x in M are “replaced” by N. 3-Conversion
(yx(Ax.x))[x := N] = (yN(Ax.x))

Notice: Free occurrences of variables in N remain free.
Renaming of (bound) variables if necessary

(Ax.y)[y := xx] = Az.xx z "new”

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 352

Reduction strategies .

000@000000000OOO0OOOOOOOOOOOOO0OO00OOO0O

Generalities
.S S

M-Calculus und Combinator Calculus: Informal

» «a-Equation:: Ax.M = Ay.M|x := y] with y “new”

Ax.x = Ay.y. Same effect as "Functions” a-Conversion
> Set of A- terms in C and V::

A(C, V) = CIV|(AN)|(AV.A)
» Set of free variables of M:: FV/ (M)
» M is closed (Combinator) if FV(M) =0
» Standard Combinators:: I = Ax.x K = Axy.x = Ax.(A\y.x)
B=XMxyzx(yz) K.=XMxy.y S=xyz.xz(yz)

» Following equalities hold (o — S-equality):
IM=M KMN=M K.MN=N SMNL= ML(NL)
BLMN = L(M(N)) left parenthesis !

» Fixpoint Theorem:: VF3IX FX = X with e.g.
X = WW and W = Ax.F(xx)

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 353

Reduction strategies .
000080000000 0O0OO0OOOOOOOOOOOOO0O0O00OOO0O

Generalities

M-Calculus und Combinator Calculus: Informal

Representation of functions, numbers ¢, = Afx.f"(x)
F combinator represents f iff Fzp1...zok = Zf(n1,... k)

» f is partial recursive iff f is represented by a combinator.
» Theorem of Scott: Let A C A, A non trivial and closed under =,

vV V. vV vV VY

then A not recursively decidable.

B-Reduction:: (AM.M)N —5 M[x := N]

NF = Set of terms which have a normal form is not recursive.
(Ax.xx)y is not in normal form, yy is in normal form.
(Ax.xx)(Ax.xx) has no normal form.

Church Rosser Theorem:: —g ist confluent

Theorem of Curry If M has a normal form then M —7 N, i.e.
Leftmost Reduction is normalizing.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 354

Reduction strategies .

000008000000 00OO0OOOOOOOOOOOOO00O0O00OOO0O

Generalities
.S S

Reduction strategies for reduction systems

Definition 11.1. Let R be a TRS.

> A one-step reduction strategy & for R is a mapping
S : term(R, V) — term(R, V) with t = &(t) in case that t is in
normal form and t —g &(t) otherwise.

» & is a multiple-step-reduction strategy for R if t = &(t) in case
that t is in normal form and t 5 &(t) otherwise.

> A reduction strategy G is called normalizing for R, if for each term t
with a R- normal form, the sequence (&"(t)),>0 contains a normal
form. (Contains in particular a finite number of terms).

> A reduction strategy & is called cofinal for R, if for each t and
r € A*(t) there is a n € N with r Sz G"(t).

Cofinal reduction strategies are optimal in the following sense: they
deliver maximal information gain.
Assuming that normal forms contain always maximal information.

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 355

Reduction strategies .
0O00000@00000OOOO0OOOOOOOOOOOOO0O0O00OOO0O

Generalities

Known reduction strategies

Definition 11.2. Reduction strategies:

» Leftmost-Innermost (Call-by-Value). One-step-RS, the redex that
appears most left in the term and that contains no proper redex is
reduced.

> Paralell-Innermost. Multiple-step-RS. PI(t) = t, at which t — t
(All the (disjoint) innermost redexes are reduced).

» Leftmost-Outermost (Call-by-Name). One-step-RS.

> Parallel-Outermost. Multiple-step-RS. PO(t) = t, at which t — t
(All the (disjoint) outermost redexes are reduced).

> Fair-LMOM. A left-most outermost redex in a red-sequence is
eventually reduced. (A LMOR in such a strategy doesn't remain
unreduced for ever). (Lazy strategy).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 356

Reduction strategies .
0000000 @000000OO0OOOOOOOOOOOOO0OO0OOO0O

Generalities

O
Known reduction strategies

» Full-substitution-rule. (Only for orthogonal systems).
Multiple-step-RS. GK(t) :: t - GK(t) all the redexes in t are
reduced, in case they're not disjunct, then the residuals of the
redexes are also reduced.

» Call-By-Need. One-step-RS. It reduces always a necessary redex. A
redex in t is necessary, when it must be reduced in order to compute
the normal form. (Only for certain TES e.g. LMOM for SKI calculus)
Problem: How can one decide whether a redex is necessary or not?

» Variable-Delay-Strategy: One-step-RS. Reduce redex, that doesn't
appear as redex in the instance of a variable of another redex.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 357

Reduction strategies

Generalities

OOOOOOO0.000000000000000000000000.000000
O
Examples
Example 11.3. :

> and(true,x) — x, and(false,x) — false,
or(true,x) — true, or(false,x) — x

Orthogonal, strong left sequential (constants “before” the variables)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

358

Reduction strategies

OOOOOOOO0.00000000000000000000000000000

Generalities
.S S

Examples

» X ={0,s,p,if0, F}, R ={p(0) = 0, p(s(x)) — x,if0(0,x,y) —
x,if0(s(2), x,¥) = y, F(x,y) = if0(x, 0, F(p(x), F(x,y)))}
Left-linear, without overlaps. (orthogonal)

F(0,0) — if0(0,0, F(p(0), F(0,0))) My
L PIM
if0(0,0, F(0,if0(0,0, F(p(0), F(0,0)))))
No IM-strategy is for all orthogonal systems normalizing or cofinal.

» FSR (Full-Substitution-Rule): Choose all the redexes in the term and
reduce them from innermost to outermost (notice no redex is
destroyed). Cofinal for orthogonal systems.

» X ={ab,c,d;:ieN}

R:={a— b,dk(x) — dkt1(x), c(dk(b)) — b
confluent (left linear parallel 0-closed).

c(dy(a)) —1 c(di(a)) —1 not normalizing (POM).
c(do(a)) =11 c(do(b)) —o b

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 359

Reduction strategies
OOOOOOOOO0.0000000000000000000000000000

Generalities

Examples

» ¥ ={a,bj,c,d:ie€N}. Non confluent SRS:
R = {abyc — achy, abyd — ad,c — d,cb; — d, b; — bi11(i > 1)}
abgc —11 abgd — ad
aboc —0 aCbo —11 acb1 — adb1 — ...
» ¥ ={f,a,b,c,d} R={f(x,b) — d,a— b,c — c} Orthogonal.
LMOM must not be normalizing:
f(c,a) — f(c,a) — but f(c,a) — f(c,b) — d
> f(a,f(x,y)) — f(x, f(x,f(b,b))) left linear with overlaps.
f(a,f(a, f(b,b))) —our f(a, f(a,f(b,b))) —our ...
LINN
f(a, f(b,f(b,f(b,b)))) — f(b,f(b,f(b,b)))
’R_{f(()? _)h(Xad)ab_)C}
f

f

c)

f(g((av f(a’g)))v C) —VD h(f(av f(avg))’d) —VD
h(f(a,f(a,c)),d)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 360

Reduction strategies .

000000000000 00000000000OOOOOOOOO0OOO0O

Orthogonal systems
.S S

Strategies for orthogonal systems

Theorem 11.4. For orthogonal systems the following holds:
» Full-Substitution-Rule is a cofinal reduction strategy.
POM is a normalizing reduction strategy.
LMOM is normalizing for A-calculus and CL-calculus.
Every fair-outermost strategy is normalizing.
Main tools:
Elementary reduction diagrams,residuals and reduction diagrams

Sab(lc) — a(lc)(b(Ic)) Ka(lb) — be

>
>
>
>

1 ! !
ac(b(lc))
!
Sabc — ac(bc) a —p a
la — a la — a a — a
Lo Lo l lo
la — a a —yp a a

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 361

Reduction strategies
OOOOOOOOOOO0.00000000000000000000000000
Orthogonal systems

Composition of E-reduction diagrams

Reduction diagrams and projections:

th — t — — iy
5 = Lt | *
l l* i) i) l* R4:R2/R1
! 1+ 5 = | *

. . l*
! L *

- .
= N 1 %
t N N N 1 *
Rs=R /R, projections

Let Ry = t ¢+ and Ry :: t T+ be two reduction sequences from t to
t'. They are equivalent Ry =R, iff R,/Ro=R,/R =0.

