WS 2011-2012 24.01.2011

Exercises to the Lecture FSVT

Prof. Dr. Klaus Madlener

sheet 12

Exercise 1: [standard combinators]

Prove the following equations to be valid for the standard combinators $I \equiv \lambda x.x$, $K \equiv \lambda xy.x$, $B \equiv \lambda xyz.x(yz)$, $K_* \equiv \lambda xy.y$, $S \equiv \lambda xyz.xz(yz)$:

1. IM = M, 2. KMN = M, 3. $K_*MN = N$, 4. SMNL = ML(NL), 5. BLMN = L(M(N))

Exercise 2: [Number presentations]

Let the following number presentations in the λ -calculus be given:

- 1. $c_0 \equiv \lambda f x.x, c_{n+1} \equiv \lambda f x. f^{n+1}(x)$
- 2. $d_0 \equiv I$, $d_{n+1} \equiv [false, d_n]$
- 3. $z_0 \equiv KI$, $z_{n+1} \equiv SBz_n$,

where $F^0(M) \equiv M$, $F^{n+1}(M) \equiv F(F^n(M))$, true $\equiv K$, false $\equiv K_*$, $[M, N] \equiv \lambda z.zMN$. Prove:

- 1. There are terms T, T^{-1} with $Tc_n \equiv d_n$ and $T^{-1}d_n \equiv c_n$ for all n.
- 2. There are terms R, R^{-1} with $Rd_n \equiv z_n$ and $R^{-1}z_n \equiv d_n$ for all n.

Exercise 3: [properties of redexes]

- 1. Make yourself familiar with the notation used in chapter 11 of the lecture. Use the following paper: Bergstra, Klop :: Conditional Rewrite Rules: Confluence and Termination. JCSS 32 (1986)
- 2. Prove the following Lemma (Lemma 11.5 on slide 361). Let D be an elementary reduction's diagram for orthogonal systems, $R_i \subseteq M_i$ (i = 0, 2, 3) redexes with $R_0 . . \rightarrow R_2 . . \rightarrow R_3$ i.e R_2 is Rest of R_0 and R_3 is Rest of R_2 . Then there is a unique redex $R_1 \subseteq M_1$ with $R_0 . . \rightarrow R_1 . . \rightarrow R_3$, i.e.

Delivery: until 31.01.2011,

by E-Mail to huechting@informatik.uni-kl.de