Exercises to the Lecture FSVT

Exercise 1: [Termination]
Prove the following theorem:
Let A be a set, $>$ a total well-founded ordering on A and I a function mapping every k-ary function symbol f to a mapping $I(f): A^{k} \rightarrow A$, strictly monotonously increasing in every argument (i.e. for all $a_{1}, \ldots, a_{k} \in A, i \in\{1, \ldots, k\}$, and $a_{i}>a$ holds: $I(f)\left(a_{1}, \ldots, a_{i}, \ldots, a_{k}\right)>I(f)\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{k}\right)$.
Let $I(\beta): \operatorname{Term}(F, V) \rightarrow A$ be defined as:

$$
\begin{aligned}
I(\beta)(t) & =\beta(t), \text { if } t \in V \\
I(\beta)\left(f\left(t_{1}, \ldots, t_{n}\right)\right) & =I(f)\left(I(\beta)\left(t_{1}\right), \ldots, I(\beta)\left(t_{n}\right)\right)
\end{aligned}
$$

Let G be a term-rewriting system and let $I(\beta)(l)>I(\beta)(r)$ for every rule $l \rightarrow r \in G$ and for every variable assigment $\beta: V \rightarrow A$. Then G is terminating.

Exercise 2: [Example for termination]
Consider the rule system $R: f(x) \rightarrow h(s(x)), h(0) \rightarrow h(s(0))$ with $x \in V$. Prove:

1. The theorem of exercise 1 is not applicable to R for $A=\mathbb{N}$.
2. R is confluent.
3. R is terminating.

Exercise 3: [Completion]

Let $E=\{x+0=x, x+s(y)=s(x+y), x+p(y)=p(x+y), x-0=x, x-s(y)=$ $p(x-y), x-p(y)=s(x-y), s(p(x))=x, p(s(x))=x,((x+y)-x)=y,(x+(y-x))=$ $y,((x-y)+y)=x\}$

1. Complete E using any reduction ordering you like.

Be verbose, write down for at least 5 most general unificators how you determined them when looking for critical pairs. Write down all critical pairs, you have looked at.
Hint: Start with CPs of the last three equations.
2. Show, that completion will not succeed. Make a suggestion, what can be done on this problem.

Exercise 4: [Completion modulo ~]
Let $>$ be a Knuth-Bendix-ordering with weight function φ defined by $\varphi(s)=1$ for $s \in F \cup V$.
Let $E=\{f(x+y) \rightarrow f(x) * f(y), f(0) \rightarrow 1, x+0 \rightarrow x, 0+x \rightarrow x, x * 1 \rightarrow x, 1 * x \rightarrow x\}$ and $G=\{x+y=y+x,(x+y)+z=x+(y+z), x * y=y * x,(x * y) * z=x *(y * z)\}$. Complete E modulo G with respect to $>$.

Delivery: until 18.12.2011,
by E-Mail to huechting@informatik.uni-kl.de