[m] = =

i
tht
N
o
)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 362

Reduction strategies .
0000000000000 e0000000000OOOOOO0OOOOOO0O

Orthogonal systems

Strategies for orthogonal systems

Lemma 11.5. Let D be an elementary reduction diagram for orthogonal

systems, R; C M; (i = 0,2,3) redexes with Ry —. —. — Ry —. —. = R3
i.e. Ry is residual of Ry and Rs is residual of R,. Then there is a unique
redex Ry C My WithRo—.—.—)Rl—.—.i)R3, ie.
Mb (/M1
RO --= R1
! | *
j i
R2 - R3
——
. O
M2 M3

Notice, that in the reduction sequences My — Mz and My = Ms only
residuals of the corresponding used redex in the reduction in My are
reduced.

Property of elementary reduction diagrams!

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 363

Reduction strategies
OOOOOOOOOOOOO0.000000000000000000000000

Orthogonal systems

Strategies for orthogonal systems

Definition 11.6. Let IT be a predicate over term pairs M, R so that
R C M and R is redex (e.g. LMOM, LMIM,...).

i) 11 has property | when for a D like in the lemma it holds:
(Mo, Ro) N1I(Ma, Ro) A TI(Ms, R3) ~ TI(My, Ry)

if) IL has property Il if in each reduction step M —R M' with —=TI(M, R),
each redex S' C M’ with TI(M’, S") has an ancestor-redex S C M with
II(M, S). (i.e. =11 steps introduce no new II-redexes).

Lemma 11.7. Separability of developments. Assume 11 has property |l.

Then each development R :: My — ... — M, can be partitioned in a

II-part followed by a —II-part.

More precisely: There are reduction sequences

Ry = My = No —Ro ... =R N with TI(N;, Ry) (i < k) and

R o Ny =R R Ny with ﬁH(Nj,R/) (k<j<k+1I)and R

is equivalent to R X R-q1.
O

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 364

Reduction strategies
O000@00000000

Orthogonal systems

11.8. » II(M,R) iff R is redex in M. | and Il hold.
» II(M, R) iff R is an outermost redex in M. Then properties | and Il

hold: To |
MO M1
\) C Ry, R>, R3 outermost redexes
BO B IIR1 Let S; be the redex in My — M;
i * Assuming that is not OM ~ In My a
I;yi2 e %3 redex (P) is generated by the
* (@ reduction of Sy, that contains R;.
M2 M3

In My —> M3 Ry becomes again outermost. i.e. P is reduced: But
in My —> Mjs only residuals of S, are reduced and P is not residual,
since was newly introduced.s. Il is clear.

» II(M, R) iff R is left-most redex in M. | holds. Il not always:
F(x,b) — d,a— b,c — c:: F(c,a) — F(c,b)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 365

Reduction strategies .
000000000000 0000eO00000000OOOOO0VO0OOO0O
Orthogonal systems

Descendants of redexes (residuals)

Definition 11.9. Traces in reduction sequences:

> Let R:: My — My — ... be a reduction sequence. Let M; be fixed
and L; C M; (i > j) (provided that M; exists) redexes with
Lj—.—.—> Al T T T e
The sequence £ = (Lj1i)i>o is a trace of descendants (residuals) of
redexes in M;.

> £ s called T1-trace, in case that Vi > j TI(M;, L;).

» Let R be a reduction sequence, 11 a predicate. R is I1-fair, if R has
no infinite II-Traces.

Results from Bergstra, Klop :: Conditional Rewrite Rules:
Confluence and Termination. JCSS 32 (1986)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 366

Reduction strategies .
000000000000 00000eO0000000OOOOO0VO0OOO0O
Orthogonal systems

Properties of Traces

Lemma 11.10. Let I be a predicate with property I.
> Let ® be a reduction diagram with

RCM,Ry—.—.—> R —.—.—> R;3 is 1l trace.
Mo * M1
Do O
RO --= R1
7 B
M2 M3
Then Ry —.—. —> Ry —.— . —> R3 via My also a Il trace
> Let R, R’ be equivalent reduction sequences from My to M.
S C My, S’ C M redexes, so that a Il-trace S —. — . —> S' viaR
exists. Then there is a unique Il-trace S —. — . —> 5" via R'.
= = - = =

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 367

Reduction strategies .
000000000000 000000e000000OOOO00V0O0OOO0O

Orthogonal systems

Main Theorem of O'Donnell 77

Theorem 11.11. Let IT be a predicate with properties I,1l. Then the
class of I1-fair reduction sequences is closed w.r. to projections.

Proof Idea:

MO — M1 " — Mk ——Mk+1-e- — Ml —

: Pi

Pi| Pi -Pi

—Pi| Ak+1,
S * PIE,Ak - k+3 Pk+1
| Qk+1
-Pi
* . Rk, Rk+1 . RI

NO — N1 — Nk —:Nk+1 NI —

Let %R :: My — ... be II-fair and R’ : Ny — a projection.
1T —II .
Vk3aMy —> Ax —> Ny equivalent to the complete development
My —> Ng. In the resulting rearrangement both derivations between N
and N1 are equivalent. In particular the II-Traces remain the same.
Results in an echelon form: Ax — Bx41 — Ak+1 — Bkg2 — ...
O

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 368

Reduction strategies .
000000000000 0000000eO00000OOOOO0V0O0OOO0O
Orthogonal systems

Main Theorem: Proof

This echelon reaches R after a finite number of steps, let's say in M;::
If not R would have an infinite trace of S residuals with property II.

Let's assume that R’ is not II fair. Hence it contains an infinite IT -trace
Ry, ..., Rik41... that starts from Ny.

There are II-ancestors P, C Ay from the II-redex R, C Ny, i.e with
TI(Ak, Px). Then the Il-trace Py —. — . —> Ry —. — . —> Ry41 can be
lifted via Bi41 to the Il-trace Py — . — . —> Q41 — . — . —> Riq1.

Iterating this construction until M, a redex P, that is predecessor of R,
with TI(M,, P;) is obtained. This argument can be now continued with
Riy1.

Consequently R is not II-fair.4.

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 369

Reduction strategies
000000000 e000

Orthogonal systems

Consequences

Lemma 11.12. Let R :: My — My — ... be an infinite sequence of
reductions with infinitely outermost redex-reductions. Let S C My be a
redex. Then R’ = R /{S} is also infinite.

Proof: Assume that R’ is finite with length k. Let / > k and R, be the
redex in the reduction of M; — M, and let R, the reduction sequence
from M, to M/

e If Ry is outermost, then M; = M., can only be empty if R, is one of
the residuals of S which are reduced in R;. Thus JR;11 has one step less
than fR,.

e Otherwise R; is properly contained in the residual of S reduced in ;.

However given that SR must contain infinitely many outermost
redex-reductions then R would become empty. Consequently SR’ must
coincide with 2R from some position on, hence it is also infinite.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction strategies .
000000000000 000000000e000OOOO000000OO00

Orthogonal systems

Consequences for orthogonal systems

Theorem 11.13. Let II(M, R) iff R is outermost redex in M.

» The fair outermost reduction sequences are terminating, when they
start from a term which has a normal form.

> Parallel-Outermost is normalizing for orthogonal systems.

Proof: If t has a normal form, then there is no infinite II-fair reduction
sequence that starts with t.

Let Rt — t; — ... — be an infinite IT-fairand R’ =t =t — ... = t
a normal form.

R contains infinitely many outermost reduction steps (otherwise it would
not II-fair). Then | R’ also infinite. .

Observe that: The theorem doesn’t hold for LMOM-strategy: property Il
is not fulfilled. Consider for this purpose a — b,c — ¢, f(x,b) — d.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 371

Reduction strategies .
000000000000 0000000000e00OO0O0000000O00

Orthogonal systems

Consequences for orthogonal systems

Definition 11.14. Let R be orthogonal, | — r € R is called left normal,
if in | all the function symbols appear left of the variables. R is
left normal, if all the rules in R are left normal.

Consequence 11.15. Let R be left normal. Then the following holds:

> Fair leftmost reduction sequences are terminating for terms with a
normal form.

» The LMOM-strategy is normalizing.

Proof: Let II(M, L) iff L is LMO-redex in M. Then the properties | and Il
hold. For Il left normal is needed.

According to theorem 11.11 the II-fair reduction sequences are closed
under projections. From Lemma 11.12 the statement follows.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 372

Reduction strategies .
000000000000 00000000000eOOODO0000000O00
Orthogonal systems

Summary

A strategy is called perpetual if it can induce infinite reduction sequences.

Strategy Orthogonal LN-Ortogonal Orthogonal-NE

LMIM p p pn

PIM p p pn

LMOM n pn

POM n n pn

FSR nc nc pnc
o = = = = 9Hal

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction strategies .
000000000000 OO0OO0OO0O00OeO00000000000000

Strategies and length of derivations

Classification of TES according to appearances of variables

Definition 11.16. Let R be TES, Var(r) C Var(l) for
| —reR,x e Var(l).

> R is called variable reducing, if for every | — r € R, |l| > |r|x
R is called variable preserving, if for every | — r € R, |l|x = |r|x
R is called variable augmenting, if for every | — r € R, |l|x < |r|x

» Let D[t,t'] be a derivation from t to t'. Let |D[t, t']| the length of
the reduction sequence. D[t, t'] is optimal if it has the minimal
length among all the derivations from t to t'.

Lemma 11.17. Let R be orthogonal, variable preserving. Then every
redex remains in each reduction sequence, unless it is reduced. Each
derivation sequence is optimal.

Proof: Exchange technique: residuals remain as residuals, as long as they
are not reduced, i.e. the reduction steps can be interchanged.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 374

Reduction strategies .
000000000000 OO0OO0OO0OO0OOOe0000000000000

Strategies and length of derivations

Examples

Example 11.18. Lengths of derivations:

> Variable preserving:

R:f(x,y) — g(h(x),y)),g(x,y) = I(x,y),a— c,b—d.

Consider the term f(a, b) and its derivations.

All derivation sequences to the normal form are of the same length (4).
» Variable augmenting (non erasing):

R: f(x,b) — g(x,x),a — b,c — d. Consider the term f(c,a) and

its derivations.

Innermost derivation sequences are shorter than the outermost ones.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 375

Reduction strategies .
0O0@0000000

Strategies and length of derivations

Further Results

Lemma 11.19. Let R be overlap free, variable augmenting. Then an
innermost redex remains until it is reduced.

Theorem 11.20. Let R be orthogonal variable augmenting (ne). Let
D[t,t'] be a derivation sequence from t to its normal form t', which is
non-innermost. Then there is an innermost derivation D'[t, t'] with
|D'] < |DI.

Proof: Let L(D) = derivation length from the first non-innermost

reduction in D to t'.

Induction over L(D) :t >t — ... > t; AN t—t.

Let /i be this position.

S is non-innermost in t;, hence it contains an innermost redex S; that

must be reduced later on, let’s say in the reduction of t;. Consider the
<

reduction sequence D't — t; — ... — 5 tig A tJ’ BN

|D'| <|D|,L(D") < L(D) ~- there is a derivation D" with L(D’) = 0.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction strategies .
0008000000

Strategies and length of derivations

Further Results

Theorem 11.21. Let R be overlap free, variable augmenting. Every two
innermost derivations to a normal form are equally long.

Sure! given that innermost redexes are disjoint and remain preserved as
long as they are not reduced.

Consequence:Let R be left linear, variable augmenting. Then innermost
derivations are optimal. Especially LMIM is optimal.

11.22. If there are several outermost redexes, then the length
of the derivation sequences depend on the choice of the redexes.
Consider:

f(x,c) — d,a— d, b — c and the derivations:
f(a,b) — f(d,b) — f(d,c) — d and respectively f(a,b) — f(a,c) — d

~~ variable delay strategy. If an outermost redex after a reduction step is
no longer outermost, then it is located below a variable of a redex
originated in the reduction. If this rule deletes this variable, then the
redex must not be reduced.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Reduction strategies .
000000000000 OO0OO0OO0OO0OO0000e0000000000

Strategies and length of derivations

Further Results

Theorem 11.23. Let R be overlap free.

» Let D be an outermost derivation and L a non-variable outermost
redex in D. Then L remains a non-variable outermost redex until it is
reduced.

» Let R be linear. For each outermost derivation D[t, t'], t' normal
form, exists a variable delaying derivation D'[t,t'] with |D'| <|D|.
Consequently the variable delaying derivations are optimal.

Theorem 11.24. Ke Li. The following problem is NP-complete:

Input: A convergent TES R, term t and D[t, t |].
Question: Is there a derivation D'[t,t |] with |D’| < |D].

Proof Idea: Reduce 3-SAT to this problem.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 378

Reduction strategies .
000000000000 OO0OO0OO0OO0OO000000e000000000

Strategies and length of derivations

Computable Strategies

Definition 11.25. A reduction strategy & is computable, if the mapping
G : Term — Term with t = &(t) is recursive.

Observe that: The strategies LMIM, PIM, LMOM, POM, FSR are
polynomially computable.

Question: Is there a one-step computable normalizing strategy for
orthogonal systems 7.

Example 11.26. » (Berry) ClL-calculus extended by rules
FABx — C,FBxA — C, FxAB — C is orthogonal, non-left-normal.
Which argument does one choose for the reduction of FMNL? Each
argument can be evaluated to A resp. B, however this is undecidable
in CL.
» Consider or(true,x) — true,or(x, true) — true + CL.
Parallel evaluation seems to be necessary!

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 379

Reduction strategies .
000000000000 OOOO0OO0OO0OO000000e00000000

Strategies and length of derivations

O
Computable Strategies: Counterexample

Example 11.27. Signature: Constants: S, K, S’ K’, C,0,1
unary: A, activate binary: ap,ap’ ternary: B

Rules:

ap(ap(ap(S,x),y),z) — ap(ap(x,z),ap(y,z))
ap(ap(K,x),y) — x

activate(S') — S, activate(K') — K

activate(ap’(x,y)) — ap(activate(x), activate(y))

A(x) — B(0, x, activate(x)), A(x) — B(1,x, activate(x))
B(O? X? S) - C? B(17X7 K) - C7 B(X7y7 z) - A(.y)

Terms: Starting with terms of form A(t) where t is constructed from
S',K’ and ap'.

Claim: R is confluent and has no computable one step strategy which is
normalizing.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 380

Reduction strategies .
0O00000000O0OOOOO0OOOOO0OO0000000e0000000

Strategies and length of derivations

A sequential Strategy for paror Systems

Example 11.28. Let f,g : Nt — N recursive functions. Define a “term
rewriting system” R on N x N with rules:

(x,y) = (f(x),y) if x,y >0

(x,y) = (x. &(y)) ifx,y >0

(x,0) — (0,0) if x >0

(0,y) —(0,0) ify >0

Obviously R is confluent. Unique normal form is (0,0) and for x,y > 0,

vV vyYyey

(x,y) has a normal form iff 3n. f"(x) =0V g"(x) = 0.

A one step reductions strategy must choose among the application of f
res. g in the first res. second argument.

Such a reduction strategy cannot compute first the zeros of f"(x) res.
g"(y) in order to choose the corresponding argument. One could expect,
that there are appropriate functions f and g for which no computable
one step strategy exists. But this is not the case!l

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 381

Reduction strategies .
000000000000 OO0OO0OO0OO0OO00000000e000000
Strategies and length of derivations

A sequential strategy for paror systems

There exists a computable one step reduction strategy which is
normalizing.

Lemma 11.29. Let (x,y) € N x N. Then:

> x < y: For n either f"(x) = 0 or f"(x) > y or there exists an i < n
with f"(x) = f'(x) # 0 holds. Choose n minimal with this property.
The three alternatives are mutually excluding.

If one of the first two holds then G(x,y) = L else R

» x > y:: For n either g"(y) = 0 or g"(y) > x or there exists an i < n
with g"(y) = g'(y) # 0. Choose n minimal with this property. The
three alternatives are mutually excluding. If one of the first two
holds then G(x,y) = R else L

» Claim: & is a computable one step reduction strategy for R which is
normalizing. (Proof: Exercise)

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 382

Reduction strategies .
000000000000 OO0OO0OO0OO0OO000000000e00000
Strategies and length of derivations

Computable Strategies

Definition 11.30. Standard reduction sequences

Let R :: tg — t; — ... be a reduction sequence in the TES R. Mark in
each step in SR all top-symbols of redexes that appear on the left side of
the reduced redex. R is a standard reduction sequence if no redex with
marked top-symbol is ever reduced.

Theorem 11.31.

Standardization theorem for left-normal orthogonal TES.

Let R be LNO.

If t = s holds, then there exists a standard reduction sequence in R with
t 5 ST S.

Especially LMOM is normalizing.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 383

Reduction strategies .
000000000000 0000000000000000000000e0000

Sequential Orthogonal TES: Call by Need

Sequential Orthogonal TES

Example 11.32. For applicative TES:: PxQ — xx,R — §,Ix — x
Consider R :: PR(IQ) — PRQ — RR — SR
There exists no standard reduction sequence from PR(IQ) to SR

Fact: \-Calculus and CL-Calculus are sequential, i.e. always needed
redexes are reduced for computing the normal form.

Definition 11.33. Let R be orthogonal, t € Term(R) with normal form
t]. Aredexs C t is a needed redex, if in every reduction sequence
t — ... — t | some residual of s is reduced (contracted).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 384

Sequential Orthogonal TES: Call by Need

Sequential Orthogonal TES: Call-by-need

Theorem 11.34. Huet- Levy (1979) Let R be orthogonal
» Let t with a normal form but reducible , then t contains a needed
redex
> “Call-by-need” Strategy (needed redexes are contracted) is
normalizing
» Fair needed-redex reduction sequences are terminating for terms
with a normal form.

Lemma 11.35. Let R be orthogonal, t € Term(R), s,s’ redexes in t s.t.

s C s’. If s is needed, then also s’ is.
In particular:: If t is not in normal form, then a outermost redex is a
needed redex.

Let C[...,...,...] be a context with n-places (holes), o a substitution of
the redexes sy, ..., s, in places 1,...,n. The Lemma implies the following
property:

vCl...,...,...] in normal form, Yo3i.s; needed in C[sy, ..., Sp].

Which one of the s; is needed, depends on o .

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

385

Reduction strategies .
000000000000 000000000000000000000000e00

Sequential Orthogonal TES: Call by Need

Sequential Orthogonal TES

Definition 11.36. Let R be orthogonal.

> R is sequential®* iffVC|..., ..., ...] in normal form 3iNo.s; is needed in
Cls1, -, Sn)
Unfortunately this property is undecidable

> Let C]...] context. The reduction relation —+ (possible reduction) is
defined by
C[s] —+ C[r] for each redex s and arbitrary term r

—% and residuals defined in analogy.

» A redex s in t is called strongly needed if in every reduction
sequence t — ... —+ t', where t' is a normal form, some
descendant of s gets reduced.

» R is strongly sequential ifVC|...,...,..] in normal form 3iNo.s; is
strongly needed.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 386

Reduction strategies

0000000000000 000000000000000000000000e0
Sequential Orthogonal TES: Call by Need

Example

.
AN T4

N,
AR T8
A

y
D

il A Is not strong sequential F(G(1,2),F(G(3,4),5)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

) Q>

387

Reduction strategies .
000000000000 00000000000000000000000000e
Sequential Orthogonal TES: Call by Need

Strong Sequentiality

Lemma 11.37. Let R be orthogonal.

» The property of being strongly sequential is decidable. The needed
index i is computable.
Proof: See e.g. Huet-Levy

» Call-by-need is a computable one step reduction strategy for such
systems.

Theorem 11.38. Kennaway (Annals of Pure and Applied Logic 43(89))
For each orthogonal system there is a computable sequential (one step)
normalising reduction strategy.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 388

Applications
Formal specification techniques

®0000000000000000000O00000000000O000000000OOOOVOOOOOOOOOOOOO00O0O

Formal Specification

e Techniquesfor the

unambiguous specification of
software

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 9 Slide 1
o & = v
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

389

Applications
0@00000000000000000O0O00O000000000O000000000OOOOVOOOOOOOOOOOOO00O0O

Formal specification techniques

Objectives

e Toexplain why formal specification techniques
help discover problems in system requirements

e Todescribe the use of algebraic techniques for
interface specification

e To describe the use of model-based techniques for
behavioural specification

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 2

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 390

Applications
Formal specification techniques

00@0000000000000000O0O00O000000000000000000OOOOOOOOOOOOOOOOOO00O0O

Topics covered

Interface specification

Formal specification in the software process
Behavioural specification

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 9 Slide 3
= = - = = 9ar
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Applications
000@0000000000000000O00O000000000000000000OOOOVOOOOOOOOOOOOO00O0O

Formal specification techniques

Formal methods

e [Formal specification is part of a more general
collection of techniques that are known as ‘formal
methods’

o Theseareall based on mathematical
representation and analysis of software

e Forma methodsinclude
* Formal specification
« Specification analysis and proof
¢ Transformational development
* Program verification

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 4

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 392

Applications
000080000000 0000000O0O00000000000000000000OOOOVOOOOOOOOOOOOO00O0O

Formal specification techniques

Acceptance of forma methods

e Formal methods have not become mainstream
software devel opment techniques as was once
predicted

* Other software engineering techniques have been successful at

increasing system quality. Hence the need for formal methods
has been reduced

* Market changes have made time-to-market rather than software
with alow error count the key factor. Formal methods do not
reduce time to market

* The scope of formal methodsis limited. They are not well-suited
to specifying and analysing user interfaces and user interaction

* Formal methods are hard to scale up to large systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 5

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 393

Applications
000008000000 00000000O00000000000000000000OOOOOOOOOOOOOOOOO000O0O

Formal specification techniques

Use of forma methods

e Forma methods have limited practical
applicability

e Their principal benefits are in reducing the
number of errorsin systems so their mai area of
applicability is critical systems

e Inthisarea, the use of formal methodsis most
likely to be cost-effective

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 6

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 394

Applications
0O00000@000000000000O0O00O00000000000O0000000OOOOOOOOOOOOOOOOOO00O0O

Formal specification techniques

Specification in the software process

e Specification and design are inextricably
intermingled.

e Architectural design is essential to structure a
specification.

e Formal specifications are expressed in a
mathematical notation with precisely defined
vocabulary, syntax and semantics.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 7

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 395

Applications
0000000 @000000000000O00000000000000000000OOOOOOOOOOOOOOOOO000O0O

Formal specification techniques

Specification and design

| Increasing contractor involvement

\

Decreasing client involvement
(Requirements Requirements Architectural

Software
specification

High-level
design

definition specification design

'} K

Specification

Design

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 8

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 396

Applications
0000000 0@0000000000O0O00O00000000000O0000000OOOOOOOOOOOOOOOOO0O0O0O

Formal specification techniques

Specification in the software process

Requirements
definition

System Architectural
modelling design

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 9

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 397

Applications

000000000 @0000000000O00000000000000000000OOOOOOOOOOOOOOOOO000O0O
Formal specification techniques

Specification techniques

e Algebraic approach

* Thesystem is specified in terms of its operations and their
relationships
e Model-based approach

¢ Thesystem is specified in terms of a state model that is
constructed using mathematical constructs such as sets and

sequences. Operations are defined by modifications to the
system’s state

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 9 Slide 10

=] = =
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

398

Applications

0000000000000 000000O00000000000000000000OOOOOOOOOOOOOOOOOO00O0O

Formal specification techniques

Formal specification languages

Sequential

Concurrent

Algebraic

Larch (Guttag, Horning et
al., 1985; Guttag, Horning
etal., 1993),

OBJ (Futatsugi, Goguen et
al., 1985)

Lotos (Bolognes and
Brinksma, 1987),

M odel-based

Z (Spivey, 1992)
VDM (Jones, 1980)
B (Wordsworth, 1996)

CSP (Hoare, 1985)
Petri Nets (Peterson, 1981)

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 9 Slide 11

[m] = =

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

399

Applications
00000000000 @00000000O00000000O000000000000

Formal specification techniques

Use of formal specification

e Formal specification involves investing more
effort in the early phases of software development

e Thisreducesrequirements errors asit forcesa
detailed analysis of the requirements

e Incompleteness and inconsistencies can be
discovered and resolved

e Hence, savings as made as the amount of rework
due to requirements problems is reduced

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 12

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

400

Applications

Formal specification techniques

000000000000 80000000000000000000000000000OOO0O0000O0OOO0O00O000000

Development costs with formal specification
A
Cost

Validation
Design and

Implementation

Validation
Design and

Implementation
Specification
Specification
Without formal With formal
specification
©lan Sommerville 2000

specification
Software Engineering, 6th edition. Chapter 9

Slide 13
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

) Q>

401

Applications
0000000000000 e000000O00000000000000000000

Formal specification techniques

| nterface specification

e Large systems are decomposed into subsystems
with well-defined interfaces between these
subsystems

e Specification of subsystem interfaces allows
independent development of the different
subsystems

e Interfaces may be defined as abstract data types
or object classes

e Theagebraic approach to formal specification is
particularly well-suited to interface specification

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 14

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 402

Applications
000000000000 00®0000000000000000000000000OOOOOOOOOOOOOOOOO000O0O

Formal specification techniques

Sub-system interfaces

Interface
objects

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 15

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 403

Applications
000000000000 000@000000000000000000000000OOOOOOOOOOOOOOOOO000O0O
Formal specification techniques

The structure of an algebraic specification

< SPECIFICATION NAME > (Generic Parameter) ﬁ

sort < name >
imports < LIST OF SPECIFICATION NAMES >

Informal description of the sort and its operations

Operation signatures setting out the names and the types of
the parameters to the operations defined over the sort

KAxioms defining the operations over the sort /

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 16

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 404

Applications
Formal specification techniques

000000000000 0000eO000O00000000000000000000OOOOOOOOOOOOOOOOO000O0O

Specification components

e Introduction

* Definesthe sort (the type name) and declares other
specifications that are used
e Description

* Informally describes the operations on the type

e Signature
parameters

Defines the syntax of the operationsin the interface and their
e AXxioms

characterise behaviour

©lan Sommerville 2000

Defines the operation semantics by defining axioms which
Software Engineering, 6th edition. Chapter 9 Slide 17
[m] = =)
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

405

Applications
000000000000 00000®00O00000000000000000000OOOOOOOOOOOOOOOOOO00O0O
Formal specification techniques

Systematic algebraic specification

o Algebraic specifications of asystem may be
developed in a systematic way
* Specification structuring.
* Specification naming.
* Operation selection.
« Informal operation specification
* Syntax definition
* Axiom definition

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 18

[m] = =

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

406

Applications
000000000000 000000@O000000000000000000000OOOOVOOOOOOOOOOOOO00O0O

Formal specification techniques

Specification operations

e Constructor operations. Operations which create
entities of the type being specified

¢ Inspection operations. Operations which evaluate
entities of the type being specified

e To specify behaviour, define the inspector
operations for each constructor operation

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 19

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 407

Applications
0000000000000 000000e®O0000000000000000000OOOOOOOOOOOOOOOOOO00O0O

Formal specification techniques

Operationson alist ADT

¢ Constructor operations which evaluate to sort List
¢ Create, Consand Tail
e Inspection operations which take sort list asa
parameter and return some other sort
¢ Head and Length.
e Tail can be defined using the simpler
constructors Create and Cons. No need to define
Head and Length with Tail.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 20

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 408

Applications
000000000000 00000000@0000000000000000000OOOOVOOOOOOOOOOOO000O0O
Formal specification techniques

List specification

LIST (Elem)

sort List
imports INTEGER

Defines a list where elements are added at the end and removed
from the front. The operations are Create, which brings an empty list
into existence, Cons, which creates a new list with an added member,
Length, which evaluates the list size, Head, which evaluates the front
element of the list, and Tail, which creates a list by removing the head from its,
input list. Undefined represents an undefined value of type Elem.

Create ® List

Cons (List, Elem)® List
Head (List) ® Elem
Length (List) ® Integer
Tail (List) ® List

Head (Create) = Undefined exception (empty list)

Head (Cons (L, v)) = if L = Create then v else Head (L)

Length (Create) = 0

Length (Cons (L, v)) = Length (L) + 1

Tail (Create) = Create

k Tail (Cons (L, v)) =if L = Create then Create else Cons (Tail (L), v) J

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 21

[m] = =

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 409

Applications
000000000000 000000000eO00000000000000000OOOOOOOOOOOOOOOOOO00O0O

Formal specification techniques

Recursion in specifications

e Operations are often specified recursively

e Tail (Cons(L,V)) =if L =Createthen Create
else Cons (Tail (L), v)

Cons([5,7],9)=[5,7,9]

Tail ([5,7,9]) = Tail (Cons([5,7],9)) =

Cons (Tall ([5, 7]), 9) = Cons (Tail (Cons([5], 7)), 9) =

Cons (Cons (Tail ([5]), 7),9) =

Cons (Cons (Tail (Cons ([1, 5)), 7),9) =

Cons (Cons ([Create], 7), 9) = Cons ([7], 9) = [7, 9]

e o o o o o

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 22

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 410

Applications
000000000000 00000000O00e00000000000000000

Formal specification techniques

Interface specification in critical systems

e Consider an air traffic control system where
aircraft fly through managed sectors of airspace

e [Each sector may include a number of aircraft but,
for safety reasons, these must be separated

e Inthisexample, asimple vertical separation of
300m is proposed

e The system should warn the controller if aircraft
areinstructed to move so that the separation rule
is breached

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 23

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Applications

000000000000 0000000O0O000e0000000000000000OOOOVOOOOOOOOOOOO000O0O

Formal specification techniques

A sector object

o Ciritical operations on an object representing a
controlled sector are

©lan Sommerville 2000

Enter. Add an aircraft to the controlled airspace

Leave. Remove an aircraft from the controlled airspace
Move. Move an aircraft from one height to another

Lookup. Given an aircraft identifier, return its current height

Software Engineering, 6th edition. Chapter 9 Slide 24

[m] = =

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

412

Applications

000000000000 0000000O0O0000eO000000000000000OOOOVOOOOOOOOOOOO000O0O

Formal specification techniques

Primitive operations

e Itissometimes necessary to introduce additional
operations to simplify the specification

e The other operations can then be defined using
these more primitive operations

e Primitive operations

.

.

Create. Bring an instance of a sector into existence

Put. Add an aircraft without safety checks

In-space. Determine if agiven aircraft isin the sector

Occupied. Given a height, determine if thereis an aircraft within
300m of that height

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 25

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

413

Applications

0000000000000 000000O0O00000®00000000000000OOOOVOOOOOOOOOOOO000O0O

Formal specification techniques
.S S

(~ SECTOR

oo SE':‘IﬁlvTEGER BOOLEAN
PR opors '
Sector specification i
——— Enter - adds an aircraft to the sector if safety conditions are satisfed
Leave - removes an aircraft from the sector
Move - moves an aircraft from one height to another if safe to do so
Lookup - Finds the height of an aircraft in the sector

Create - creates an empty sector

Put - adds an aircraft to a sector with no constraint checks
In-space - checks if an aircrait s already in a sector
Occupied - checks if a specified height s available

Enter (Sector Callign, Heigh) ® Sector
Leave (Sector Callsigr) ® Sect

Move (Sector, Call<in, Helghy) ® Sector
Lookup (Sector, Call- sgn)@

Create ® Sect
Pt (Secor, Caltsign, Height) ® Sector
in-space (Sector, Call-sign) ® Boolean
Occupied (Secmv Height) ® Boolean
Enter (S, CS, H) =
if Inrspace (S,CS) then S exception (Aircraft already in sector)
elsif Occupied (S, H) then S exception (Height conflict)
else Put(S, CS, H)

Leave (Create, CS) = Create exception (Aircraft not in sector)
Leave (Put (5, CS1, HI), CS) =
if CS = CS11hen S else Put (Leave (S, CS), CS1, H1)

Move (5,CS. H =
'S = Create then Create_exception (No aircraft in sector)
alit ot i space (S, CS) then S exception (Aircraft not in semr)
elsif Occupied (S, H) then S exception (Height conflict)
else Put (Leave (S, CS), CS, H)

- NO-HEIGHT is a constant indicating that a valid height cannot be retured
Lookup (Create, CS) = NO-HEIGHT exception (Aircraft not in sector)

Lookup (Put (5, CS1, H), CS) =
=CS1 then HI else Lookup (S, CS)

Occupied (Create, H) = false
Occupied (Put (S, CS1, A H) =
Hand H1-HE 300) or (H>Hland H-H1 £300) then true
dlse Occuned (1)

In-space (Create, CS) =
In-space (Put (S, CS1, Hl) S)=
if CS = CS1 then true eise In-space (S, CS))

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 414

Applications
000000000000 00000000O000000@0000000000000OOOOOOOOOOOOOOOOO000O0O

Formal specification techniques

Specification commentary

e Usethe basic constructors Create and Put to
specify other operations

e Define Occupied and In-space using Create and
Put and use them to make checks in other
operation definitions

o All operations that result in changesto the sector
must check that the safety criterion holds

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 27

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 415

Applications
000000000000 00000O00O0O000000e000000000000
Formal specification techniques

Behavioural specification

e Algebraic specification can be cumbersome when
the object operations are not independent of the
object state

e Model-based specification exposes the system
state and defines the operations in terms of
changesto that state

e TheZ notation is a mature technique for model-
based specification. It combines formal and
informal description and uses graphical
highlighting when presenting specifications

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 28

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

416

Applications
000000000000 00000000O00000000®00000000000OOOOVOOOOOOOOOOOO000O0O

Formal specification techniques

The structure of aZ schema

Schemaname Schemasignaure Schema predicate

— Container
contents: M
capacity: M

contents £ capacity

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 29

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 417

Applications

000000000000 00000O000O0O0000000e0000000000

Formal specification techniques

Aninsulin pump

Insulin reservoir

Needle
assembly ["€——— Pump Clock
Sensor |———3{Controller ———3m» Alarm

B

Displayl Display2

Power supply

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 9

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Slide 30

418

Applications
000000000000 0000000O0O0000000000®VOV0000000OOOOOOOOOOOOOOOOOO00O0O
Formal specification techniques

Modelling the insulin pump

e The schemamodels the insulin pump as a number
of state variables

* reading?

¢ dose, cumulative dose
e 10,1112

e capacity

o adam!

* pump!

« displayl!, display2!
o Namesfollowed by a? are inputs, names
followed by a! are outputs

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 31

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 419

Applications
000000000000 00000000O00O000000000e00000000OOOOVOOOOOOOOOOOO000O0O

Formal specification techniques

Schema invariant

e Each Z schemahas an invariant part which
defines conditions that are always true

e For theinsulin pump schemait is always true that
¢ Thedose must be less than or equal to the capacity of theinsulin
reservoir

* Nosingle dose may be more than 5 units of insulin and the total
dose delivered in atime period must not exceed 50 units of
insulin. Thisis asafety constraint (see Chapters 16 and 17)

« displayl! showsthe status of the insulin reservoir.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 32

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 420

Applications
000000000000 00000000O000000000000e®O000000OOOOOOOOOOOOOOOOOO00O0O

Formal specification techniques

Insulin pump schema

— Insulin_pump.
reading? : N
dose, cumulative_dose: N

r0,rl, r2: N /I used to record the last 3 readings taken
capacity:

alarm!: {off, on}

pump!: N

display1!, display2!: STRING

dose £ capacity U dose £ 5 Ucumulative_dose £ 50
capacity ® 40 b displayl!=""

capacity £ 39 Ucapacity ® 10 P displayl! = “Insulin low"
capacity £ 9 b alarm! = on Udisplayl! = “Insulin very low"
r2 = reading?

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 33

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 421

Applications
0000000000000 0000O00O0O0O00000000000e000000

Formal specification techniques

The dosage computation

e Theinsulin pump computes the amount of insulin
required by comparing the current reading with
two previous readings

o If these suggest that blood glucose isrising then
insulin isdelivered

¢ Information about the total dose deliveredis
maintained to allow the safety check invariant to
be applied

o Notethat thisinvariant always applies - thereis
no need to repeat it in the dosage computation

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 34

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Applications
000000000000 00000O00O0O00000000000000eO000000OO0VOOOOOOOOOOOOO00O0O

Formal specification techniques

DOSAGE schema

— DOSAGE.
Dinsulin_Pump

(N
dose=0U

(r13r0)U(r2=r1) 0
((r1>r0)U (r2£r1)) U
~ ((r1<ro)U ((r1-r2)> (r0-r1)))
U
dgse =4U

((r1 £10) U (r2=r1))
((r1<ro)U((r1-r2) £ (rO r1)))

dose =(r2 -r1) *4 U
(rLE£r0)U (r2>r1))U
((r1>r0)U ((r2-r1)3 (r1-r0)))

)

capacity’ = capacity - dose
cumulative_dose' = cumulative_dose + dose
r0'=r1uUrl'=r2

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 35

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 423

Applications
000000000000 00000O00O0O000000000000000e0000OOO0VOOOOOOOOOOOO000O0O

Formal specification techniques

Output schemas

e The output schemas model the system displays
and the alarm that indicates some potentially
dangerous condition

e Theoutput displays show the dose computed and
awarning message

e Theaarmisactivated if blood sugar isvery low -
thisindicates that the user should eat something
to increase their blood sugar level

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 36

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 424

Applications
000000000000 00000O00O0O0000000000000000@000DOO0VO0OOOO0OOOOO000O0O

Formal specification techniques

Output schemas

— DISPLAY
Dinsulin_Pump

display2!" = Nat_to_string (dose) U i
(reading? < 3p displayl!' = "Sugar low" U
reading? > 30 P displayl!' = "Sugar high" U
reading? 3 3 and reading? £30 b displayl!" = "OK")

— ALARM
Dinsulin_Pump

(reading? < 3 Ureading? > 30) b alarm! = on U
(reading? 3 3 Ureading? £30) b alarm!' = off

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 37

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 425

Applications
000000000000 00000O00O0O00O000000000000000e00DO00VO0OOOO0OOOOO00000O

Formal specification techniques

Schema consistency

e Itisimportant that schemas are consistent.
Inconsistency suggests a problem with the system
requirements

e ThelINSULIN_PUMP schemaand the

DISPLAY are inconsistent

« displayl! shows awarning message about the insulin reservoir
(INSULIN_PUMP)
« displayl! Shows the state of the blood sugar (DISPLAY)

e Thismust be resolved before implementation of
the system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 38

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 426

Applications
000000000000 0000000O0O000000000000000000eV0DOOOVO0OOOO0OOOOO000O0O

Formal specification techniques

Key points

e [Formal system specification complements
informal specification techniques

e [Formal specifications are precise and
unambiguous. They remove areas of doubt in a
specification

o [Formal specification forces an analysis of the
system requirements at an early stage. Correcting
errors at this stage is cheaper than modifying a
delivered system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 39

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 427

Applications
000000000000 00000O00O0O0000000O00000000000e

Formal specification techniques

Key points

e Formal specification techniques are most
applicable in the development of critical systems
and standards.

e Algebraic techniques are suited to interface
specification where the interface is defined as a
set of object classes

e Model-based techniques model the system using
sets and functions. This simplifies some types of
behavioural specification

©lan Sommerville 2000 Software Enginesring, 6th ediition. Chapter O Slide 40

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

428

Applications
000000000000 0000000000000000000000000000e0000000000000000000000

Case Study: Invoice System

Case Study Text: Invoicing Orders

Henri Habrias
Habrias@irin.univ-nantes.fr

(24-04-1996)
Introduction

1. The subject is to invoice order.

2. To invoice is to change the state of an order (to change it from the state "pending" to
"invoiced").

3. On an order, we have one and one only reference to an ordered product of a certain quantity.
The quantity can be different to other orders.

4. The same reference can be ordered on several different orders.

5. The state of the order will be changed into "invoiced" if the ordered quantity is either less or
equal to the quantity which is in stock according to the reference of the ordered product.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 429

Applications
000000000000 00000000O000000000000000000000e000000000000000000000

Case Study: Invoice System

You have to consider the two following cases:
Case 1
All the ordered references are references in stock. The stock or the set of the orders may vary,

o due to the entry of new orders or cancelled orders
o due to having a new entry of quantities of products in stock at the warehouse.

But, we do not have to take these entries into account. This means that you will not receive two
entry flows (orders, entries in stock). The stock and the set of orders are always given to you in a
up-to-date state .

Case 2
You do have to take into account the entries of :

e new orders
e cancellations of orders
e entries of quantities in the stock

End of case study text

Perhaps you will consider that this text is incomplete. The goal of this exercise is to know what
questions are raised by your favourite method(s).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 430

Applications

000000000000 00000000O0000000000000000000000e00000000000000000000

Case Study: Invoice System
.S S

You will propose different "solutions" (expressing consistant requirements) and you will explain
how your method(s) have brought you to propose these "solutions".

Rules for writing your text :

¢ Your text must be selfsufficient (you have to define, by using examples taken in the case study,
every concept and notation used in your paper. If necessary give references to the
bibliography).
e Introduce the reader to your "method":
o by relating it to other approaches (those which are nearest to your approach, those which
are furthest from your approach)
o by giving the theoretical basis (with reference to the bibliography) - Present the questions
that you had to deal with from your method - Present the answer that you have chosen
o Show what verifications your method has permitted you to do (detection of
inconsistencies in the answers that you have chosen (ie, in your answers express your
interpretation of the case study)

Careful!

Do not extend the domain. For example, do not specify stock management (when, following what
minimum quantity to restock, etc.), do not add new information as "category of customer",

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 431

Applications
0000000000000 000000000000000000000000000000e0000000000000000000
Case Study: Invoice System

"category of product", "payment modality", "bank account" etc.

Software Specification Methods: An Overview Using a Case Study --The web site
Home

) Q>

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 432

Applications
000000000000 00000000000000000000000000000000e000000000000000000

Case Study: CASL Specification

CASL-Specification

Analysis and specification of case 1

» Q1: What are the data of the invoicing problem?

» A: Data: orders, stock, products. Notion of quantity ~» Sorts: Order,
Stock, Product, Qty and a total order predicate "<", e.g NAT.

» Q2: What is the state of an order?
» State of an order either “pending” or "invoiced"~~ predicates

> preds — declaration of predicates
is_pending, is_invoiced : Order — on the orders.
axiom — declaration of an axiom

V o : Order . = is_pending(o) < is_invoiced(o)
» Alternative: state as attribute of the orders. Hence state operation
from Order to State where free type State :: pending | invoiced;

» We only consider the predicative description of the state.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 433

Applications
000000000000 00000000O0000000000000000000000000e00000000000000000

Case Study: CASL Specification
.S S

CASL: Analysis and specification of case 1

» Q3: What are the operations on the orders?

» Req: Operations that observe the content of the orders."reference”
to a product and “quantity” of the ordered product. Assume
quantity is not zero. Orders contain only one reference (according to
the reference of the ordered product).~~ spec ORDER.

» Q4: What about the stock?

» Req: Expressions “the references in stock” and “the quantity (of a
product) which is in stock” ~~ There is an operation gty which
given a reference to a product and a current value of the stock,
returns the quantity of the product. Operations to add and to
remove product items from the stock. Also a predicate p is_in s
which holds if the product p is referenced in the stock s. Notice the
functions are partial ~~ definedness predicate keyword def.
~ spec STOCK

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 434

Applications
000000000000 0000000000000000000000000000000000e0000000000000000

Case Study: CASL Specification

CASL: Analysis and specification of case 1

» Q5: What are the inputs and outputs of the main operation that we
shall call “invoice_order”?

» The operation gets an order and a stock as inputs. It may modify
the order and the stock. The algebraic formalism is functional, hence
one has to gather both values into a new one. CASL provides an
abbreviation for product types which generates all the declarations of
a product type at once.~~
free type OrdStk ::= mk_os(order_of : Order; stock_of : Stock);

» The first operation is the “constructor” and the other two the
“selectors”. Signatures and axioms are generated.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 435

Applications

000000000000 00000000O000000000000000000000000000e000000000000000

Case Study: CASL Specification
.S S

CASL: Analysis and specification of case 1

>

>

Q6: What are the required conditions to invoice an order?

The requirements indicate that an order can be invoiced if at least
three conditions are satisfied: (1) the state of the order is “pending”,
(2) “the ordered references are references in stock” and (3) “the
ordered quantity is either less or equal to the quantity which is in
stock”. Parameters of invoice_order are o : Order, s : Stock.

(1) is_pending(o)
(2) Definition of predicates, e.g.
pred referenced(o : Order; s : Stock) = reference(o) is_in s

(3) enough_qty(o : Order; s : Stock) = ordered_qty(o) <
qty(reference(o), s);

invoice_ok(o : Order; s : Stock) = is_pending(o) N referenced(o, s)
A enough_qty(o, s)

Defensive style: operation invoice_ order total!

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 436

Case Study: CASL Specification

CASL: Analysis and specification of case 1

» Q7: What is the effect of the operation “invoice_order”

» Within the previous conditions, the state of the order becomes
invoiced and the quantity of the ordered product in the stock is
reduced by the ordered quantity. We assume the parameters are not
changed if the conditions don't hold. If the conditions hold:

> is_invoiced(order_of(invoice_order(o, s))) if invoice_ok(o, s)

v

stock_of{(invoice_order(o, s)) =
remove(reference(o), ordered_qty(o), s) if invoice_ok(o, s)

If not: invoice_order(o, s) = mk_os(o, s) if —~invoice_ok(o, s)
reference(order_of(invoice_order(o, s))) = reference(o)

ordered__qty(order_of(invoice_order(o, s))) = ordered_qty(o)

vV v vv

All the definitions from Q5 should be gathered in a specification
module INVOICE. Include messages (success, not_pending,
not__referenced, not_enough_qty) with function msg_of.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

437

Applications

000000000000 00000000O00000000000000000000000000000e0000000000000

Case Study: CASL Specification

O
CASL: Analysis and specification of case 2

>

In case 2 we have to take into account the “dynamics” of the
invoicing system and to specify the two entry flows (orders, entries
in stock).

Q8: What are the operations involved in this part?

On the orders specify - “new_order” and - “cancel_order”
On the stock the operation requested is: - “add_qty” to add a
certain quantity of a product in the stock.

The requirements don't mention how to invoice pending orders, this
will be done with a function "“deal_with_order”. Additionally a
constant “init" is needed in order to initialize the invoicing system.
Q9: Could you explain the scenario of the invoicing process?

The invoicing process evolves from the initial state by invocation of
the four operations: new_order, cancel_order, deal_with_order and
add__qgty. Orders which cannot be invoiced remain pending, orders
can be canceled any time.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 438

Applications

000000000000 00000000000000000000000000000000000000e000000000000

Case Study: CASL Specification
.S S

CASL: Analysis and specification of case 2

>

Q10: Is there an ordering to choose the orders which must be
invoiced by the system?

Open in the requirements. Usual first_in first_out policy. However,
the orders not invoiced by lack of stock should be invoiced as soon
as the ordered product is supplied in the stock. Design decision! ~~
ORDER_QUEUE with main sort OQueue. CASL provides generic
data type LIST.

Extend ORDER_QUEUE to QUEUES by introducing subsorts
UQueue, PQueue and IQueue using predicates.

Q11: What is the global state of the invoicing process and what are
the conditions which should be fulfilled by the global state values?

The global state is composed of the orders and of the stock. Req.
“all the ordered references are references in stock”. If orders can be
canceled they must be uniquely identified.~~

free type GState = mk_gs(porders : PQueue; iorders : IQueue;
the_stock : Stock);

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 439

Applications
000000000000 00000000O0000000000000000000000000000000e00000000000

Case Study: CASL Specification
.S S

CASL: Analysis and specification of case 2

» Q12: What is the effect of the operations identified in Q87

» The effect is mainly to change the global state according to the
given scenario.

» Q13: The meaning of cancel_order is clear when the order is
pending. But what does it mean to cancel an order which already
has been invoiced?

» This corresponds to the case when a product is not accepted by the
customer and when it is returned at the warehouse. So the order is
canceled and the stock updated.

» cancel_order(o, vgs) removes the order o from the queue it is on in
the global state vgs. Moreover if the order is invoiced, the stock is
supplied by the ordered quantity of the referenced product.
Operation remove(o, q).

> Because of the unicity of orders the following property holds:

o € porders(vgs) A unicity(the_orders(vgs)) — — o € iorders(vgs).

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 440

Applications

00000000 e

Case Study: CASL Specification

CASL: Analysis and specification of case 2

>

The operation deal_with_order(vgs) tries to invoice a pending
order. The order which is invoiced is the oldest order in the pending
order queue for which enough quantity in stock is available.

preds invoiceable(pq : PQueue; s : Stock) = Jo : Orders. (o € pg A
enough__qgty(o, s));
~~ Operation first_invoceable : PQueue x Stock — 7 Order.

If no order in the pending queue is invoiceable, then the operation
leaves the global state unchanged (first axiom), otherwise the first
invoiceable order of the pending queue is effectively invoiced (second
axiom). The invoice_ok conditions are well fulfilled, because the
order is pending, the product is referenced in stock (property of the
global state) and the product quantity has just been checked.

Architectural specification. CASL allows to specify the design of a
software system by defining the program modules that have to be
implemented and how these modules are combined to an
implementation of the specification.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Applications

Case Study: ASM-Specification

ASM: Analysis and specification of case 1

» ASM supports and uniformly integrates the major life cycle activities
of the development of complex software systems. The process of
requirement capture results into rigorous ground models which are
precise but concise high-level system blue-prints, formulated in
domain-specific terms. By stepwise refined models up to code, the
architectural and component design is obtained. On the basis of
separation of concerns ASM becomes a modeling technique which
integrates dynamic (operational) and static (declarative) descriptions
and an analysis technique that combines validation (by simulation
and testing) and verification methods at any desired level of detail.

» Q1: Who are the system agents and what are their relations? In
particular what is the relation between the system and its
environment?

» A: R1 “The subject is to invoice orders". ~» invoicing orders
specification in terms of a single-agent machine as basic ASM or
Turbo ASM.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Applications

000000000000 00000000O0000000000000000000000000000000000e00000000

Case Study: ASM-Specification
.S S

ASM: Analysis and specification of case 1

» Q2: What are the system states? What are the domains of objects
and what are the functions, predicates and relations defined on
them?

» R1: There is a set Orders R2: Function orderState which yields
the state of each order, which can be invoiced or pending. By R3
there are two functions, referencedProduct representing the
product referenced in an order and orderQuantity, which returns
the quantity in the order (R4 not injective, not constant). By R3 we
need a set Quantity (subset of Natural) to denote quantity
values, while by R5 there is a function stockQuantity which
represents the quantity of products in stock.

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 443

Applications
000000000000 00000000O00000000000000000000000000000000000e0000000

Case Study: ASM-Specification
.S S

ASM: Analysis and specification of case 1

» Q3: What are the static and the dynamic parts of states? Who can
update the dynamic functions?

» By Rb6a the set of Orders is static. By R2 and R5 the function
orderState is dynamic and controlled by the system. By R3 and
R6a referencedProduct and orderQuantity are both static. By
R6a the function stockQuantity is dynamic, but it is unclear who
updates it. Assumption the stock is only updated by the system
when it invoices an order. The set of products and of quantities are
assumed to be static. Use AsmM language.~~ Signature.

» Q4: How and by which transitions do the systems state evolve?
Under which conditions (guards) do the state transitions (actions) of
single agents happen and what is their effect on the state? What is
supposed to happen if those conditions are not satisfied?

» By R2, R5 there is only one transition to change the state of an
order. It remains open whether the invoicing is done only for one
order at a time, simultaneously for all orders, or only for a subset of

_

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 444

Applications

000000000000 00000000O000000000000000000000000000000000000e000000

Case Study: ASM-Specification

ASM: Analysis and specification of case 1

>

It remains open in which succession and whit what successful
termination or abruption mechanism this should be realized. The
time model is also not mentioned.

> ~ rule r_invoiceSingleOrder.

Q5: Could the system actions be parallelised anyhow? Namely, in the
case of invoicing orders, can the system invoice several orders in one
step?

Parallelism can be exploited in two directions: Selecting a given
product (possibly in a non deterministic way) and then
simultaneously invoicing all the corresponding orders. Alternatively,
select a set of orders to be invoiced in parallel.

~ all-or-none strategy using a function pendingOrders yielding the
set of pending orders for a certain product. ~ rule
r_invoiceAllOrNone.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 445

Applications
0000800000

Case Study: ASM-Specification

ASM: Analysis and specification of case 1

» To avoid a system deadlock when the stock cannot satisfy any
request, we formalise the second strategy with a rule
InvoiceOrdersForOneProduct introducing some non-determinism in
the choice of a set of pending orders which can be invoiced
according to the available quantity in stock.

» To parallelise invoicing orders over all products, a slight variant of
the previous rule can be obtained replacing choose product in
Products with a forall product in Producs. To further maximise a
product quantity invoiced at a time, a new strategy is formalised by
the rule InvoiceMaxQOrdersForOneProduct.

» Choose a set of pending orders, with enough referenced products in
the stock, to be simultaneously invoiced. ~~ rule InvoiceOrders using
a predicate invoicable which is true on a set of pending orders with
enough quantity of requested products in the stock and a function
refProducts which yields the set of all products referenced in a set of
orders.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Applications

000000000000 00000000O00000000000000000000000000000000000000e0000

Case Study: ASM-Specification
.S S

ASM: Analysis and specification of case 1

» Q6: What is the initialisation of the system and who provides it? Are
there termination conditions and, if so, how are they determined?
What is the relation between initialisation/termination and
input/output?

» No explicit initialisation is specified, although one can assume that
all the orders are initially pending.

» No termination condition is given either. We assume that the system
keeps to invoice orders as long as there are orders which can be
invoiced.

» Exception handling and robustness

» Q7: Which forms of erroneous use are to be foreseen and which
exception handling mechanisms should be installed to catch them?
What are the desired robustness features?

» No need.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 447

Applications
000000000000 00000000O000000000000000000000000000000000000000e000

Case Study: ASM-Specification

ASM: Analysis and specification of case 1

» Identifying the desired properties (validation/verification)

» Q8: Is the system description complete and consistent?

» Completeness with respect to the requirements can be verified by
checking that every requirement has been analysed and captured by
our specification. An ASM is consistent if it always performs
consistent updates.

» Q9: What are the system assumptions and what are the desired
system properties? What do the requirements say about the state of
the system?

» Assumptions on orderQuantity (>0), stockQuantity (>= 0),
orderState != undef

u]
b}
I
i
tht

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 448

Applications
000000000000 00e00

Case Study: ASM-Specification

ASM: Analysis and specification of case 2

» Q10: Who are the system agents?

» The informal description does not specify the agents for the dynamic
manipulation of orders, stock and products. We assume there is only
one agent.

» Q11: What are the system states? What are the domains of objects
and what are the functions, predicates and relations defined on
them?

» The domains Orders and Products and all the functions for case 1
remain. For the new operations of this case, three monitored
functions that resp. yield the sequence of orders to add, the
sequence of orders to cancel and the new quantities to add in the
stock. We assume that canceled orders are not deleted and their
status is changed to CANCELED.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 449

Applications
000000000000 000e0

Case Study: ASM-Specification
.S S

ASM: Analysis and specification of case 2

» Q12: What is the classification of domains and functions?

» By R6b the set of Orders is dynamic. Therefore, functions
referencedProduct and orderQuantity are both dynamic and updated
when a new order is inserted in Orders. the set Products is still
considered static (no new products in stock). The function
stockQuantity is dynamic.

» Q13: How and by which transitions do the system states evolve?
How are the internal actions (of the system) related to external
actions (of the environment)?

> Besides the action of invoicing an order, R6b introduces other three
operations: (1) cancelation of orders, (2) insertion of new orders,
and (3) addition of quantities to the stock. these functions are
driven by the monitored functions from Q11. The requested actions
will be performed for every element in the sequence at each step. If
the sequence is empty, the action has no effect.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 450

Applications
0000000000000 000e
Case Study: ASM-Specification

ASM: Analysis and specification of case 2

» Q14: Could the domains be extended by adding new items? Namely,
in the case of invoicing orders, can new orders be inserted?

» Rule AddOrders
» Q15:How can location updates be sequentialized in order to avoid

synchronous inconsistent updating? In the case study, how can the

stock be updated when new quantities for the same product arrive
at the same time?

» Rule Addltems performs the entry of quantities in the stock by
increasing the value of the function stockQuantity.

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

Summary
®00000

Summary

Summary: Formal Specification and Verification Techniques

What have we learned? ~~ See contents of lecture.

Which were the important notions about FSVT?

Are formal methods helpful for better software development?
Can formal methods be integrated in SD-Process models?
What is needed in order to understand and use formal methods?

Are there criteria for evaluating formal methods?

vV V. v vV VvV VY VY

The importance of knowing what one does....

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 452

Summary
0O@0000

Summary

Principles to make a formal method a useful tool in system
development

formal syntax

formal semantics

clear conceptual system model
uniform notion of an interface

sufficient expressiveness and descriptive power

vV V. v v Vv Y

concept of development techniques with a proper notion of
refinement and implementation

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 453

Summary
00@000
Summary

Model oriented specification techniques

ASM

VDM

Z and B-Methods

SDL

STATECHARTS

CSP, Petri-Nets (concurrent)

vV VvV vV VvV VY

=] T = = = HA

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 454

Summary
000e00

Summary
.S S

Property oriented specification techniques

v

Algebraic Specification Techniques (equational logic)

v

Logical Specification Techniques (Prolog, temporal- and modal
logics)

Hybrids
LARCH, OBJ, MAUDE,....
Tools: http://rewriting.loria.fr/

vV v v Vv

Interesting reading:
http://www.comp.lancs.ac.uk/computing/resources/lanS/SE6/Slides/PDF /ch9
http://libra.msra.cn/ConferenceDetail.aspx?id=1618

.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 455

Summary
0000e0

Summary

Verification techniques

Important: What and where should something hold...
What to do when it does not hold?
Use the proper tools depending on the abstraction level.
» Equational Logic (Term Rewriting ...)
» Equational properties in a single model (Induction methods....)
» First order Logics (General theorem provers...)
» First order properties of single models (Inductive methods...)
» Temporal and modal logics (Propositional part...Model checking)
>

Propositional logics (Sat solvers, Davis Putman, tableaux,...)

Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction 456

Summary
00000e

Summary

FSVT

» Thanks for your attention

=] T = = = HA
.S S
Prof. Dr. K. Madlener: Formal Specification and Verification Techniques: Introduction

457

	Introduction
	Generalities
	Bibliography
	Goals
	Contents

	Role of formal Specifications .
	Motivation
	Properties of Specifications
	Formal Specifications
	Examples

	Abstract State Machines: ASM- Specification's method
	Fundamentals
	Sequential algorithms
	Basic-ASM: Main Model of ASM's

	Distributed ASM: Concurrency, reactivity, time
	Fundamentals: Orders, CPO's, proof techniques
	Induction
	DASM
	Reactive and time-depending systems

	Refinement
	Lecture Börger's ASM-Buch

	Algebraic Specification - Equational Calculus
	Fundamentals
	Introduction
	Algebrae
	Algebraic Fundamentals
	Signature - Terms
	Strictness - Positions- Subterms
	Interpretations: sig-algebras
	Canonical homomorphisms
	Equational specifications
	Substitution
	Loose semantics
	Connection between |-3mu, =E, E
	Birkhoff's Theorem

	Initial semantics
	Basic properties
	Correctness and implementation
	Structuring mechanisms
	Signature morphisms - Parameter passing
	Semantics parameter passing
	Specification morphisms

	Reduction Systems
	Abstract Reduction Systems
	Principle of the Noetherian Induction
	Important relations
	Sufficient conditions for confluence
	Equivalence relations and reduction relations
	Transformation with the inference system
	Construction of the proof ordering

	Term Rewriting Systems .
	Principles
	Critical pairs, unification
	Local confluence
	Confluence without Termination
	Knuth-Bendix Completion

	Equational calculus and Computability
	Implementations
	Primitive Recursive Functions
	Recursive and partially recursive functions
	Partial recursive functions and register machines
	Computable algebrae

	Reduction strategies .
	Generalities
	Orthogonal systems
	Strategies and length of derivations
	Sequential Orthogonal TES: Call by Need

	Applications
	Formal specification techniques
	Case Study: Invoice System
	Case Study: CASL Specification
	Case Study: ASM-Specification

	Summary .
	Summary

